onednn_reuse.h 62.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once

#include <algorithm>
#include <memory>
#include <sstream>
#include <string>
#include <utility>
#include <vector>

23
#include "paddle/fluid/platform/profiler/event_tracing.h"
24
#include "paddle/phi/backends/onednn/onednn_context.h"
25
#include "paddle/phi/backends/onednn/onednn_helper.h"
26
#include "paddle/phi/common/data_type.h"
27
#include "paddle/phi/common/int_array.h"
28
#include "paddle/phi/common/place.h"
29
#include "paddle/phi/common/scalar.h"
30
#include "paddle/phi/core/dense_tensor.h"
31
#include "paddle/phi/kernels/funcs/axis_utils.h"
32
#include "paddle/phi/kernels/funcs/data_layout_transform.h"
33
#include "paddle/phi/kernels/funcs/pooling.h"
34 35 36 37 38 39 40

namespace phi {
namespace funcs {

using user_function = std::function<std::shared_ptr<float>(const float*)>;
using memory = dnnl::memory;

41
using OneDNNMemoryFormat = dnnl::memory::format_tag;
42

43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
static void AppendActivation(const OneDNNContext& dev_ctx,
                             dnnl::post_ops& post_ops,  // NOLINT
                             float activation_scale = 1.0f) {
  const auto invalid_attribute =
      dev_ctx.HasDnnAttr("fuse_activation")
          ? PADDLE_GET_CONST(std::string, dev_ctx.GetDnnAttr("fuse_activation"))
                .empty()
          : true;
  if (invalid_attribute) return;

  const auto fuse_activation =
      dev_ctx.HasDnnAttr("fuse_activation")
          ? PADDLE_GET_CONST(std::string, dev_ctx.GetDnnAttr("fuse_activation"))
          : "";
  const auto fuse_alpha =
      dev_ctx.HasDnnAttr("fuse_alpha")
          ? PADDLE_GET_CONST(float, dev_ctx.GetDnnAttr("fuse_alpha"))
          : 0.0f;
  const auto fuse_beta =
      dev_ctx.HasDnnAttr("fuse_beta")
          ? PADDLE_GET_CONST(float, dev_ctx.GetDnnAttr("fuse_beta"))
          : 0.0f;

  if (fuse_activation == "hard_sigmoid") {
    post_ops.append_eltwise(activation_scale,
                            dnnl::algorithm::eltwise_linear,
                            fuse_alpha,
                            fuse_beta);
    post_ops.append_eltwise(
        activation_scale, dnnl::algorithm::eltwise_clip, 0.0f, 1.0f);
  } else {
    const std::unordered_map<std::string, dnnl::algorithm> activation_map = {
        {"abs", dnnl::algorithm::eltwise_abs},
        {"clip", dnnl::algorithm::eltwise_clip},
        {"gelu", dnnl::algorithm::eltwise_gelu_erf},
        {"gelu_erf", dnnl::algorithm::eltwise_gelu_erf},
        {"gelu_tanh", dnnl::algorithm::eltwise_gelu_tanh},
        {"hard_swish", dnnl::algorithm::eltwise_hardswish},
        {"leaky_relu", dnnl::algorithm::eltwise_relu},
        {"mish", dnnl::algorithm::eltwise_mish},
        {"relu", dnnl::algorithm::eltwise_relu},
        {"relu6", dnnl::algorithm::eltwise_bounded_relu},
        {"sigmoid", dnnl::algorithm::eltwise_logistic},
        {"sqrt", dnnl::algorithm::eltwise_sqrt},
        {"swish", dnnl::algorithm::eltwise_swish},
        {"tanh", dnnl::algorithm::eltwise_tanh}};

    const auto& activation_type = activation_map.find(fuse_activation);

    PADDLE_ENFORCE_NE(
        activation_type,
        activation_map.end(),
        phi::errors::InvalidArgument(
            "Activation '%s' not found in oneDNN algorithms mapper",
            fuse_activation));

    post_ops.append_eltwise(
        activation_scale, activation_type->second, fuse_alpha, fuse_beta);
  }
}

104 105
template <typename T,
          typename TForward,
106 107
          typename TBackward = onednn_dummy_primitive,
          typename TBackward_params = onednn_dummy_primitive>
108
class OneDNNHandlerT {
109
 public:
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
  OneDNNHandlerT(const OneDNNContext& dev_ctx,
                 dnnl::engine engine,
                 Place cpu_place,
                 const std::string& base_key)
      : dev_ctx_(dev_ctx),
        engine_(engine),
        place_(cpu_place),
        key_common_(base_key),
        key_(ExtendKeyWithThreadInfoIfNeeded(dev_ctx, base_key)),
        fwd_pd_(nullptr),
        bwd_pd_(nullptr) {
    OneDNNContext::tls().log_lib_version();
  }

  std::shared_ptr<TForward> AcquireForwardPrimitive() {
    const std::string key_p = key_ + "@fwd_p";
    auto forward_p =
        std::static_pointer_cast<TForward>(dev_ctx_.GetBlob(key_p));
    if (forward_p == nullptr) {
      forward_p = std::make_shared<TForward>(*fwd_pd_);
      dev_ctx_.SetBlob(key_p, forward_p);
    }
    return forward_p;
  }

  std::shared_ptr<TBackward> AcquireBackwardPrimitive() {
    const std::string key_p = key_ + "@bwd_p";
    auto backward_p =
        std::static_pointer_cast<TBackward>(dev_ctx_.GetBlob(key_p));
    if (backward_p == nullptr) {
      backward_p = std::make_shared<TBackward>(*bwd_pd_);
      dev_ctx_.SetBlob(key_p, backward_p);
    }
    return backward_p;
  }

  std::shared_ptr<TBackward_params> AcquireBackwardWeightsPrimitive() {
    const std::string key_p = key_ + "@bwd_w_p";
    auto backward_p =
        std::static_pointer_cast<TBackward_params>(dev_ctx_.GetBlob(key_p));
    if (backward_p == nullptr) {
      PADDLE_ENFORCE_NOT_NULL(
          bwd_w_pd_,
          errors::Unavailable("BWD_PD should be set when "
                              "getting BWD prim witk key: %s .",
                              key_p));
      backward_p = std::make_shared<TBackward_params>(*bwd_w_pd_);
      dev_ctx_.SetBlob(key_p, backward_p);
    }
    return backward_p;
  }

  std::shared_ptr<dnnl::memory> AcquireSrcMemory(const DenseTensor* input) {
    const T* input_data = input->data<T>();
    return this->AcquireMemoryFromPrimitive(
        fwd_pd_->src_desc(), to_void_cast<T>(input_data), "@src_mem_p");
  }

  template <typename T_out = T>
  std::shared_ptr<dnnl::memory> AcquireDstMemory(DenseTensor* output) {
    T_out* ptr =
        output->mutable_data<T_out>(place_, fwd_pd_->dst_desc().get_size());
    return this->AcquireMemoryFromPrimitive(
        fwd_pd_->dst_desc(), ptr, "@dst_mem_p");
  }

  template <typename T_out = T>
  std::shared_ptr<dnnl::memory> AcquireDstMemory(void) {
    return this->AcquireMemoryFromPrimitive(fwd_pd_->dst_desc(), "@dstt_mem_p");
  }

  template <typename T_out = T>
  std::shared_ptr<dnnl::memory> AcquireDstMemory(const DenseTensor* output) {
    const T_out* output_data = output->data<T_out>();
    return this->AcquireMemoryFromPrimitive(bwd_pd_->dst_desc(),
                                            to_void_cast<T_out>(output_data),
                                            "@bwd-dst_mem_p");
  }

  std::shared_ptr<dnnl::memory> AcquireDiffDstMemory(
      const DenseTensor* diffdst) {
    const T* ptr = diffdst->data<T>();
    return this->AcquireMemoryFromPrimitive(
        bwd_pd_->diff_dst_desc(), to_void_cast<T>(ptr), "@diff_dst_mem_p");
  }

  std::shared_ptr<dnnl::memory> AcquireDiffSrcMemory(DenseTensor* diffsrc) {
    T* ptr =
        diffsrc->mutable_data<T>(place_, bwd_pd_->diff_src_desc().get_size());
    return this->AcquireMemoryFromPrimitive(
        bwd_pd_->diff_src_desc(), ptr, "@diff_src_mem_p");
  }

  // Buffer of given DenseTensor is used for oneDNN computation
  std::shared_ptr<dnnl::memory> AcquireDiffWeightsMemory(
      DenseTensor* diff_weights) {
    PADDLE_ENFORCE_NOT_NULL(
        bwd_w_pd_,
        errors::Unavailable(
            "BWD_W_PD should be set when getting BWD grad of weights."));
    T* ptr = diff_weights->mutable_data<T>(
        place_, bwd_w_pd_->diff_weights_desc().get_size());
    return this->AcquireMemoryFromPrimitive(
        bwd_w_pd_->diff_weights_desc(), ptr, "@diff_wei_mem_p");
  }

  // Buffer is allocated by oneDNN to store computation results
  std::shared_ptr<dnnl::memory> AcquireDiffWeightsMemory(void) {
    PADDLE_ENFORCE_NOT_NULL(
        bwd_w_pd_,
        errors::Unavailable(
            "BWD_W_PD should be set when getting BWD grad of weights."));
    return this->AcquireMemoryFromPrimitive(bwd_w_pd_->diff_weights_desc(),
                                            "@diff_wei_mem_p");
  }

 protected:
  bool isCached() {
    const std::string key_pd = key_ + "@fwd_pd";
    fwd_pd_ = std::static_pointer_cast<typename TForward::primitive_desc>(
        dev_ctx_.GetBlob(key_pd));

    return (fwd_pd_ != nullptr);
  }

  bool isBwdCached() {
    const std::string key_pd = key_ + "@bwd_pd";
    bwd_pd_ = std::static_pointer_cast<typename TBackward::primitive_desc>(
        dev_ctx_.GetBlob(key_pd));

    if (bwd_pd_ == nullptr) {
      return false;
    } else {
      if (std::is_same<TBackward_params, onednn_dummy_primitive>::value ==
          false) {
        const std::string key_bw_w_pd = key_ + "@bwd_w_pd";
        bwd_w_pd_ =
            std::static_pointer_cast<typename TBackward_params::primitive_desc>(
                dev_ctx_.GetBlob(key_bw_w_pd));
      }

      // When BWD is cached then still we need to Get FWD PD
      const std::string key_fpd = key_ + "@fwd_pd";
      fwd_pd_ = std::static_pointer_cast<typename TForward::primitive_desc>(
          dev_ctx_.GetBlob(key_fpd));
      PADDLE_ENFORCE_NOT_NULL(
          fwd_pd_,
          errors::Unavailable(
              "Error: FWD PD should be set when BWD PD is cached."));
      return true;
    }
  }

  // If your primitive descriptor requires attributes, pass them as a
  // first argument and paramters to descriptor constructor in the following
  // arguments. Otherwise, all arguments will be forwarded to descriptor
  // constructor, including the first one.
  template <typename Arg, typename... Args>
  void AcquireForwardPrimitiveDescriptor(Arg&& first_arg, Args&&... args) {
    // This is used when we can recreate FWD PD in BWD so
    // we do not need to pass FWD to BWD
    const std::string key_pd = key_ + "@fwd_pd";
    fwd_pd_ = std::static_pointer_cast<typename TForward::primitive_desc>(
        dev_ctx_.GetBlob(key_pd));
    if (fwd_pd_ == nullptr) {
      CreateForwardPrimitiveDescriptor(first_arg, std::forward<Args>(args)...);
      dev_ctx_.SetBlob(key_pd, fwd_pd_);
    }
  }

  // Using sfinae to specialise variadic function. Workaround for not having
  // if constexpr in C++ 11.
  template <class First, class... Args>
  typename std::enable_if<std::is_same<typename std::decay<First>::type,
                                       dnnl::primitive_attr>::value>::type
  CreateForwardPrimitiveDescriptor(First&& first, Args&&... args) {
    auto fwd_desc = typename TForward::desc(std::forward<Args>(args)...);
    fwd_pd_ = std::make_shared<typename TForward::primitive_desc>(
        fwd_desc, first, engine_);
  }

  template <class First, class... Args>
  typename std::enable_if<!std::is_same<typename std::decay<First>::type,
                                        dnnl::primitive_attr>::value>::type
  CreateForwardPrimitiveDescriptor(First&& first, Args&&... args) {
    auto fwd_desc = typename TForward::desc(std::forward<First>(first),
                                            std::forward<Args>(args)...);
    fwd_pd_ =
        std::make_shared<typename TForward::primitive_desc>(fwd_desc, engine_);
  }

  template <typename... Args>
  void AcquireBackwardPrimitiveDescriptor(Args&&... args) {
    // fwd_pd_ is set during grad by calling
    // AcquireForwardPrimitiveDescriptor
    PADDLE_ENFORCE_NOT_NULL(
        fwd_pd_,
        errors::Unavailable("Get OneDNN Forward primitive %s failed.",
                            key_ + "@fwd_pd"));
    const std::string key_pd = key_ + "@bwd_pd";
    bwd_pd_ = std::static_pointer_cast<typename TBackward::primitive_desc>(
        dev_ctx_.GetBlob(key_pd));
    if (bwd_pd_ == nullptr) {
      auto bwd_desc = typename TBackward::desc(std::forward<Args>(args)...);
      bwd_pd_ = std::make_shared<typename TBackward::primitive_desc>(
          bwd_desc, engine_, *fwd_pd_);
      dev_ctx_.SetBlob(key_pd, bwd_pd_);
    }
  }

  template <typename... Args>
  void AcquireBackwardWeightsPrimitiveDescriptor(Args&&... args) {
    // fwd_pd_ is set during grad by calling
    // AcquireForwardPrimitiveDescriptor
    PADDLE_ENFORCE_NOT_NULL(
        fwd_pd_,
        errors::Unavailable("Get OneDNN Forward primitive %s failed.",
                            key_ + "@fwd_pd"));
    const std::string key_pd = key_ + "@bwd_w_pd";
    bwd_w_pd_ =
        std::static_pointer_cast<typename TBackward_params::primitive_desc>(
            dev_ctx_.GetBlob(key_pd));
    if (bwd_w_pd_ == nullptr) {
      auto bwd_desc =
          typename TBackward_params::desc(std::forward<Args>(args)...);
      bwd_w_pd_ = std::make_shared<typename TBackward_params::primitive_desc>(
          bwd_desc, engine_, *fwd_pd_);
      dev_ctx_.SetBlob(key_pd, bwd_w_pd_);
    }
  }

  std::shared_ptr<dnnl::memory> AcquireMemoryFromPrimitive(
      const std::string& suffix) {
    return std::static_pointer_cast<dnnl::memory>(
        dev_ctx_.GetBlob(key_ + suffix));
  }

  std::shared_ptr<dnnl::memory> AcquireMemoryFromPrimitive(
      dnnl::memory::desc md, void* ptr, const std::string& suffix) {
    const auto local_key = key_ + suffix;
    auto mem_p =
        std::static_pointer_cast<dnnl::memory>(dev_ctx_.GetBlob(local_key));
    if (mem_p == nullptr) {
      mem_p = std::make_shared<dnnl::memory>(md, engine_, ptr);
      dev_ctx_.SetBlob(local_key, mem_p);
    } else {
      mem_p->set_data_handle(ptr);
    }
    return mem_p;
  }

  std::shared_ptr<dnnl::memory> AcquireMemoryFromPrimitive(
      dnnl::memory::desc md, const std::string& suffix) {
    const auto local_key = key_ + suffix;
    auto mem_p =
        std::static_pointer_cast<dnnl::memory>(dev_ctx_.GetBlob(local_key));
    if (mem_p == nullptr) {
      mem_p = std::make_shared<dnnl::memory>(md, engine_);
      dev_ctx_.SetBlob(local_key, mem_p);
    }
    return mem_p;
  }

  void AcquireReorder(const std::shared_ptr<dnnl::memory>& user_memory_p,
                      const std::shared_ptr<dnnl::memory>& target_memory_p) {
    auto reorder_p =
        std::make_shared<dnnl::reorder>(*user_memory_p, *target_memory_p);

    auto& astream = OneDNNContext::tls().get_stream();

    paddle::platform::RecordEvent record_reorder(
        "int_reorder",
        paddle::platform::TracerEventType::UserDefined,
383
        1,
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
        paddle::platform::EventRole::kUniqueOp);
    reorder_p->execute(
        astream,
        {{DNNL_ARG_FROM, *user_memory_p}, {DNNL_ARG_TO, *target_memory_p}});
    astream.wait();
  }

  template <typename F = T>
  std::shared_ptr<dnnl::memory> AcquireMemoryWithReorder(
      const dnnl::memory::desc& user_md,
      const dnnl::memory::desc& target_md,
      void* ptr,
      const std::string& suffix,
      bool is_persistent = false,
      std::function<std::shared_ptr<F>(const F*)> custom_reorder_func = {},
      const std::vector<float>& scale_data = {1.0f},
      int mask = 0) {
    const auto target_key = key_ + suffix + "_target";
    const auto key_reorder_p = key_ + suffix + "reorder_p";
    const auto user_key = key_ + suffix + "_user";

    auto target_memory_p =
        std::static_pointer_cast<dnnl::memory>(dev_ctx_.GetBlob(target_key));

    if (target_memory_p == nullptr) {
      if (custom_reorder_func) {
        auto reordered_data =
            custom_reorder_func(reinterpret_cast<const F*>(ptr));
        dev_ctx_.SetBlob(key_reorder_p + "-custom_reorder", reordered_data);
        ptr = reinterpret_cast<void*>(reordered_data.get());
      }
      auto user_memory_p =
          std::make_shared<dnnl::memory>(user_md, engine_, ptr);
      if (user_md != target_md) {
        target_memory_p = std::make_shared<dnnl::memory>(target_md, engine_);
        dnnl::reorder::primitive_desc reorder_pdesc;
        if (is_int8<T>()) {
          dnnl::primitive_attr attr;
          attr.set_output_scales(mask, scale_data);
          reorder_pdesc = dnnl::reorder::primitive_desc(
              *user_memory_p, *target_memory_p, attr);
        } else {
          reorder_pdesc =
              dnnl::reorder::primitive_desc(*user_memory_p, *target_memory_p);
        }
        auto reorder_p = std::make_shared<dnnl::reorder>(reorder_pdesc);
        dev_ctx_.SetBlob(key_reorder_p, reorder_p);

        auto& astream = OneDNNContext::tls().get_stream();
        paddle::platform::RecordEvent record_reorder(
            "int_reorder",
            paddle::platform::TracerEventType::UserDefined,
436
            1,
437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
            paddle::platform::EventRole::kUniqueOp);
        reorder_p->execute(
            astream,
            {{DNNL_ARG_FROM, *user_memory_p}, {DNNL_ARG_TO, *target_memory_p}});
        astream.wait();
      } else {
        target_memory_p = user_memory_p;
      }
      dev_ctx_.SetBlob(user_key, user_memory_p);
      dev_ctx_.SetBlob(target_key, target_memory_p);
    } else if (!is_persistent) {
      auto& astream = OneDNNContext::tls().get_stream();

      auto user_memory_p =
          std::static_pointer_cast<dnnl::memory>(dev_ctx_.GetBlob(user_key));
      user_memory_p->set_data_handle(ptr);

      // TODO(jczaja): Here we detect if reorder is cached it means it is needed
      // need to change this to get rid of keys
      auto reorder_p = std::static_pointer_cast<dnnl::reorder>(
          dev_ctx_.GetBlob(key_reorder_p));
      if (reorder_p != nullptr) {
        paddle::platform::RecordEvent record_reorder(
            "int_reorder",
            paddle::platform::TracerEventType::UserDefined,
462
            1,
463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
            paddle::platform::EventRole::kUniqueOp);
        reorder_p->execute(
            astream,
            {{DNNL_ARG_FROM, *user_memory_p}, {DNNL_ARG_TO, *target_memory_p}});
        astream.wait();
      }
    }
    return target_memory_p;
  }

  std::shared_ptr<dnnl::memory> AcquireMemory(const std::string& suffix) {
    const auto local_key = key_ + suffix;
    return std::static_pointer_cast<dnnl::memory>(dev_ctx_.GetBlob(local_key));
  }

  const OneDNNContext& dev_ctx_;
  dnnl::engine engine_;
  Place place_;
  std::string key_common_;
  std::string key_;
  std::shared_ptr<typename TForward::primitive_desc> fwd_pd_;
  std::shared_ptr<typename TBackward::primitive_desc> bwd_pd_;
  std::shared_ptr<typename TBackward_params::primitive_desc> bwd_w_pd_;
};

template <typename T,
          typename TForward,
          typename TBackward = onednn_dummy_primitive,
          typename TBackward_params = onednn_dummy_primitive>
class OneDNNHandlerNoCachingT {
 public:
  OneDNNHandlerNoCachingT(dnnl::engine engine, Place cpu_place)
495
      : engine_(engine), place_(cpu_place), fwd_pd_(nullptr), bwd_pd_(nullptr) {
496
    OneDNNContext::tls().log_lib_version();
497 498 499 500 501 502 503 504 505 506 507
  }

  std::shared_ptr<TForward> AcquireForwardPrimitive() {
    return std::make_shared<TForward>(*fwd_pd_);
  }

  std::shared_ptr<TBackward> AcquireBackwardPrimitive() {
    return std::make_shared<TBackward>(*bwd_pd_);
  }

  std::shared_ptr<TBackward_params> AcquireBackwardWeightsPrimitive() {
508 509 510
    PADDLE_ENFORCE_NOT_NULL(bwd_w_pd_,
                            errors::Unavailable("BWD_PD should be set when "
                                                "getting BWD prim ."));
511 512 513 514 515
    return std::make_shared<TBackward_params>(*bwd_w_pd_);
  }

  std::shared_ptr<dnnl::memory> AcquireSrcMemory(const DenseTensor* input) {
    const T* input_data = input->data<T>();
516 517
    return this->AcquireMemoryFromPrimitive(fwd_pd_->src_desc(),
                                            to_void_cast<T>(input_data));
518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
  }

  template <typename T_out = T>
  std::shared_ptr<dnnl::memory> AcquireDstMemory(DenseTensor* output) {
    T_out* ptr =
        output->mutable_data<T_out>(place_, fwd_pd_->dst_desc().get_size());
    return this->AcquireMemoryFromPrimitive(fwd_pd_->dst_desc(), ptr);
  }

  template <typename T_out = T>
  std::shared_ptr<dnnl::memory> AcquireDstMemory(void) {
    return this->AcquireMemoryFromPrimitive(fwd_pd_->dst_desc());
  }

  template <typename T_out = T>
  std::shared_ptr<dnnl::memory> AcquireDstMemory(const DenseTensor* output) {
    const T_out* output_data = output->data<T_out>();
535 536
    return this->AcquireMemoryFromPrimitive(bwd_pd_->dst_desc(),
                                            to_void_cast<T_out>(output_data));
537 538 539 540 541
  }

  std::shared_ptr<dnnl::memory> AcquireDiffDstMemory(
      const DenseTensor* diffdst) {
    const T* ptr = diffdst->data<T>();
542 543
    return this->AcquireMemoryFromPrimitive(bwd_pd_->diff_dst_desc(),
                                            to_void_cast<T>(ptr));
544 545 546 547 548 549 550 551
  }

  std::shared_ptr<dnnl::memory> AcquireDiffSrcMemory(DenseTensor* diffsrc) {
    T* ptr =
        diffsrc->mutable_data<T>(place_, bwd_pd_->diff_src_desc().get_size());
    return this->AcquireMemoryFromPrimitive(bwd_pd_->diff_src_desc(), ptr);
  }

552
  // Buffer of given DenseTensor is used for oneDNN computation
553 554 555 556
  std::shared_ptr<dnnl::memory> AcquireDiffWeightsMemory(
      DenseTensor* diff_weights) {
    PADDLE_ENFORCE_NOT_NULL(
        bwd_w_pd_,
557
        errors::Unavailable(
558 559 560 561 562 563 564 565 566 567 568
            "BWD_W_PD should be set when getting BWD grad of weights."));
    T* ptr = diff_weights->mutable_data<T>(
        place_, bwd_w_pd_->diff_weights_desc().get_size());
    return this->AcquireMemoryFromPrimitive(bwd_w_pd_->diff_weights_desc(),
                                            ptr);
  }

  // Buffer is allocated by oneDNN to store computation results
  std::shared_ptr<dnnl::memory> AcquireDiffWeightsMemory(void) {
    PADDLE_ENFORCE_NOT_NULL(
        bwd_w_pd_,
569
        errors::Unavailable(
570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610
            "BWD_W_PD should be set when getting BWD grad of weights."));
    return this->AcquireMemoryFromPrimitive(bwd_w_pd_->diff_weights_desc());
  }

 protected:
  // If your primitive descriptor requires attributes, pass them as a
  // first argument and paramters to descriptor constructor in the following
  // arguments. Otherwise, all arguments will be forwarded to descriptor
  // constructor, including the first one.
  template <typename Arg, typename... Args>
  void AcquireForwardPrimitiveDescriptor(Arg&& first_arg, Args&&... args) {
    CreateForwardPrimitiveDescriptor(first_arg, std::forward<Args>(args)...);
  }

  // Using sfinae to specialise variadic function. Workaround for not having
  // if constexpr in C++ 11.
  template <class First, class... Args>
  typename std::enable_if<std::is_same<typename std::decay<First>::type,
                                       dnnl::primitive_attr>::value>::type
  CreateForwardPrimitiveDescriptor(First&& first, Args&&... args) {
    auto fwd_desc = typename TForward::desc(std::forward<Args>(args)...);
    fwd_pd_ = std::make_shared<typename TForward::primitive_desc>(
        fwd_desc, first, engine_);
  }

  template <class First, class... Args>
  typename std::enable_if<!std::is_same<typename std::decay<First>::type,
                                        dnnl::primitive_attr>::value>::type
  CreateForwardPrimitiveDescriptor(First&& first, Args&&... args) {
    auto fwd_desc = typename TForward::desc(std::forward<First>(first),
                                            std::forward<Args>(args)...);
    fwd_pd_ =
        std::make_shared<typename TForward::primitive_desc>(fwd_desc, engine_);
  }

  template <typename... Args>
  void AcquireBackwardPrimitiveDescriptor(Args&&... args) {
    // fwd_pd_ is set during grad by calling
    // AcquireForwardPrimitiveDescriptor
    PADDLE_ENFORCE_NOT_NULL(
        fwd_pd_,
611
        errors::Unavailable("Get oneDNN Forward primitive %s failed."));
612 613 614 615 616 617 618 619 620 621 622
    auto bwd_desc = typename TBackward::desc(std::forward<Args>(args)...);
    bwd_pd_ = std::make_shared<typename TBackward::primitive_desc>(
        bwd_desc, engine_, *fwd_pd_);
  }

  template <typename... Args>
  void AcquireBackwardWeightsPrimitiveDescriptor(Args&&... args) {
    // fwd_pd_ is set during grad by calling
    // AcquireForwardPrimitiveDescriptor
    PADDLE_ENFORCE_NOT_NULL(
        fwd_pd_,
623
        errors::Unavailable("Get oneDNN Forward primitive %s failed."));
624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644
    auto bwd_desc =
        typename TBackward_params::desc(std::forward<Args>(args)...);
    bwd_w_pd_ = std::make_shared<typename TBackward_params::primitive_desc>(
        bwd_desc, engine_, *fwd_pd_);
  }

  std::shared_ptr<dnnl::memory> AcquireMemoryFromPrimitive(
      dnnl::memory::desc md, void* ptr) {
    return std::make_shared<dnnl::memory>(md, engine_, ptr);
  }

  std::shared_ptr<dnnl::memory> AcquireMemoryFromPrimitive(
      dnnl::memory::desc md) {
    return std::make_shared<dnnl::memory>(md, engine_);
  }

  void AcquireReorder(const std::shared_ptr<dnnl::memory>& user_memory_p,
                      const std::shared_ptr<dnnl::memory>& target_memory_p) {
    auto reorder_p =
        std::make_shared<dnnl::reorder>(*user_memory_p, *target_memory_p);

645
    auto& astream = OneDNNContext::tls().get_stream();
646 647 648 649

    paddle::platform::RecordEvent record_reorder(
        "int_reorder",
        paddle::platform::TracerEventType::UserDefined,
650
        1,
651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676
        paddle::platform::EventRole::kUniqueOp);
    reorder_p->execute(
        astream,
        {{DNNL_ARG_FROM, *user_memory_p}, {DNNL_ARG_TO, *target_memory_p}});
    astream.wait();
  }

  template <typename F = T>
  std::shared_ptr<dnnl::memory> AcquireMemoryWithReorder(
      const dnnl::memory::desc& user_md,
      const dnnl::memory::desc& target_md,
      void* ptr,
      bool is_persistent = false,
      std::function<std::shared_ptr<F>(const F*)> custom_reorder_func = {}) {
    std::shared_ptr<dnnl::memory> target_memory_p;
    if (custom_reorder_func) {
      auto reordered_data =
          custom_reorder_func(reinterpret_cast<const F*>(ptr));
      ptr = reinterpret_cast<void*>(reordered_data.get());
    }
    auto user_memory_p = std::make_shared<dnnl::memory>(user_md, engine_, ptr);
    if (user_md != target_md) {
      target_memory_p = std::make_shared<dnnl::memory>(target_md, engine_);
      auto reorder_p =
          std::make_shared<dnnl::reorder>(*user_memory_p, *target_memory_p);

677
      auto& astream = OneDNNContext::tls().get_stream();
678 679 680
      paddle::platform::RecordEvent record_reorder(
          "int_reorder",
          paddle::platform::TracerEventType::UserDefined,
681
          1,
682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700
          paddle::platform::EventRole::kUniqueOp);
      reorder_p->execute(
          astream,
          {{DNNL_ARG_FROM, *user_memory_p}, {DNNL_ARG_TO, *target_memory_p}});
      astream.wait();
    } else {
      target_memory_p = user_memory_p;
    }
    return target_memory_p;
  }

  dnnl::engine engine_;
  Place place_;
  std::shared_ptr<typename TForward::primitive_desc> fwd_pd_;
  std::shared_ptr<typename TBackward::primitive_desc> bwd_pd_;
  std::shared_ptr<typename TBackward_params::primitive_desc> bwd_w_pd_;
};

template <typename T>
701
class ActivationOneDNNHandler
702
    : public OneDNNHandlerNoCachingT<T,
703 704 705
                                     dnnl::eltwise_forward,
                                     dnnl::eltwise_backward> {
 public:
706
  ActivationOneDNNHandler(dnnl::algorithm algorithm,
707 708 709 710 711
                          float alpha,
                          float beta,
                          const dnnl::engine engine,
                          Place cpu_place,
                          const DenseTensor* x)
712
      : OneDNNHandlerNoCachingT<T,
713 714 715 716 717 718 719 720 721
                                dnnl::eltwise_forward,
                                dnnl::eltwise_backward>(engine, cpu_place) {
    this->AcquireForwardPrimitiveDescriptor(dnnl::prop_kind::forward_training,
                                            algorithm,
                                            x->mem_desc(),
                                            alpha,
                                            beta);
  }

722
  ActivationOneDNNHandler(dnnl::algorithm algorithm,
723 724 725 726 727 728
                          float alpha,
                          float beta,
                          const dnnl::engine engine,
                          Place cpu_place,
                          const DenseTensor* x,
                          const DenseTensor* dout)
729
      : OneDNNHandlerNoCachingT<T,
730 731 732 733 734 735 736 737 738 739 740 741 742 743
                                dnnl::eltwise_forward,
                                dnnl::eltwise_backward>(engine, cpu_place) {
    this->AcquireForwardPrimitiveDescriptor(dnnl::prop_kind::forward_training,
                                            algorithm,
                                            x->mem_desc(),
                                            alpha,
                                            beta);
    this->AcquireBackwardPrimitiveDescriptor(
        algorithm, dout->mem_desc(), x->mem_desc(), alpha, beta);
  }

  std::shared_ptr<dnnl::memory> AcquireBackwardSrcMemory(
      const DenseTensor* input) {
    const T* input_data = input->data<T>();
744 745 746 747 748
    return this->AcquireMemoryFromPrimitive(this->bwd_pd_->src_desc(),
                                            to_void_cast<T>(input_data));
  }
};

749 750 751 752 753 754 755 756
template <typename T>
class SoftmaxOneDNNHandler
    : public OneDNNHandlerNoCachingT<T,
                                     dnnl::softmax_forward,
                                     dnnl::softmax_backward> {
 public:
  SoftmaxOneDNNHandler(const dnnl::engine onednn_engine,
                       Place cpu_place,
757
                       int axis,
758
                       const DenseTensor* x,
759
                       DenseTensor* out)
760 761 762 763
      : OneDNNHandlerNoCachingT<T,
                                dnnl::softmax_forward,
                                dnnl::softmax_backward>(onednn_engine,
                                                        cpu_place) {
764 765 766 767 768 769
    PADDLE_ENFORCE_EQ(
        x->dims(),
        out->dims(),
        phi::errors::InvalidArgument(
            "The shape of input and output tensor must be identical."));

770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792
    const int canonical_axis = funcs::CanonicalAxis(axis, x->dims().size());
    this->AcquireForwardPrimitiveDescriptor(
        dnnl::prop_kind::forward_scoring, x->mem_desc(), canonical_axis);
  }

  SoftmaxOneDNNHandler(const dnnl::engine onednn_engine,
                       Place cpu_place,
                       int axis,
                       const DenseTensor* out,
                       const DenseTensor* out_grad)
      : OneDNNHandlerNoCachingT<T,
                                dnnl::softmax_forward,
                                dnnl::softmax_backward>(onednn_engine,
                                                        cpu_place) {
    const int canonical_axis =
        funcs::CanonicalAxis(axis, out_grad->dims().size());
    this->AcquireForwardPrimitiveDescriptor(
        dnnl::prop_kind::forward_scoring, out->mem_desc(), canonical_axis);
    this->AcquireBackwardPrimitiveDescriptor(
        out_grad->mem_desc(), out->mem_desc(), canonical_axis);
  }
};

793
class ReorderOneDNNHandler {
794
 public:
795
  ReorderOneDNNHandler(std::vector<int64_t>& dims,  // NOLINT
796 797 798 799 800 801 802 803 804 805
                       DataType ptype,
                       dnnl::memory::data_type dtype,
                       dnnl::engine engine)
      : dims_(dims),
        ptype_(ptype),
        ptype_dst_(ptype),
        dtype_(dtype),
        dtype_dst_(dtype),
        engine_(engine) {}

806
  ReorderOneDNNHandler(std::vector<int64_t>& dims,  // NOLINT
807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823
                       DataType ptype,
                       dnnl::memory::data_type dtype,
                       DataType ptype_dst,
                       dnnl::memory::data_type dtype_dst,
                       dnnl::engine engine)
      : dims_(dims),
        ptype_(ptype),
        ptype_dst_(ptype_dst),
        dtype_(dtype),
        dtype_dst_(dtype_dst),
        engine_(engine) {}

  std::shared_ptr<dnnl::memory> AcquireSrcMemory(const dnnl::memory::desc& md,
                                                 void* ptr) {
    return std::make_shared<dnnl::memory>(md, engine_, ptr);
  }

824
  std::shared_ptr<dnnl::memory> AcquireSrcMemory(const OneDNNMemoryFormat& fmt,
825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840
                                                 void* ptr) {
    auto md = dnnl::memory::desc(dims_, dtype_, fmt);
    return std::make_shared<dnnl::memory>(md, engine_, ptr);
  }

  std::shared_ptr<dnnl::memory> AcquireSubmemory(
      const std::vector<int64_t>& dims,
      const std::vector<int64_t>& offset,
      const std::shared_ptr<dnnl::memory>& mem_p) {
    auto sub_md = mem_p->get_desc().submemory_desc(dims, {offset});
    auto sub_mem_p = std::make_shared<dnnl::memory>(
        sub_md, engine_, mem_p->get_data_handle());
    return sub_mem_p;
  }

  std::shared_ptr<dnnl::memory> AcquireDstMemory(DenseTensor* output,
841
                                                 const OneDNNMemoryFormat& fmt,
842
                                                 Place place) {
843
    auto dst_md = OneDNNMemDesc(dims_, dtype_dst_, fmt);
844 845
    auto dst_data = output->mutable_data(place, ptype_dst_, dst_md.get_size());
    return std::make_shared<dnnl::memory>(dst_md, engine_, dst_data);
846
  }
847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862

  std::shared_ptr<dnnl::memory> AcquireDstMemory(
      DenseTensor* output, const dnnl::memory::desc& src_md, Place place) {
    if (ptype_dst_ == ptype_) {
      auto dst_data =
          output->mutable_data(place, ptype_dst_, src_md.get_size());
      return std::make_shared<dnnl::memory>(src_md, engine_, dst_data);
    } else {
      auto dst_md = src_md;
      dst_md.data.data_type = static_cast<dnnl_data_type_t>(dtype_dst_);
      auto dst_data =
          output->mutable_data(place, ptype_dst_, dst_md.get_size());
      return std::make_shared<dnnl::memory>(dst_md, engine_, dst_data);
    }
  }

863 864 865 866 867 868 869 870 871 872
  std::shared_ptr<dnnl::memory> AcquireDstMemory(
      DenseTensor* output,
      const std::vector<int64_t>& dims,
      const std::vector<int64_t>& strides,
      Place place) {
    auto dst_md = dnnl::memory::desc(dims, dtype_dst_, strides);
    auto dst_data = output->mutable_data(place, ptype_dst_, dst_md.get_size());
    return std::make_shared<dnnl::memory>(dst_md, engine_, dst_data);
  }

873 874 875
  std::shared_ptr<dnnl::memory> AcquireDstMemory(
      DenseTensor* output,
      const std::vector<int64_t>& dims,
876
      const OneDNNMemoryFormat& fmt,
877
      Place place) {
878
    auto dst_md = OneDNNMemDesc(dims, dtype_dst_, fmt);
879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901
    auto dst_data = output->mutable_data(place, ptype_dst_, dst_md.get_size());
    return std::make_shared<dnnl::memory>(dst_md, engine_, dst_data);
  }

  std::shared_ptr<dnnl::reorder> AcquireReorder(
      std::shared_ptr<dnnl::memory> dst_memory_p,
      std::shared_ptr<dnnl::memory> src_memory_p) {
    return std::make_shared<dnnl::reorder>(*(src_memory_p), *(dst_memory_p));
  }

  std::shared_ptr<dnnl::reorder> AcquireReorder(
      std::shared_ptr<dnnl::memory> dst_memory_p,
      std::shared_ptr<dnnl::memory> src_memory_p,
      const dnnl::primitive_attr& attrs) {
    return std::make_shared<dnnl::reorder>(
        *(src_memory_p), *(dst_memory_p), attrs);
  }

 private:
  std::vector<int64_t> dims_;
  DataType ptype_, ptype_dst_;
  dnnl::memory::data_type dtype_, dtype_dst_;
  dnnl::engine engine_;
902 903
};

904 905 906
template <typename T>
class BinaryOneDNNHandler : public OneDNNHandlerNoCachingT<T, dnnl::binary> {
 public:
907
  bool use_broadcasting_hack;
908 909 910 911 912 913 914 915 916 917
  BinaryOneDNNHandler(const dnnl::algorithm algo,
                      const int axis,
                      const dnnl::engine engine,
                      Place cpu_place,
                      const DenseTensor* x,
                      const DenseTensor* y,
                      DenseTensor* out,
                      float scale_x,
                      float scale_y,
                      float scale_out,
918
                      bool allow_hack,
919 920
                      const dnnl::post_ops& post_ops = dnnl::post_ops{})
      : OneDNNHandlerNoCachingT<T, dnnl::binary>(engine, cpu_place) {
921
    use_broadcasting_hack = false;
922 923 924 925 926
    const auto src_x_tz = vectorize(x->dims());
    const auto src_y_tz = vectorize(y->dims());
    // if output tensor(z) is nullptr then we are computing into oneDNN
    // managed buffer
    auto rankdiff = x->dims().size() - y->dims().size();
927 928
    auto dst_tz = (out == nullptr) ? (rankdiff > 0 ? src_x_tz : src_y_tz)
                                   : vectorize(out->dims());
929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958

    auto src0_md = x->mem_desc();
    auto src1_md = y->mem_desc();
    if (rankdiff > 0) {  // Second input is of smaller rank than first
      std::vector<int64_t> dims1_ex(rankdiff, 1);
      dims1_ex.insert(next(dims1_ex.begin(), (axis == -1 ? rankdiff : axis)),
                      src_y_tz.begin(),
                      src_y_tz.end());
      // For broadcasting for NHWC we need rotate extended shape
      if (OneDNNContext::tls().get_cur_paddle_data_layout() ==
          DataLayout::kNHWC) {
        std::rotate(dims1_ex.begin() + 1, dims1_ex.end() - 1, dims1_ex.end());
      }
      src1_md = src1_md.reshape(dims1_ex);
    } else if (rankdiff < 0) {  // First input is of smaller than second
      std::vector<int64_t> dims0_ex(-rankdiff, 1);
      dims0_ex.insert(next(dims0_ex.begin(), (axis == -1 ? -rankdiff : axis)),
                      src_x_tz.begin(),
                      src_x_tz.end());
      // For broadcasting for NHWC we need rotate extended shape
      if (OneDNNContext::tls().get_cur_paddle_data_layout() ==
          DataLayout::kNHWC) {
        std::rotate(dims0_ex.begin() + 1, dims0_ex.end() - 1, dims0_ex.end());
      }
      src0_md = src0_md.reshape(dims0_ex);
    }

    auto attributes =
        CreateAttributes(algo, scale_x, scale_y, scale_out, post_ops);

959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996
    // Workaround for U2++ model which deletes first tensor dimensions to enable
    // optimized oneDNNs broadcasting. Output tensor is reshaped back afterwards
    // at the end of the kernel, after the computation
    if (allow_hack && dst_tz.size() == 4 &&
        src0_md.dims()[2] != src1_md.dims()[2]) {
      auto are_strides_plain = [](int64_t* strides, int ndims) {
        for (int i = 0; i < ndims - 1; ++i) {
          if (strides[i] < strides[i + 1]) {
            return false;
          }
        }
        return true;
      };

      auto src0_strides = src0_md.data.format_desc.blocking.strides;
      auto src1_strides = src1_md.data.format_desc.blocking.strides;
      auto src0_dims = src0_md.dims();
      auto src1_dims = src1_md.dims();

      bool can_squeeze = src0_dims[0] == src1_dims[0] &&
                         src0_dims[1] == src1_dims[1] &&
                         src0_dims[3] == src1_dims[3];

      if (can_squeeze && are_strides_plain(src0_strides, 4) &&
          are_strides_plain(src1_strides, 4)) {
        src0_dims[1] *= dst_tz[0];
        src1_dims[1] *= dst_tz[0];
        dst_tz[1] *= dst_tz[0];
        dst_tz.erase(dst_tz.begin());
        src0_md = src0_md.reshape({src0_dims.begin() + 1, src0_dims.end()});
        src1_md = src1_md.reshape({src1_dims.begin() + 1, src1_dims.end()});
        use_broadcasting_hack = true;
      }
    }

    auto dst_md =
        memory::desc(dst_tz, OneDNNGetDataType<T>(), OneDNNMemoryFormat::any);

997
    if (x->numel() < y->numel()) {
998 999 1000 1001
      if (algo == dnnl::algorithm::binary_sub) {
        attributes = CreateAttributes(
            algo, -1.0 * scale_x, -1.0 * scale_y, scale_out, post_ops);
      }
1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
      this->AcquireForwardPrimitiveDescriptor(
          attributes, algo, src1_md, src0_md, dst_md);
    } else {
      this->AcquireForwardPrimitiveDescriptor(
          attributes, algo, src0_md, src1_md, dst_md);
    }
  }
  std::shared_ptr<dnnl::memory> AcquireSecondSrcMemory(
      const DenseTensor* input) {
    const T* input_data = input->data<T>();
    return this->AcquireMemoryFromPrimitive(this->fwd_pd_->src1_desc(),
                                            to_void_cast<T>(input_data));
  }

 private:
  static inline dnnl::primitive_attr CreateAttributes(
      dnnl::algorithm op,
      float scale_x,
      float scale_y,
      float scale_out,
      dnnl::post_ops post_ops = dnnl::post_ops{}) {
    // Scales set in attributes for inputs contibute to the output equation
    // in the following way (assuming no broadcasting takes place):
    // output_i = scale_0 * x_i <+ or *> scale_1 * y_i;
    // Hence we have to create scales that will:
    // 1. Dequantize both values, by multiplying with (1.0 / scale_x_or_y)
    // 2. Quantize their result to output scale range, by multiplying with
    // (scale_z)
    // If we combine these two, we end up with following equation
    // output = scale_out * (1/scale_x * x <* or +> 1/scale_y * y)
    // Hence, to mimic such behaviour using provided interface,
    // For add operation the equation is equal to:
    // output = (scale_out / scale_x) * x + (scale_out / scale_y) * y
    //                <scale_0>                  <scale_1>
    // For mul operation on the other hand
    // output = (scale_out / scale_x) * x * (1.0 / scale_y) * y
    //                <scale_0>                 <scale_1>
    float scale_0 = scale_out / scale_x;
    float scale_1 =
        op == dnnl::algorithm::binary_add ? scale_out / scale_y : 1.0 / scale_y;
    dnnl::primitive_attr attributes;
    attributes.set_scales(
        /* input_x_id = */ DNNL_ARG_SRC_0, /* mask = */ 0, {scale_0});
    attributes.set_scales(
        /* input_y_id = */ DNNL_ARG_SRC_1, /* mask = */ 0, {scale_1});
    if (post_ops.len() > 0) attributes.set_post_ops(post_ops);
    return attributes;
  }
};

template <typename T>
class BroadcastDataOneDNNHandler
    : public OneDNNHandlerNoCachingT<T, dnnl::binary> {
 public:
  BroadcastDataOneDNNHandler(const dnnl::algorithm algo,
                             const dnnl::engine engine,
                             Place cpu_place,
                             const DenseTensor* x,
                             DenseTensor* out,
                             float scale_x,
                             float scale_y,
                             const std::vector<int64_t>& extended_x_dims)
      : OneDNNHandlerNoCachingT<T, dnnl::binary>(engine, cpu_place) {
    const auto src0_tz = vectorize(out->dims());
    const auto src0_md = dnnl::memory::desc(
1067
        src0_tz, OneDNNGetDataType<T>(), GetPlainOneDNNFormat(src0_tz.size()));
1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
    const auto src1_md = x->mem_desc().reshape(extended_x_dims);

    dnnl::primitive_attr attributes;
    attributes.set_scales(DNNL_ARG_SRC_0, 0, {scale_x});
    attributes.set_scales(DNNL_ARG_SRC_1, 0, {scale_y});

    this->AcquireForwardPrimitiveDescriptor(
        attributes, algo, src0_md, src1_md, src0_md);
  }

  template <typename T_out = T>
  std::shared_ptr<dnnl::memory> AcquireZeroedDstMemory(DenseTensor* out) {
    T_out* ptr = out->mutable_data<T_out>(this->place_,
                                          this->fwd_pd_->dst_desc().get_size());
    memset(ptr, 0, this->fwd_pd_->dst_desc().get_size());
    return this->AcquireMemoryFromPrimitive(this->fwd_pd_->dst_desc(), ptr);
  }
};

S
Sylwester Fraczek 已提交
1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147
template <typename T>
class PReluOneDNNHandler
    : public OneDNNHandlerNoCachingT<T,
                                     dnnl::prelu_forward,
                                     dnnl::prelu_backward> {
 public:
  PReluOneDNNHandler(const dnnl::engine engine,
                     Place cpu_place,
                     const DenseTensor& x,
                     const DenseTensor& weights,
                     const std::string& mode,
                     const std::string& data_format,
                     const bool is_test)
      : OneDNNHandlerNoCachingT<T, dnnl::prelu_forward, dnnl::prelu_backward>(
            engine, cpu_place) {
    auto weights_dims = phi::vectorize(weights.dims());
    // weights must have same size as X only for "element" case
    if (weights.dims().size() != x.dims().size()) {
      auto new_weights_dims = std::vector<int64_t>(x.dims().size(), 1);
      if (mode == "channel") {
        new_weights_dims[1] =
            *std::max_element(weights_dims.begin(), weights_dims.end());
      }
      weights_dims = std::move(new_weights_dims);
    }
    auto weights_md = memory::desc(
        weights_dims, OneDNNGetDataType<T>(), memory::format_tag::any);

    this->AcquireForwardPrimitiveDescriptor(
        dnnl::prop_kind::forward_training, x.mem_desc(), weights_md);
    if (!is_test) {
      this->AcquireBackwardPrimitiveDescriptor(
          x.mem_desc(), weights_md, x.mem_desc(), weights_md);
    }
  }

  std::shared_ptr<memory> AcquireWeightsMemoryPossiblyWithReorder(
      const DenseTensor* weights, const bool is_test) {
    const T* weights_data = weights->data<T>();

    // if weights are 1D, every format tag is correct, so we accept
    // format_tag::any's output and no reorder is needed
    if (weights->dims().size() == 1) {
      return this->AcquireMemoryFromPrimitive(this->fwd_pd_->weights_desc(),
                                              to_void_cast<T>(weights_data));
    }

    return this->AcquireMemoryWithReorder(weights->mem_desc(),
                                          this->fwd_pd_->weights_desc(),
                                          to_void_cast<T>(weights_data),
                                          is_test);
  }

  std::shared_ptr<memory> AcquireDiffWeightsMemory(DenseTensor* output) {
    T* output_data = output->mutable_data<T>(
        this->place_, this->bwd_pd_->diff_weights_desc().get_size());
    return this->AcquireMemoryFromPrimitive(this->bwd_pd_->diff_weights_desc(),
                                            output_data);
  }
};

1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
template <typename T>
class ReductionOneDNNHandler
    : public OneDNNHandlerNoCachingT<T, dnnl::reduction> {
 public:
  ReductionOneDNNHandler(const dnnl::algorithm algo,
                         const float p,
                         const float eps,
                         const dnnl::engine engine,
                         Place cpu_place,
                         const DenseTensor* x,
                         const DenseTensor* out,
                         std::vector<int64_t> out_tz,
                         const dnnl::primitive_attr& attrs = NULL)
      : OneDNNHandlerNoCachingT<T, dnnl::reduction>(engine, cpu_place) {
    const auto out_md = memory::desc(
1163
        out_tz, OneDNNGetDataType<T>(), dnnl::memory::format_tag::any);
1164 1165 1166 1167 1168 1169 1170 1171 1172

    if (attrs)
      this->AcquireForwardPrimitiveDescriptor(
          attrs, algo, x->mem_desc(), out_md, p, eps);
    else
      this->AcquireForwardPrimitiveDescriptor(
          algo, x->mem_desc(), out_md, p, eps);
  }
};
1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227

template <typename T>
class ClipOneDNNHandler
    : public OneDNNHandlerNoCachingT<T,
                                     dnnl::eltwise_forward,
                                     dnnl::eltwise_backward> {
 public:
  ClipOneDNNHandler(const Scalar& min,
                    const Scalar& max,
                    const dnnl::engine engine,
                    Place cpu_place,
                    const DenseTensor* x)
      : OneDNNHandlerNoCachingT<T,
                                dnnl::eltwise_forward,
                                dnnl::eltwise_backward>(engine, cpu_place) {
    float alpha = min.to<float>();
    float beta = max.to<float>();

    this->AcquireForwardPrimitiveDescriptor(dnnl::prop_kind::forward_training,
                                            dnnl::algorithm::eltwise_clip_v2,
                                            x->mem_desc(),
                                            alpha,
                                            beta);
  }

  ClipOneDNNHandler(const Scalar& min,
                    const Scalar& max,
                    const dnnl::engine engine,
                    Place cpu_place,
                    const DenseTensor* x,
                    const DenseTensor* dout)
      : OneDNNHandlerNoCachingT<T,
                                dnnl::eltwise_forward,
                                dnnl::eltwise_backward>(engine, cpu_place) {
    float alpha = min.to<float>();
    float beta = max.to<float>();

    this->AcquireForwardPrimitiveDescriptor(dnnl::prop_kind::forward_training,
                                            dnnl::algorithm::eltwise_clip_v2,
                                            x->mem_desc(),
                                            alpha,
                                            beta);
    this->AcquireBackwardPrimitiveDescriptor(dnnl::algorithm::eltwise_clip_v2,
                                             dout->mem_desc(),
                                             x->mem_desc(),
                                             alpha,
                                             beta);
  }
  std::shared_ptr<dnnl::memory> AcquireBackwardSrcMemory(
      const DenseTensor* input) {
    const T* input_data = input->data<T>();
    return this->AcquireMemoryFromPrimitive(this->bwd_pd_->src_desc(),
                                            to_void_cast<T>(input_data));
  }
};
1228

1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318
template <typename T>
class BatchNormOneDNNHandler
    : public OneDNNHandlerNoCachingT<T,
                                     dnnl::batch_normalization_forward,
                                     dnnl::batch_normalization_backward> {
 public:
  BatchNormOneDNNHandler(const dnnl::engine engine,
                         Place cpu_place,
                         const DenseTensor* x,
                         const float epsilon,
                         const bool fuse_with_relu,
                         const bool global_stats,
                         const bool test_mode)
      : OneDNNHandlerNoCachingT<T,
                                dnnl::batch_normalization_forward,
                                dnnl::batch_normalization_backward>(engine,
                                                                    cpu_place) {
    // Flags are added by bitwise OR operation
    auto flags = dnnl::normalization_flags::use_scale_shift;  // 001
    if (global_stats)
      flags |= dnnl::normalization_flags::use_global_stats;  // 010
    if (fuse_with_relu && test_mode)
      flags |= dnnl::normalization_flags::fuse_norm_relu;  // 100

    this->AcquireForwardPrimitiveDescriptor(
        global_stats ? dnnl::prop_kind::forward_scoring
                     : dnnl::prop_kind::forward_training,
        x->mem_desc(),
        epsilon,
        flags);
  }

  std::shared_ptr<dnnl::memory> AcquireScaleShiftMemory(
      const DenseTensor* scale, const DenseTensor* shift) {
    auto scale_tz = phi::vectorize(scale->dims());
    const unsigned int C = scale_tz[0];
    PADDLE_ENFORCE_EQ(
        scale_tz.size(),
        1,
        phi::errors::InvalidArgument(
            "Dims of scale tensor must be 1, but received scale's size is %d",
            scale_tz.size()));

    auto scaleshift_memory =
        this->AcquireMemoryFromPrimitive(this->fwd_pd_->weights_desc());

    // MKLDNN requires a single piece of memory for scale and shift/bias data
    auto mem_data_handle =
        reinterpret_cast<T*>(scaleshift_memory->get_data_handle());
    std::copy(scale->data<T>(), scale->data<T>() + C, mem_data_handle);
    std::copy(shift->data<T>(), shift->data<T>() + C, mem_data_handle + C);
    return scaleshift_memory;
  }

  std::shared_ptr<dnnl::memory> AcquireDiffScaleShiftMemory(
      T* diff_scaleshift_data) {
    return this->AcquireMemoryFromPrimitive(this->bwd_pd_->diff_weights_desc(),
                                            diff_scaleshift_data);
  }

  std::shared_ptr<dnnl::memory> AcquireMeanMemory(
      const phi::DenseTensor* mean) {
    const T* mean_data = mean->data<T>();
    return this->AcquireMemoryFromPrimitive(this->fwd_pd_->mean_desc(),
                                            to_void_cast<T>(mean_data));
  }

  std::shared_ptr<dnnl::memory> AcquireMeanMemory(phi::DenseTensor* mean) {
    T* mean_data = mean->mutable_data<T>(this->place_,
                                         this->fwd_pd_->mean_desc().get_size());
    return this->AcquireMemoryFromPrimitive(this->fwd_pd_->mean_desc(),
                                            mean_data);
  }

  std::shared_ptr<dnnl::memory> AcquireVarianceMemory(
      const phi::DenseTensor* variance) {
    const T* variance_data = variance->data<T>();
    return this->AcquireMemoryFromPrimitive(this->fwd_pd_->variance_desc(),
                                            to_void_cast<T>(variance_data));
  }

  std::shared_ptr<dnnl::memory> AcquireVarianceMemory(
      phi::DenseTensor* variance) {
    T* variance_data = variance->mutable_data<T>(
        this->place_, this->fwd_pd_->variance_desc().get_size());
    return this->AcquireMemoryFromPrimitive(this->fwd_pd_->variance_desc(),
                                            variance_data);
  }
};

1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587
template <typename T>
class PoolingOneDNNHandler
    : public OneDNNHandlerNoCachingT<T,
                                     dnnl::pooling_forward,
                                     dnnl::pooling_backward> {
 public:
  PoolingOneDNNHandler(const OneDNNContext& dev_ctx,
                       const std::string& pooling_type,
                       const IntArray& kernel_size,
                       const std::vector<int>& strides,
                       const std::vector<int>& paddings,
                       bool global_pooling,
                       const std::string& padding_algorithm,
                       bool ceil_mode,
                       bool exclusive,
                       bool adaptive,
                       const DenseTensor* input,
                       DenseTensor* output)
      : OneDNNHandlerNoCachingT<T,
                                dnnl::pooling_forward,
                                dnnl::pooling_backward>(dev_ctx.GetEngine(),
                                                        dev_ctx.GetPlace()) {
    std::vector<int64_t> copied_kernel_size(kernel_size.GetData().begin(),
                                            kernel_size.GetData().end());
    std::vector<int64_t> copied_strides(strides.begin(), strides.end());
    std::vector<int64_t> copied_paddings(paddings.begin(), paddings.end());
    // Only 2D pooling is supported now
    PADDLE_ENFORCE_EQ(
        copied_kernel_size.size(),
        2,
        errors::InvalidArgument("The copied_kernel_size must be 2D, i.e. 2D "
                                "pooling, but received %dD.",
                                copied_kernel_size.size()));
    PADDLE_ENFORCE_EQ(
        pooling_type == "max" || pooling_type == "avg",
        true,
        errors::InvalidArgument(
            "The pooling_type must be 'max' or 'avg', but received %s.",
            pooling_type));
    PADDLE_ENFORCE_EQ(
        input->dims().size(),
        4,
        errors::InvalidArgument(
            "Input dim must be with 4, i.e. NCHW, but received %d.",
            input->dims().size()));

    const auto input_dims = input->dims();
    DDim data_dims = slice_ddim(input_dims, 2, input_dims.size());

    if (global_pooling) {
      UpdateKernelSize<int64_t>(&copied_kernel_size, data_dims);
    }

    UpdatePadding<int64_t>(&copied_paddings,
                           global_pooling,
                           0,
                           padding_algorithm,
                           data_dims,
                           copied_strides,
                           copied_kernel_size);

    auto onednn_paddings = ToOneDNNPadding(copied_paddings);

    const auto dt = ToOneDNNDataType(input->dtype());
    const auto src_tz = vectorize(input->dims());
    const auto dst_tz = vectorize(output->dims());
    const auto dst_md = OneDNNMemDesc(dst_tz, dt, OneDNNMemoryFormat::any);

    if (ceil_mode) {
      CorrectOutputSize(src_tz,
                        dst_tz,
                        copied_kernel_size,
                        copied_paddings,
                        copied_strides,
                        onednn_paddings[1]);
    }

    if (adaptive) {
      ComputeAdaptivePoolParameters(
          src_tz, &copied_kernel_size, &copied_strides);
    }

    bool is_test = dev_ctx.HasDnnAttr("is_test")
                       ? PADDLE_GET_CONST(bool, dev_ctx.GetDnnAttr("is_test"))
                       : false;

    this->AcquireForwardPrimitiveDescriptor(
        is_test ? dnnl::prop_kind::forward_inference
                : dnnl::prop_kind::forward_training,
        pooling_type == "max"
            ? dnnl::algorithm::pooling_max
            : (exclusive ? dnnl::algorithm::pooling_avg_exclude_padding
                         : dnnl::algorithm::pooling_avg_include_padding),
        input->mem_desc(),
        dst_md,
        copied_strides,
        copied_kernel_size,
        onednn_paddings[0],
        onednn_paddings[1]);
  }

  PoolingOneDNNHandler(const OneDNNContext& dev_ctx,
                       const std::string& pooling_type,
                       const IntArray& kernel_size,
                       const std::vector<int>& strides,
                       const std::vector<int>& paddings,
                       bool global_pooling,
                       const std::string& padding_algorithm,
                       bool ceil_mode,
                       bool exclusive,
                       bool adaptive,
                       const DenseTensor* in_x,
                       const DenseTensor* out_grad,
                       DenseTensor* in_x_grad)

      : OneDNNHandlerNoCachingT<T,
                                dnnl::pooling_forward,
                                dnnl::pooling_backward>(dev_ctx.GetEngine(),
                                                        dev_ctx.GetPlace()) {
    bool is_test = dev_ctx.HasDnnAttr("is_test")
                       ? PADDLE_GET_CONST(bool, dev_ctx.GetDnnAttr("is_test"))
                       : false;

    PADDLE_ENFORCE_EQ(
        is_test,
        false,
        errors::InvalidArgument(
            "is_test attribute should be set to False in training phase."));

    std::vector<int64_t> copied_kernel_size(kernel_size.GetData().begin(),
                                            kernel_size.GetData().end());
    std::vector<int64_t> copied_strides(strides.begin(), strides.end());
    std::vector<int64_t> copied_paddings(paddings.begin(), paddings.end());
    auto in_x_dims = in_x->dims();
    DDim data_dims = slice_ddim(in_x_dims, 2, in_x_dims.size());
    if (global_pooling) {
      UpdateKernelSize<int64_t>(&copied_kernel_size, data_dims);
    }

    UpdatePadding<int64_t>(&copied_paddings,
                           global_pooling,
                           0,
                           padding_algorithm,
                           data_dims,
                           copied_strides,
                           copied_kernel_size);

    auto src_tz = vectorize<int64_t>(in_x->dims());
    auto diff_src_tz = vectorize<int64_t>(in_x_grad->dims());
    auto diff_dst_tz = vectorize<int64_t>(out_grad->dims());

    const auto dt = ToOneDNNDataType(in_x->dtype());
    auto dst_md = dnnl::memory::desc(diff_dst_tz, dt, OneDNNMemoryFormat::any);
    auto diff_src_md = dnnl::memory::desc(
        diff_src_tz, OneDNNGetDataType<T>(), OneDNNMemoryFormat::any);

    auto onednn_paddings = ToOneDNNPadding(copied_paddings);

    if (ceil_mode) {
      CorrectOutputSize(src_tz,
                        diff_dst_tz,
                        copied_kernel_size,
                        copied_paddings,
                        copied_strides,
                        onednn_paddings[1]);
    }

    if (adaptive) {
      ComputeAdaptivePoolParameters(
          diff_src_tz, &copied_kernel_size, &copied_strides);
    }

    this->AcquireForwardPrimitiveDescriptor(
        dnnl::prop_kind::forward_training,
        pooling_type == "max"
            ? dnnl::algorithm::pooling_max
            : (exclusive ? dnnl::algorithm::pooling_avg_exclude_padding
                         : dnnl::algorithm::pooling_avg_include_padding),
        in_x->mem_desc(),
        dst_md,
        copied_strides,
        copied_kernel_size,
        onednn_paddings[0],
        onednn_paddings[1]);

    this->AcquireBackwardPrimitiveDescriptor(
        pooling_type == "max"
            ? dnnl::algorithm::pooling_max
            : (exclusive ? dnnl::algorithm::pooling_avg_exclude_padding
                         : dnnl::algorithm::pooling_avg_include_padding),
        diff_src_md,
        out_grad->mem_desc(),
        copied_strides,
        copied_kernel_size,
        onednn_paddings[0],
        onednn_paddings[1]);
  }

  std::shared_ptr<dnnl::memory> AcquireWorkspaceMemory(
      const OneDNNContext& dev_ctx, const std::string& unique_name) {
    dnnl::memory::desc workspace_md = this->fwd_pd_->workspace_desc();
    // Pooling Workspace has to be passed to Grad op that
    // may be executed by diffrent thread, hence
    // for that one we use key that does not contain TID
    std::string workspace_key = CreateKey(dev_ctx,
                                          workspace_md.dims(),
                                          workspace_md.data_type(),
                                          unique_name,
                                          "@wrk");
    auto mem_p =
        std::static_pointer_cast<dnnl::memory>(dev_ctx.GetBlob(workspace_key));
    if (mem_p == nullptr) {
      static std::mutex acquire_barrier;
      std::lock_guard<std::mutex> block_threads_until_finish_this_job(
          acquire_barrier);
      mem_p = std::static_pointer_cast<dnnl::memory>(
          dev_ctx.GetBlob(workspace_key));
      if (mem_p == nullptr) {
        mem_p = std::make_shared<dnnl::memory>(workspace_md, this->engine_);
        dev_ctx.SetBlob(workspace_key, mem_p);
      }
    }
    return mem_p;
  }

  static void ComputeAdaptivePoolParameters(const std::vector<int64_t>& src_tz,
                                            std::vector<int64_t>* kernel_size,
                                            std::vector<int64_t>* strides) {
    // https://github.com/oneapi-src/oneDNN/tree/bkocot/adaptive-pooling/rfcs/20200818-adaptive-pooling
    auto IH = static_cast<double>(src_tz[src_tz.size() - 2]);
    auto IW = static_cast<double>(src_tz[src_tz.size() - 1]);
    auto OH = static_cast<double>(kernel_size->at(0));
    auto OW = static_cast<double>(kernel_size->at(1));

    strides->at(0) =
        static_cast<int64_t>(floor((IH * 2.0) / OH) - floor(IH / OH));
    strides->at(1) =
        static_cast<int64_t>(floor((IW * 2.0) / OW) - floor(IW / OW));
    kernel_size->at(0) =
        static_cast<int64_t>(ceil((IH * 2.0) / OH) - floor(IH / OH));
    kernel_size->at(1) =
        static_cast<int64_t>(ceil((IW * 2.0) / OW) - floor(IW / OW));
  }

 private:
  static inline int ComputeCeiledOutput(int input_size,
                                        int kernel_size,
                                        int padding,
                                        int stride) {
    return (input_size - kernel_size + 2 * padding) / stride + 1;
  }

  static inline void CorrectOutputSize(
      const std::vector<int64_t>& src_tz,
      const std::vector<int64_t>& dst_tz,
      const std::vector<int64_t>& kernel_size,
      const std::vector<int64_t>& paddings,
      const std::vector<int64_t>& strides,
      std::vector<int64_t>& right_bot_padding) {  // NOLINT
    for (size_t i = 0; i < right_bot_padding.size(); i++) {
      int desired_size = ComputeCeiledOutput(
          src_tz[i + 2], kernel_size[i], paddings[i], strides[i]);
      if (desired_size != dst_tz[i + 2]) {
        right_bot_padding[i] += strides[i] - 1;
      }
    }
  }
};

1588 1589
}  // namespace funcs
}  // namespace phi