activation.py 7.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

__all__ = []

17
from paddle import _C_ops, in_dynamic_mode
18
from paddle.fluid.framework import dygraph_only
19
from paddle.fluid.layer_helper import LayerHelper
20

21

22
def relu(x, name=None):
23
    """
24
    sparse relu activation, requiring x to be a SparseCooTensor or SparseCsrTensor.
25 26 27

    .. math::

28
        out = max(x, 0)
29 30

    Parameters:
31
        x (Tensor): The input Sparse Tensor with data type float32, float64.
32 33 34
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

35 36
    Returns:
        A Sparse Tensor with the same data type and shape as ``x`` .
37 38 39 40 41

    Examples:
        .. code-block:: python

            import paddle
42

43 44
            dense_x = paddle.to_tensor([-2., 0., 1.])
            sparse_x = dense_x.to_sparse_coo(1)
45
            out = paddle.sparse.nn.functional.relu(sparse_x)
46
            # [0., 0., 1.]
47
    """
48 49 50 51 52 53
    if in_dynamic_mode():
        return _C_ops.sparse_relu(x)
    else:
        op_type = 'sparse_relu'
        helper = LayerHelper(op_type)
        out = helper.create_sparse_variable_for_type_inference(x.dtype)
54 55 56
        helper.append_op(
            type=op_type, inputs={'x': x}, outputs={'out': out}, attrs={}
        )
57
        return out
58 59


60
def softmax(x, axis=-1, name=None):
61
    r"""
62
    sparse softmax activation, requiring x to be a SparseCooTensor or SparseCsrTensor.
63 64

    Note:
65
        Only support axis=-1 for SparseCsrTensor, which is faster when read data
66 67
        by row (axis=-1).

68
    From the point of view of dense matrix, for each row :math:`i` and each column :math:`j`
69 70 71 72 73
    in the matrix, we have:

    .. math::

        softmax_ij = \frac{\exp(x_ij - max_j(x_ij))}{\sum_j(exp(x_ij - max_j(x_ij))}
74

75 76 77 78 79 80 81 82
    Parameters:
        x (Tensor): The input tensor. It can be SparseCooTensor/SparseCsrTensor. The data type can be float32 or float64.
        axis (int, optional): The axis along which to perform softmax calculations. Only support -1 for SparseCsrTensor.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: SparseCoo or SparseCsr, whose layout is the same with `x` .
83

84 85 86 87 88 89
    Examples:
        .. code-block:: python

            import paddle
            paddle.seed(100)

90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
            mask = paddle.rand((3, 4)) < 0.5
            x = paddle.rand((3, 4)) * mask
            print(x)
            # Tensor(shape=[3, 4], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[0.83438963, 0.70008713, 0.        , 0.88831252],
            #         [0.02200012, 0.        , 0.75432241, 0.65136462],
            #         [0.96088767, 0.82938021, 0.35367414, 0.86653489]])

            csr = x.to_sparse_csr()
            print(csr)
            # Tensor(shape=[3, 4], dtype=paddle.float32, place=Place(gpu:0), stop_gradient=True,
            #        crows=[0 , 3 , 6 , 10],
            #        cols=[0, 1, 3, 0, 2, 3, 0, 1, 2, 3],
            #        values=[0.83438963, 0.70008713, 0.88831252, 0.02200012, 0.75432241,
            #                0.65136462, 0.96088767, 0.82938021, 0.35367414, 0.86653489])
105

106
            out = paddle.sparse.nn.functional.softmax(csr)
107 108 109 110 111 112
            print(out)
            # Tensor(shape=[3, 4], dtype=paddle.float32, place=Place(gpu:0), stop_gradient=True,
            #        crows=[0 , 3 , 6 , 10],
            #        cols=[0, 1, 3, 0, 2, 3, 0, 1, 2, 3],
            #        values=[0.34132850, 0.29843223, 0.36023921, 0.20176248, 0.41964680,
            #                0.37859070, 0.30015594, 0.26316854, 0.16354506, 0.27313042])
113

114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
            coo = x.to_sparse_coo(sparse_dim=2)
            print(coo)
            # Tensor(shape=[3, 4], dtype=paddle.float32, place=Place(gpu:0), stop_gradient=True,
            #        indices=[[0, 0, 0, 1, 1, 1, 2, 2, 2, 2],
            #                 [0, 1, 3, 0, 2, 3, 0, 1, 2, 3]],
            #        values=[0.83438963, 0.70008713, 0.88831252, 0.02200012, 0.75432241,
            #                0.65136462, 0.96088767, 0.82938021, 0.35367414, 0.86653489])

            out = paddle.sparse.nn.functional.softmax(coo)
            print(out)
            # Tensor(shape=[3, 4], dtype=paddle.float32, place=Place(gpu:0), stop_gradient=True,
            #        indices=[[0, 0, 0, 1, 1, 1, 2, 2, 2, 2],
            #                 [0, 1, 3, 0, 2, 3, 0, 1, 2, 3]],
            #        values=[0.34132853, 0.29843226, 0.36023924, 0.20176250, 0.41964683,
            #                0.37859073, 0.30015597, 0.26316857, 0.16354507, 0.27313042])
129
    """
130 131 132 133 134 135 136 137 138 139 140 141 142
    if in_dynamic_mode():
        return _C_ops.sparse_softmax(x, axis)
    else:
        op_type = 'sparse_softmax'
        helper = LayerHelper(op_type)
        out = helper.create_sparse_variable_for_type_inference(x.dtype)
        helper.append_op(
            type=op_type,
            inputs={'x': x},
            outputs={'out': out},
            attrs={'axis': axis},
        )
        return out
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168


@dygraph_only
def relu6(x, name=None):
    """
    sparse relu6 activation, requiring x to be a SparseCooTensor or SparseCsrTensor.

    .. math::

        relu6(x) = min(max(0, x), 6)

    Parameters:
        x (Tensor): The input Sparse Tensor with data type float32, float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Sparse Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle

            dense_x = paddle.to_tensor([-2., 0., 8.])
            sparse_x = dense_x.to_sparse_coo(1)
169
            out = paddle.sparse.nn.functional.relu6(sparse_x)
170
    """
171
    return _C_ops.sparse_relu6(x)
172 173 174 175


@dygraph_only
def leaky_relu(x, negative_slope=0.01, name=None):
176
    r"""
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
    sparse leaky_relu activation, requiring x to be a SparseCooTensor or SparseCsrTensor.

    .. math::
        leaky\_relu(x)=
        \left\{
            \begin{array}{rcl}
                x, & & if \ x >= 0 \\
                negative\_slope * x, & & otherwise \\
            \end{array}
        \right.

    Parameters:
        x (Tensor): The input Sparse Tensor with data type float32, float64.
        negative_slope (float, optional): Slope of the activation function at
            :math:`x < 0` . Default is 0.01.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Sparse Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle

            dense_x = paddle.to_tensor([-2., 0., 5.])
            sparse_x = dense_x.to_sparse_coo(1)
205
            out = paddle.sparse.nn.functional.leaky_relu(sparse_x, 0.5)
206
    """
207
    return _C_ops.sparse_leaky_relu(x, negative_slope)