activation.py 6.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

__all__ = []

17
from paddle import _C_ops
18
from paddle.fluid.framework import dygraph_only
19 20
from paddle import in_dynamic_mode
from paddle.fluid.layer_helper import LayerHelper
21

22

23
def relu(x, name=None):
24
    """
25
    sparse relu activation, requiring x to be a SparseCooTensor or SparseCsrTensor.
26 27 28

    .. math::

29
        out = max(x, 0)
30 31

    Parameters:
32
        x (Tensor): The input Sparse Tensor with data type float32, float64.
33 34 35
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

36 37
    Returns:
        A Sparse Tensor with the same data type and shape as ``x`` .
38 39 40 41 42

    Examples:
        .. code-block:: python

            import paddle
43

44 45
            dense_x = paddle.to_tensor([-2., 0., 1.])
            sparse_x = dense_x.to_sparse_coo(1)
46
            out = paddle.sparse.nn.functional.relu(sparse_x)
47
            # [0., 0., 1.]
48
    """
49 50 51 52 53 54
    if in_dynamic_mode():
        return _C_ops.sparse_relu(x)
    else:
        op_type = 'sparse_relu'
        helper = LayerHelper(op_type)
        out = helper.create_sparse_variable_for_type_inference(x.dtype)
55 56 57
        helper.append_op(
            type=op_type, inputs={'x': x}, outputs={'out': out}, attrs={}
        )
58
        return out
59 60


61 62
@dygraph_only
def softmax(x, axis=-1, name=None):
63
    r"""
64
    sparse softmax activation, requiring x to be a SparseCooTensor or SparseCsrTensor.
65 66

    Note:
67
        Only support axis=-1 for SparseCsrTensor, which is faster when read data
68 69
        by row (axis=-1).

70
    From the point of view of dense matrix, for each row :math:`i` and each column :math:`j`
71 72 73 74 75
    in the matrix, we have:

    .. math::

        softmax_ij = \frac{\exp(x_ij - max_j(x_ij))}{\sum_j(exp(x_ij - max_j(x_ij))}
76

77 78 79 80 81 82 83 84
    Parameters:
        x (Tensor): The input tensor. It can be SparseCooTensor/SparseCsrTensor. The data type can be float32 or float64.
        axis (int, optional): The axis along which to perform softmax calculations. Only support -1 for SparseCsrTensor.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: SparseCoo or SparseCsr, whose layout is the same with `x` .
85

86 87 88 89 90 91
    Examples:
        .. code-block:: python

            import paddle
            paddle.seed(100)

92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
            mask = paddle.rand((3, 4)) < 0.5
            x = paddle.rand((3, 4)) * mask
            print(x)
            # Tensor(shape=[3, 4], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[0.83438963, 0.70008713, 0.        , 0.88831252],
            #         [0.02200012, 0.        , 0.75432241, 0.65136462],
            #         [0.96088767, 0.82938021, 0.35367414, 0.86653489]])

            csr = x.to_sparse_csr()
            print(csr)
            # Tensor(shape=[3, 4], dtype=paddle.float32, place=Place(gpu:0), stop_gradient=True,
            #        crows=[0 , 3 , 6 , 10],
            #        cols=[0, 1, 3, 0, 2, 3, 0, 1, 2, 3],
            #        values=[0.83438963, 0.70008713, 0.88831252, 0.02200012, 0.75432241,
            #                0.65136462, 0.96088767, 0.82938021, 0.35367414, 0.86653489])
107

108
            out = paddle.sparse.nn.functional.softmax(csr)
109 110 111 112 113 114
            print(out)
            # Tensor(shape=[3, 4], dtype=paddle.float32, place=Place(gpu:0), stop_gradient=True,
            #        crows=[0 , 3 , 6 , 10],
            #        cols=[0, 1, 3, 0, 2, 3, 0, 1, 2, 3],
            #        values=[0.34132850, 0.29843223, 0.36023921, 0.20176248, 0.41964680,
            #                0.37859070, 0.30015594, 0.26316854, 0.16354506, 0.27313042])
115

116
    """
117
    return _C_ops.sparse_softmax(x, axis)
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143


@dygraph_only
def relu6(x, name=None):
    """
    sparse relu6 activation, requiring x to be a SparseCooTensor or SparseCsrTensor.

    .. math::

        relu6(x) = min(max(0, x), 6)

    Parameters:
        x (Tensor): The input Sparse Tensor with data type float32, float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Sparse Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle

            dense_x = paddle.to_tensor([-2., 0., 8.])
            sparse_x = dense_x.to_sparse_coo(1)
144
            out = paddle.sparse.nn.functional.relu6(sparse_x)
145
    """
146
    return _C_ops.sparse_relu6(x)
147 148 149 150


@dygraph_only
def leaky_relu(x, negative_slope=0.01, name=None):
151
    r"""
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
    sparse leaky_relu activation, requiring x to be a SparseCooTensor or SparseCsrTensor.

    .. math::
        leaky\_relu(x)=
        \left\{
            \begin{array}{rcl}
                x, & & if \ x >= 0 \\
                negative\_slope * x, & & otherwise \\
            \end{array}
        \right.

    Parameters:
        x (Tensor): The input Sparse Tensor with data type float32, float64.
        negative_slope (float, optional): Slope of the activation function at
            :math:`x < 0` . Default is 0.01.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Sparse Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle

            dense_x = paddle.to_tensor([-2., 0., 5.])
            sparse_x = dense_x.to_sparse_coo(1)
180
            out = paddle.sparse.nn.functional.leaky_relu(sparse_x, 0.5)
181
    """
182
    return _C_ops.sparse_leaky_relu(x, negative_slope)