ir_pass_manager.cc 16.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/inference/analysis/ir_pass_manager.h"
16

17
#include <map>
18
#include <memory>
19
#include <string>
20
#include <unordered_map>
21 22
#include <unordered_set>
#include <utility>
L
luotao1 已提交
23
#include <vector>
24

Y
Yan Chunwei 已提交
25
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
26 27
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/scope.h"
28
#include "paddle/fluid/inference/analysis/argument.h"
Y
Yan Chunwei 已提交
29
#include "paddle/fluid/string/pretty_log.h"
30
#include "paddle/phi/common/data_type.h"
31
#include "paddle/phi/core/errors.h"
32 33 34 35

namespace paddle {
namespace inference {
namespace analysis {
Y
Yan Chunwei 已提交
36
using string::PrettyLog;
37
using string::PrettyLogEndl;
Y
Yan Chunwei 已提交
38
using string::Style;
39

40
IRPassManager::IRPassManager(Argument *argument) {
41
  disable_logs_ = argument->disable_logs();
42 43 44

  ARGUMENT_CHECK_FIELD(argument, ir_analysis_passes);
  CreatePasses(argument, argument->ir_analysis_passes());
45 46
}

47 48
void IRPassManager::CreatePasses(Argument *argument,
                                 const std::vector<std::string> &passes) {
49
  // For graph_viz_pass
50
  std::string pre_pass;
L
luotao1 已提交
51
  int pass_num = 0;
52

53
  for (const std::string &pass_name : passes) {
54
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_name);
55
    pass->Set("use_varseqlen", new bool(argument->tensorrt_use_varseqlen()));
56
    pass->Set("use_cutlass", new bool(argument->use_cutlass()));
57 58
    pass->Set("with_interleaved",
              new bool(argument->tensorrt_with_interleaved()));
59 60 61 62
    pass->Set("tensorrt_transformer_posid",
              new std::string(argument->tensorrt_transformer_posid()));
    pass->Set("tensorrt_transformer_maskid",
              new std::string(argument->tensorrt_transformer_maskid()));
63
    pass->Set("disable_logs", new bool(argument->disable_logs()));
64 65 66
    auto trt_precision_mode = argument->tensorrt_precision_mode();
    bool enable_int8 =
        trt_precision_mode == static_cast<int>(phi::DataType::INT8);
67
    pass->Set("enable_int8", new bool(enable_int8));
W
Wilber 已提交
68 69 70 71 72 73 74 75 76
    pass->Set("max_input_shape",
              new std::map<std::string, std::vector<int>>(
                  argument->max_input_shape()));
    pass->Set("min_input_shape",
              new std::map<std::string, std::vector<int>>(
                  argument->min_input_shape()));
    pass->Set("optim_input_shape",
              new std::map<std::string, std::vector<int>>(
                  argument->optim_input_shape()));
77 78 79 80 81 82 83 84 85
    // Now, shape tensor value is not explicit set by user,
    // it is collected through API CollectShapeRangeInfo.
    pass->Set("max_shape_tensor",
              new std::map<std::string, std::vector<int>>());
    pass->Set("min_shape_tensor",
              new std::map<std::string, std::vector<int>>());
    pass->Set("optim_shape_tensor",
              new std::map<std::string, std::vector<int>>());

86 87 88 89
    // This gpu_device_id is used by some fp16 precision passes, so move it
    // here.
    pass->Set("gpu_device_id", new int(argument->gpu_device_id()));

90 91 92 93 94 95 96 97
    // tuned trt dynamic_shape
    pass->Set("trt_tuned_dynamic_shape",
              new bool(argument->tensorrt_tuned_dynamic_shape()));
    bool with_dynamic_shape = (argument->max_input_shape().size() > 0 &&
                               argument->min_input_shape().size() > 0 &&
                               argument->optim_input_shape().size() > 0) ||
                              argument->tensorrt_tuned_dynamic_shape();
    pass->Set("with_dynamic_shape", new bool(with_dynamic_shape));
98

99
    // Mixed precision related.
100 101 102
    pass->Set(
        "mixed_black_list",
        new std::unordered_set<std::string>(argument->mixed_black_list()));
103
    pass->Set("enable_gpu_mixed", new bool(argument->enable_gpu_mixed()));
104 105
    pass->Set("enable_custom_device_mixed",
              new bool(argument->enable_custom_device_mixed()));
106 107
    pass->Set("mixed_precision_mode",
              new int(argument->mixed_precision_mode()));
108
    pass->Set("model_precision", new int(argument->model_precision()));
109 110
    pass->Set("enable_low_precision_io",
              new bool(argument->enable_low_precision_io()));
111

Z
zhupengyang 已提交
112 113 114
    // "use_xpu" is used for passes in subgraphs.
    pass->Set("use_xpu", new bool(argument->use_xpu()));

115
    if (pass_name == "graph_viz_pass") {
116 117 118 119 120 121 122 123 124 125
      std::string optim_cache_dir = argument->optim_cache_dir();
      std::string dot_file_path;
      if (optim_cache_dir.empty()) {
        dot_file_path = std::to_string(pass_num) + "_ir_" +
                        (pre_pass.empty() ? "origin" : pre_pass) + ".dot";
      } else {
        dot_file_path = optim_cache_dir + "/" + std::to_string(pass_num) +
                        "_ir_" + (pre_pass.empty() ? "origin" : pre_pass) +
                        ".dot";
      }
126
      pass->Set("graph_viz_path", new std::string(std::move(dot_file_path)));
127
      pass->Set("optim_cache_dir", new std::string(std::move(optim_cache_dir)));
L
luotao1 已提交
128
      pass_num++;
129
    } else if (pass_name == "mkldnn_placement_pass") {
130 131 132
      pass->Set("mkldnn_enabled_op_types",
                new std::unordered_set<std::string>(
                    argument->mkldnn_enabled_op_types()));
133 134 135
    } else if (pass_name == "cudnn_placement_pass") {
      pass->Set("cudnn_enabled_op_types",
                new std::unordered_set<std::string>());
136
#ifdef PADDLE_WITH_MKLDNN
137 138 139 140 141 142 143
    } else if (pass_name == "cpu_quantize_placement_pass") {
      pass->Set("quantize_enabled_op_types",
                new std::unordered_set<std::string>(
                    argument->quantize_enabled_op_types()));
      pass->Set(
          "quantize_excluded_op_ids",
          new std::unordered_set<int>(argument->quantize_excluded_op_ids()));
144
    } else if (pass_name == "cpu_quantize_pass") {
B
baoachun 已提交
145
      if (argument->quantize_enabled_op_types().count("conv2d") ||
Z
zyfncg 已提交
146
          argument->quantize_enabled_op_types().count("fused_conv2d") ||
B
baoachun 已提交
147 148 149
          argument->quantize_enabled_op_types().count("depthwise_conv2d")) {
        pass->Set("data_layout", new std::string("NHWC"));
      }
150 151
      pass->Set("quant_var_scales",
                new VarQuantScale(argument->quant_var_scales()));
152 153 154 155
    } else if (pass_name == "cpu_bfloat16_placement_pass") {
      pass->Set("bfloat16_enabled_op_types",
                new std::unordered_set<std::string>(
                    argument->bfloat16_enabled_op_types()));
156
#endif
157
    } else if (pass_name == "tensorrt_subgraph_pass") {
158 159
      pass->Set("workspace_size",
                new int64_t(argument->tensorrt_workspace_size()));
160
      pass->Set("max_batch_size", new int(argument->tensorrt_max_batch_size()));
161 162
      pass->Set("min_subgraph_size",
                new int(argument->tensorrt_min_subgraph_size()));
N
nhzlx 已提交
163 164
      pass->Set("program",
                new framework::ProgramDesc *(&argument->main_program()));
165
      pass->Set("predictor_id", new int(argument->predictor_id()));
166 167
      bool use_calib_mode = argument->tensorrt_use_calib_mode();
      pass->Set("use_calib_mode", new bool(use_calib_mode));
168
      pass->Set("trt_precision_mode", new int(trt_precision_mode));
169 170
      pass->Set("context_memory_sharing",
                new bool(argument->trt_engine_memory_sharing()));
W
Wilber 已提交
171 172
      pass->Set("use_cuda_graph",
                new bool(argument->tensorrt_use_cuda_graph()));
173 174
      bool use_static_engine = argument->tensorrt_use_static_engine();
      bool model_from_memory = argument->model_from_memory();
175
      std::string optim_cache_dir = argument->optim_cache_dir();
176 177
      bool int8_valid = !(model_from_memory && optim_cache_dir.empty() &&
                          enable_int8 && use_calib_mode);
178
      PADDLE_ENFORCE_EQ(
W
Wilber 已提交
179 180
          int8_valid,
          true,
181 182 183 184
          platform::errors::PreconditionNotMet(
              "When you are in TRT INT8 mode, and load model from "
              "memory, you should set optim_cache_dir using "
              "config.SetOptimCacheDir()"));
185 186
      if (model_from_memory && use_static_engine) {
        PADDLE_ENFORCE_EQ(
W
Wilber 已提交
187 188
            optim_cache_dir.empty(),
            false,
189 190 191 192 193 194
            platform::errors::PreconditionNotMet(
                "When you are using Paddle-TRT, and using load model "
                "from memory, and also set the use_static to true. "
                "you must set optim_cache_dir using "
                "config.SetOptimCacheDir()."));
      }
N
nhzlx 已提交
195

196
      if (!optim_cache_dir.empty()) {
197 198
        if (!PathExists(optim_cache_dir)) {
          PADDLE_ENFORCE_NE(
W
Wilber 已提交
199 200
              MKDIR(optim_cache_dir.c_str()),
              -1,
201 202 203 204 205
              platform::errors::PreconditionNotMet(
                  "Can not create optimize cache directory: %s, Make sure you "
                  "have permission to write",
                  optim_cache_dir));
        }
206
        pass->Set("model_opt_cache_dir", new std::string(optim_cache_dir));
207
      } else if (use_static_engine || enable_int8 || with_dynamic_shape) {
208 209 210 211 212 213 214 215 216
        std::string model_opt_cache_dir =
            argument->Has("model_dir")
                ? argument->model_dir()
                : GetDirRoot(argument->model_program_path());
        pass->Set(
            "model_opt_cache_dir",
            new std::string(GetOrCreateModelOptCacheDir(model_opt_cache_dir)));
      }
      pass->Set("use_static_engine", new bool(use_static_engine));
217
      pass->Set("model_from_memory", new bool(argument->model_from_memory()));
218
      pass->Set("use_inspector", new bool(argument->tensorrt_use_inspector()));
219 220 221 222 223 224

      // tuned trt dynamic_shape
      pass->Set("trt_shape_range_info_path",
                new std::string(argument->tensorrt_shape_range_info_path()));
      pass->Set("trt_allow_build_at_runtime",
                new bool(argument->tensorrt_allow_build_at_runtime()));
W
Wilber 已提交
225 226 227
      pass->Set(
          "trt_disabled_ops",
          new std::vector<std::string>(argument->tensorrt_disabled_ops()));
228 229
      pass->Set("trt_use_dla", new bool(argument->tensorrt_use_dla()));
      pass->Set("trt_dla_core", new int(argument->tensorrt_dla_core()));
230

231
      // Setting the disable_trt_plugin_fp16 to true means that TRT plugin will
232
      // not run fp16.
233 234
      pass->Set("disable_trt_plugin_fp16",
                new bool(argument->disable_trt_plugin_fp16()));
D
denglin-github 已提交
235
    } else if (pass_name == "dlnne_subgraph_pass") {
D
denglin-github 已提交
236
      auto precision_mode = argument->dlnne_precision_mode();
D
denglin-github 已提交
237 238
      pass->Set("min_subgraph_size",
                new int(argument->dlnne_min_subgraph_size()));
D
denglin-github 已提交
239 240 241 242 243 244 245 246 247
      pass->Set("max_batch_size", new int(argument->dlnne_max_batch_size()));
      pass->Set("use_static_batch",
                new bool(argument->dlnne_use_static_batch()));
      pass->Set("weight_share_mode",
                new std::string(argument->dlnne_weight_share_mode()));
      pass->Set("disable_nodes_by_outputs",
                new std::unordered_set<std::string>(
                    argument->dlnne_disable_nodes_by_outputs()));
      pass->Set("use_calib_mode", new bool(argument->dlnne_use_calib_mode()));
248
      pass->Set("dlnne_precision_mode", new int(precision_mode));
D
denglin-github 已提交
249 250 251
      pass->Set("input_shape_dict",
                new std::map<std::string, std::vector<int64_t>>(
                    argument->dlnne_input_shape_dict()));
D
denglin-github 已提交
252 253
      pass->Set("program",
                new framework::ProgramDesc *(&argument->main_program()));
254 255
    } else if (pass_name == "memory_optimize_pass") {
      pass->Set("root_predictor_id", new int(argument->root_predictor_id()));
256 257
    } else if (pass_name == "build_cinn_pass") {
      pass->Set("is_inference_stage", new bool(argument->use_cinn_compiler()));
258
    } else if (pass_name == "lite_subgraph_pass") {
259 260
      bool lite_enable_int8 = argument->lite_precision_mode() ==
                              static_cast<int>(phi::DataType::INT8);
石晓伟 已提交
261 262 263 264 265
      pass->Set("program",
                new framework::ProgramDesc *(&argument->main_program()));
      pass->Set("lite_ops_filter",
                new std::vector<std::string>(argument->lite_ops_filter()));
      pass->Set("predictor_id", new int(argument->predictor_id()));
266 267
      pass->Erase("enable_int8");
      pass->Set("enable_int8", new bool(lite_enable_int8));
石晓伟 已提交
268
      pass->Set("use_gpu", new bool(argument->use_gpu()));
269
      pass->Set("zero_copy", new bool(argument->lite_zero_copy()));
Z
zhupengyang 已提交
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
      pass->Set("xpu_device_id", new int(argument->xpu_device_id()));
      pass->Set("xpu_l3_size", new size_t(argument->xpu_l3_size()));
      pass->Set("xpu_l3_ptr", new void *(argument->xpu_l3_ptr()));
      pass->Set("xpu_l3_autotune_size",
                new size_t(argument->xpu_l3_autotune_size()));
      pass->Set("xpu_stream", new void *(argument->xpu_stream()));
      pass->Set("xpu_conv_autotune_level",
                new int(argument->xpu_conv_autotune_level()));
      pass->Set("xpu_conv_autotune_file",
                new std::string(argument->xpu_conv_autotune_file()));
      pass->Set("xpu_conv_autotune_file_writeback",
                new bool(argument->xpu_conv_autotune_file_writeback()));
      pass->Set("xpu_fc_autotune_level",
                new int(argument->xpu_fc_autotune_level()));
      pass->Set("xpu_fc_autotune_file",
                new std::string(argument->xpu_fc_autotune_file()));
      pass->Set("xpu_fc_autotune_file_writeback",
                new bool(argument->xpu_fc_autotune_file_writeback()));
      pass->Set("xpu_gemm_compute_precision",
                new int(argument->xpu_gemm_compute_precision()));
      pass->Set("xpu_transformer_softmax_optimize_level",
                new int(argument->xpu_transformer_softmax_optimize_level()));
      pass->Set("xpu_transformer_encoder_adaptive_seqlen",
                new bool(argument->xpu_transformer_encoder_adaptive_seqlen()));
      pass->Set(
          "xpu_quant_post_static_gelu_out_threshold",
          new float(argument->xpu_quant_post_static_gelu_out_threshold()));
      pass->Set("xpu_quant_post_dynamic_activation_method",
                new int(argument->xpu_quant_post_dynamic_activation_method()));
      pass->Set("xpu_l3_locked", new bool(argument->xpu_lite_l3_locked()));
      pass->Set("xpu_enable_multi_stream",
                new bool(argument->xpu_lite_enable_multi_stream()));
302
      pass->Set("use_opencl", new bool(argument->use_opencl()));
W
Wilber 已提交
303 304
      pass->Set("cpu_math_library_num_threads",
                new int(argument->cpu_math_library_num_threads()));
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
      // NNAdapter Related
      pass->Set("use_nnadapter", new bool(argument->use_nnadapter()));
      pass->Set("nnadapter_model_cache_dir",
                new std::string(argument->nnadapter_model_cache_dir()));
      pass->Set(
          "nnadapter_device_names",
          new std::vector<std::string>(argument->nnadapter_device_names()));
      pass->Set("nnadapter_context_properties",
                new std::string(argument->nnadapter_context_properties()));
      pass->Set("nnadapter_subgraph_partition_config_buffer",
                new std::string(
                    argument->nnadapter_subgraph_partition_config_buffer()));
      pass->Set("nnadapter_subgraph_partition_config_path",
                new std::string(
                    argument->nnadapter_subgraph_partition_config_path()));
      pass->Set("nnadapter_model_cache_buffer",
                new std::vector<std::vector<char>>(
                    argument->nnadapter_model_cache_buffer()));
      pass->Set("nnadapter_model_cache_token",
                new std::vector<std::string>(
                    argument->nnadapter_model_cache_token()));
326
    } else if (pass_name == "fc_fuse_pass") {
327
      pass->Set("use_gpu", new bool(argument->use_gpu()));
328 329 330 331 332 333 334 335
      bool fc_mkldnn_pass = 0;
      for (const std::string &pass_n : passes) {
        if (pass_n == "fc_mkldnn_pass") {
          fc_mkldnn_pass = 1;
        }
      }
      bool use_fc_padding = !fc_mkldnn_pass && argument->use_fc_padding();
      pass->Set("use_fc_padding", new bool(use_fc_padding));
336
    } else if (pass_name == "fused_multi_transformer_xpu_pass") {
Z
zhupengyang 已提交
337 338 339 340
      int quant_post_dynamic_weight_precision =
          argument->xpu_quant_post_dynamic_weight_precision();
      if (quant_post_dynamic_weight_precision == 0) {
        pass->Set("quant_post_dynamic_weight_precision ", new int(0));
Z
zhupengyang 已提交
341
      }
342
    }
343
    pre_pass = pass_name;
344 345

    passes_.emplace_back(std::move(pass));
346 347 348
  }
}

349
std::unique_ptr<Graph> IRPassManager::Apply(std::unique_ptr<Graph> graph) {
W
Wilber 已提交
350
  PADDLE_ENFORCE_NOT_NULL(
351
      graph.get(), platform::errors::InvalidArgument("Graph cannot be null."));
352 353
  // Apply all the passes
  for (const auto &pass : passes_) {
354
    if (pass->Type() != "graph_viz_pass" && !disable_logs_) {
Y
Yan Chunwei 已提交
355 356
      PrettyLogEndl(Style::H2(), "--- Running IR pass [%s]", pass->Type());
    }
357
    graph.reset(pass->Apply(graph.release()));
358
  }
G
Gabor Buella 已提交
359
  return graph;
360 361
}

362 363 364
}  // namespace analysis
}  // namespace inference
}  // namespace paddle