onednn_reuse.h 49.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once

#include <algorithm>
#include <memory>
#include <sstream>
#include <string>
#include <utility>
#include <vector>

23
#include "paddle/fluid/platform/profiler/event_tracing.h"
24
#include "paddle/phi/backends/onednn/onednn_context.h"
25
#include "paddle/phi/backends/onednn/onednn_helper.h"
26
#include "paddle/phi/common/data_type.h"
27
#include "paddle/phi/common/int_array.h"
28
#include "paddle/phi/common/place.h"
29
#include "paddle/phi/common/scalar.h"
30
#include "paddle/phi/core/dense_tensor.h"
31
#include "paddle/phi/kernels/funcs/data_layout_transform.h"
32
#include "paddle/phi/kernels/funcs/pooling.h"
33 34 35 36 37 38 39

namespace phi {
namespace funcs {

using user_function = std::function<std::shared_ptr<float>(const float*)>;
using memory = dnnl::memory;

40
using OneDNNMemoryFormat = dnnl::memory::format_tag;
41

42 43
template <typename T,
          typename TForward,
44 45
          typename TBackward = onednn_dummy_primitive,
          typename TBackward_params = onednn_dummy_primitive>
46
class OneDNNHandlerT {
47
 public:
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
  OneDNNHandlerT(const OneDNNContext& dev_ctx,
                 dnnl::engine engine,
                 Place cpu_place,
                 const std::string& base_key)
      : dev_ctx_(dev_ctx),
        engine_(engine),
        place_(cpu_place),
        key_common_(base_key),
        key_(ExtendKeyWithThreadInfoIfNeeded(dev_ctx, base_key)),
        fwd_pd_(nullptr),
        bwd_pd_(nullptr) {
    OneDNNContext::tls().log_lib_version();
  }

  std::shared_ptr<TForward> AcquireForwardPrimitive() {
    const std::string key_p = key_ + "@fwd_p";
    auto forward_p =
        std::static_pointer_cast<TForward>(dev_ctx_.GetBlob(key_p));
    if (forward_p == nullptr) {
      forward_p = std::make_shared<TForward>(*fwd_pd_);
      dev_ctx_.SetBlob(key_p, forward_p);
    }
    return forward_p;
  }

  std::shared_ptr<TBackward> AcquireBackwardPrimitive() {
    const std::string key_p = key_ + "@bwd_p";
    auto backward_p =
        std::static_pointer_cast<TBackward>(dev_ctx_.GetBlob(key_p));
    if (backward_p == nullptr) {
      backward_p = std::make_shared<TBackward>(*bwd_pd_);
      dev_ctx_.SetBlob(key_p, backward_p);
    }
    return backward_p;
  }

  std::shared_ptr<TBackward_params> AcquireBackwardWeightsPrimitive() {
    const std::string key_p = key_ + "@bwd_w_p";
    auto backward_p =
        std::static_pointer_cast<TBackward_params>(dev_ctx_.GetBlob(key_p));
    if (backward_p == nullptr) {
      PADDLE_ENFORCE_NOT_NULL(
          bwd_w_pd_,
          errors::Unavailable("BWD_PD should be set when "
                              "getting BWD prim witk key: %s .",
                              key_p));
      backward_p = std::make_shared<TBackward_params>(*bwd_w_pd_);
      dev_ctx_.SetBlob(key_p, backward_p);
    }
    return backward_p;
  }

  std::shared_ptr<dnnl::memory> AcquireSrcMemory(const DenseTensor* input) {
    const T* input_data = input->data<T>();
    return this->AcquireMemoryFromPrimitive(
        fwd_pd_->src_desc(), to_void_cast<T>(input_data), "@src_mem_p");
  }

  template <typename T_out = T>
  std::shared_ptr<dnnl::memory> AcquireDstMemory(DenseTensor* output) {
    T_out* ptr =
        output->mutable_data<T_out>(place_, fwd_pd_->dst_desc().get_size());
    return this->AcquireMemoryFromPrimitive(
        fwd_pd_->dst_desc(), ptr, "@dst_mem_p");
  }

  template <typename T_out = T>
  std::shared_ptr<dnnl::memory> AcquireDstMemory(void) {
    return this->AcquireMemoryFromPrimitive(fwd_pd_->dst_desc(), "@dstt_mem_p");
  }

  template <typename T_out = T>
  std::shared_ptr<dnnl::memory> AcquireDstMemory(const DenseTensor* output) {
    const T_out* output_data = output->data<T_out>();
    return this->AcquireMemoryFromPrimitive(bwd_pd_->dst_desc(),
                                            to_void_cast<T_out>(output_data),
                                            "@bwd-dst_mem_p");
  }

  std::shared_ptr<dnnl::memory> AcquireDiffDstMemory(
      const DenseTensor* diffdst) {
    const T* ptr = diffdst->data<T>();
    return this->AcquireMemoryFromPrimitive(
        bwd_pd_->diff_dst_desc(), to_void_cast<T>(ptr), "@diff_dst_mem_p");
  }

  std::shared_ptr<dnnl::memory> AcquireDiffSrcMemory(DenseTensor* diffsrc) {
    T* ptr =
        diffsrc->mutable_data<T>(place_, bwd_pd_->diff_src_desc().get_size());
    return this->AcquireMemoryFromPrimitive(
        bwd_pd_->diff_src_desc(), ptr, "@diff_src_mem_p");
  }

  // Buffer of given DenseTensor is used for oneDNN computation
  std::shared_ptr<dnnl::memory> AcquireDiffWeightsMemory(
      DenseTensor* diff_weights) {
    PADDLE_ENFORCE_NOT_NULL(
        bwd_w_pd_,
        errors::Unavailable(
            "BWD_W_PD should be set when getting BWD grad of weights."));
    T* ptr = diff_weights->mutable_data<T>(
        place_, bwd_w_pd_->diff_weights_desc().get_size());
    return this->AcquireMemoryFromPrimitive(
        bwd_w_pd_->diff_weights_desc(), ptr, "@diff_wei_mem_p");
  }

  // Buffer is allocated by oneDNN to store computation results
  std::shared_ptr<dnnl::memory> AcquireDiffWeightsMemory(void) {
    PADDLE_ENFORCE_NOT_NULL(
        bwd_w_pd_,
        errors::Unavailable(
            "BWD_W_PD should be set when getting BWD grad of weights."));
    return this->AcquireMemoryFromPrimitive(bwd_w_pd_->diff_weights_desc(),
                                            "@diff_wei_mem_p");
  }

 protected:
  bool isCached() {
    const std::string key_pd = key_ + "@fwd_pd";
    fwd_pd_ = std::static_pointer_cast<typename TForward::primitive_desc>(
        dev_ctx_.GetBlob(key_pd));

    return (fwd_pd_ != nullptr);
  }

  bool isBwdCached() {
    const std::string key_pd = key_ + "@bwd_pd";
    bwd_pd_ = std::static_pointer_cast<typename TBackward::primitive_desc>(
        dev_ctx_.GetBlob(key_pd));

    if (bwd_pd_ == nullptr) {
      return false;
    } else {
      if (std::is_same<TBackward_params, onednn_dummy_primitive>::value ==
          false) {
        const std::string key_bw_w_pd = key_ + "@bwd_w_pd";
        bwd_w_pd_ =
            std::static_pointer_cast<typename TBackward_params::primitive_desc>(
                dev_ctx_.GetBlob(key_bw_w_pd));
      }

      // When BWD is cached then still we need to Get FWD PD
      const std::string key_fpd = key_ + "@fwd_pd";
      fwd_pd_ = std::static_pointer_cast<typename TForward::primitive_desc>(
          dev_ctx_.GetBlob(key_fpd));
      PADDLE_ENFORCE_NOT_NULL(
          fwd_pd_,
          errors::Unavailable(
              "Error: FWD PD should be set when BWD PD is cached."));
      return true;
    }
  }

  // If your primitive descriptor requires attributes, pass them as a
  // first argument and paramters to descriptor constructor in the following
  // arguments. Otherwise, all arguments will be forwarded to descriptor
  // constructor, including the first one.
  template <typename Arg, typename... Args>
  void AcquireForwardPrimitiveDescriptor(Arg&& first_arg, Args&&... args) {
    // This is used when we can recreate FWD PD in BWD so
    // we do not need to pass FWD to BWD
    const std::string key_pd = key_ + "@fwd_pd";
    fwd_pd_ = std::static_pointer_cast<typename TForward::primitive_desc>(
        dev_ctx_.GetBlob(key_pd));
    if (fwd_pd_ == nullptr) {
      CreateForwardPrimitiveDescriptor(first_arg, std::forward<Args>(args)...);
      dev_ctx_.SetBlob(key_pd, fwd_pd_);
    }
  }

  // Using sfinae to specialise variadic function. Workaround for not having
  // if constexpr in C++ 11.
  template <class First, class... Args>
  typename std::enable_if<std::is_same<typename std::decay<First>::type,
                                       dnnl::primitive_attr>::value>::type
  CreateForwardPrimitiveDescriptor(First&& first, Args&&... args) {
    auto fwd_desc = typename TForward::desc(std::forward<Args>(args)...);
    fwd_pd_ = std::make_shared<typename TForward::primitive_desc>(
        fwd_desc, first, engine_);
  }

  template <class First, class... Args>
  typename std::enable_if<!std::is_same<typename std::decay<First>::type,
                                        dnnl::primitive_attr>::value>::type
  CreateForwardPrimitiveDescriptor(First&& first, Args&&... args) {
    auto fwd_desc = typename TForward::desc(std::forward<First>(first),
                                            std::forward<Args>(args)...);
    fwd_pd_ =
        std::make_shared<typename TForward::primitive_desc>(fwd_desc, engine_);
  }

  template <typename... Args>
  void AcquireBackwardPrimitiveDescriptor(Args&&... args) {
    // fwd_pd_ is set during grad by calling
    // AcquireForwardPrimitiveDescriptor
    PADDLE_ENFORCE_NOT_NULL(
        fwd_pd_,
        errors::Unavailable("Get OneDNN Forward primitive %s failed.",
                            key_ + "@fwd_pd"));
    const std::string key_pd = key_ + "@bwd_pd";
    bwd_pd_ = std::static_pointer_cast<typename TBackward::primitive_desc>(
        dev_ctx_.GetBlob(key_pd));
    if (bwd_pd_ == nullptr) {
      auto bwd_desc = typename TBackward::desc(std::forward<Args>(args)...);
      bwd_pd_ = std::make_shared<typename TBackward::primitive_desc>(
          bwd_desc, engine_, *fwd_pd_);
      dev_ctx_.SetBlob(key_pd, bwd_pd_);
    }
  }

  template <typename... Args>
  void AcquireBackwardWeightsPrimitiveDescriptor(Args&&... args) {
    // fwd_pd_ is set during grad by calling
    // AcquireForwardPrimitiveDescriptor
    PADDLE_ENFORCE_NOT_NULL(
        fwd_pd_,
        errors::Unavailable("Get OneDNN Forward primitive %s failed.",
                            key_ + "@fwd_pd"));
    const std::string key_pd = key_ + "@bwd_w_pd";
    bwd_w_pd_ =
        std::static_pointer_cast<typename TBackward_params::primitive_desc>(
            dev_ctx_.GetBlob(key_pd));
    if (bwd_w_pd_ == nullptr) {
      auto bwd_desc =
          typename TBackward_params::desc(std::forward<Args>(args)...);
      bwd_w_pd_ = std::make_shared<typename TBackward_params::primitive_desc>(
          bwd_desc, engine_, *fwd_pd_);
      dev_ctx_.SetBlob(key_pd, bwd_w_pd_);
    }
  }

  std::shared_ptr<dnnl::memory> AcquireMemoryFromPrimitive(
      const std::string& suffix) {
    return std::static_pointer_cast<dnnl::memory>(
        dev_ctx_.GetBlob(key_ + suffix));
  }

  std::shared_ptr<dnnl::memory> AcquireMemoryFromPrimitive(
      dnnl::memory::desc md, void* ptr, const std::string& suffix) {
    const auto local_key = key_ + suffix;
    auto mem_p =
        std::static_pointer_cast<dnnl::memory>(dev_ctx_.GetBlob(local_key));
    if (mem_p == nullptr) {
      mem_p = std::make_shared<dnnl::memory>(md, engine_, ptr);
      dev_ctx_.SetBlob(local_key, mem_p);
    } else {
      mem_p->set_data_handle(ptr);
    }
    return mem_p;
  }

  std::shared_ptr<dnnl::memory> AcquireMemoryFromPrimitive(
      dnnl::memory::desc md, const std::string& suffix) {
    const auto local_key = key_ + suffix;
    auto mem_p =
        std::static_pointer_cast<dnnl::memory>(dev_ctx_.GetBlob(local_key));
    if (mem_p == nullptr) {
      mem_p = std::make_shared<dnnl::memory>(md, engine_);
      dev_ctx_.SetBlob(local_key, mem_p);
    }
    return mem_p;
  }

  void AcquireReorder(const std::shared_ptr<dnnl::memory>& user_memory_p,
                      const std::shared_ptr<dnnl::memory>& target_memory_p) {
    auto reorder_p =
        std::make_shared<dnnl::reorder>(*user_memory_p, *target_memory_p);

    auto& astream = OneDNNContext::tls().get_stream();

    paddle::platform::RecordEvent record_reorder(
        "int_reorder",
        paddle::platform::TracerEventType::UserDefined,
        2,
        paddle::platform::EventRole::kUniqueOp);
    reorder_p->execute(
        astream,
        {{DNNL_ARG_FROM, *user_memory_p}, {DNNL_ARG_TO, *target_memory_p}});
    astream.wait();
  }

  template <typename F = T>
  std::shared_ptr<dnnl::memory> AcquireMemoryWithReorder(
      const dnnl::memory::desc& user_md,
      const dnnl::memory::desc& target_md,
      void* ptr,
      const std::string& suffix,
      bool is_persistent = false,
      std::function<std::shared_ptr<F>(const F*)> custom_reorder_func = {},
      const std::vector<float>& scale_data = {1.0f},
      int mask = 0) {
    const auto target_key = key_ + suffix + "_target";
    const auto key_reorder_p = key_ + suffix + "reorder_p";
    const auto user_key = key_ + suffix + "_user";

    auto target_memory_p =
        std::static_pointer_cast<dnnl::memory>(dev_ctx_.GetBlob(target_key));

    if (target_memory_p == nullptr) {
      if (custom_reorder_func) {
        auto reordered_data =
            custom_reorder_func(reinterpret_cast<const F*>(ptr));
        dev_ctx_.SetBlob(key_reorder_p + "-custom_reorder", reordered_data);
        ptr = reinterpret_cast<void*>(reordered_data.get());
      }
      auto user_memory_p =
          std::make_shared<dnnl::memory>(user_md, engine_, ptr);
      if (user_md != target_md) {
        target_memory_p = std::make_shared<dnnl::memory>(target_md, engine_);
        dnnl::reorder::primitive_desc reorder_pdesc;
        if (is_int8<T>()) {
          dnnl::primitive_attr attr;
          attr.set_output_scales(mask, scale_data);
          reorder_pdesc = dnnl::reorder::primitive_desc(
              *user_memory_p, *target_memory_p, attr);
        } else {
          reorder_pdesc =
              dnnl::reorder::primitive_desc(*user_memory_p, *target_memory_p);
        }
        auto reorder_p = std::make_shared<dnnl::reorder>(reorder_pdesc);
        dev_ctx_.SetBlob(key_reorder_p, reorder_p);

        auto& astream = OneDNNContext::tls().get_stream();
        paddle::platform::RecordEvent record_reorder(
            "int_reorder",
            paddle::platform::TracerEventType::UserDefined,
            2,
            paddle::platform::EventRole::kUniqueOp);
        reorder_p->execute(
            astream,
            {{DNNL_ARG_FROM, *user_memory_p}, {DNNL_ARG_TO, *target_memory_p}});
        astream.wait();
      } else {
        target_memory_p = user_memory_p;
      }
      dev_ctx_.SetBlob(user_key, user_memory_p);
      dev_ctx_.SetBlob(target_key, target_memory_p);
    } else if (!is_persistent) {
      auto& astream = OneDNNContext::tls().get_stream();

      auto user_memory_p =
          std::static_pointer_cast<dnnl::memory>(dev_ctx_.GetBlob(user_key));
      user_memory_p->set_data_handle(ptr);

      // TODO(jczaja): Here we detect if reorder is cached it means it is needed
      // need to change this to get rid of keys
      auto reorder_p = std::static_pointer_cast<dnnl::reorder>(
          dev_ctx_.GetBlob(key_reorder_p));
      if (reorder_p != nullptr) {
        paddle::platform::RecordEvent record_reorder(
            "int_reorder",
            paddle::platform::TracerEventType::UserDefined,
            2,
            paddle::platform::EventRole::kUniqueOp);
        reorder_p->execute(
            astream,
            {{DNNL_ARG_FROM, *user_memory_p}, {DNNL_ARG_TO, *target_memory_p}});
        astream.wait();
      }
    }
    return target_memory_p;
  }

  std::shared_ptr<dnnl::memory> AcquireMemory(const std::string& suffix) {
    const auto local_key = key_ + suffix;
    return std::static_pointer_cast<dnnl::memory>(dev_ctx_.GetBlob(local_key));
  }

  const OneDNNContext& dev_ctx_;
  dnnl::engine engine_;
  Place place_;
  std::string key_common_;
  std::string key_;
  std::shared_ptr<typename TForward::primitive_desc> fwd_pd_;
  std::shared_ptr<typename TBackward::primitive_desc> bwd_pd_;
  std::shared_ptr<typename TBackward_params::primitive_desc> bwd_w_pd_;
};

template <typename T,
          typename TForward,
          typename TBackward = onednn_dummy_primitive,
          typename TBackward_params = onednn_dummy_primitive>
class OneDNNHandlerNoCachingT {
 public:
  OneDNNHandlerNoCachingT(dnnl::engine engine, Place cpu_place)
433
      : engine_(engine), place_(cpu_place), fwd_pd_(nullptr), bwd_pd_(nullptr) {
434
    OneDNNContext::tls().log_lib_version();
435 436 437 438 439 440 441 442 443 444 445
  }

  std::shared_ptr<TForward> AcquireForwardPrimitive() {
    return std::make_shared<TForward>(*fwd_pd_);
  }

  std::shared_ptr<TBackward> AcquireBackwardPrimitive() {
    return std::make_shared<TBackward>(*bwd_pd_);
  }

  std::shared_ptr<TBackward_params> AcquireBackwardWeightsPrimitive() {
446 447 448
    PADDLE_ENFORCE_NOT_NULL(bwd_w_pd_,
                            errors::Unavailable("BWD_PD should be set when "
                                                "getting BWD prim ."));
449 450 451 452 453
    return std::make_shared<TBackward_params>(*bwd_w_pd_);
  }

  std::shared_ptr<dnnl::memory> AcquireSrcMemory(const DenseTensor* input) {
    const T* input_data = input->data<T>();
454 455
    return this->AcquireMemoryFromPrimitive(fwd_pd_->src_desc(),
                                            to_void_cast<T>(input_data));
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
  }

  template <typename T_out = T>
  std::shared_ptr<dnnl::memory> AcquireDstMemory(DenseTensor* output) {
    T_out* ptr =
        output->mutable_data<T_out>(place_, fwd_pd_->dst_desc().get_size());
    return this->AcquireMemoryFromPrimitive(fwd_pd_->dst_desc(), ptr);
  }

  template <typename T_out = T>
  std::shared_ptr<dnnl::memory> AcquireDstMemory(void) {
    return this->AcquireMemoryFromPrimitive(fwd_pd_->dst_desc());
  }

  template <typename T_out = T>
  std::shared_ptr<dnnl::memory> AcquireDstMemory(const DenseTensor* output) {
    const T_out* output_data = output->data<T_out>();
473 474
    return this->AcquireMemoryFromPrimitive(bwd_pd_->dst_desc(),
                                            to_void_cast<T_out>(output_data));
475 476 477 478 479
  }

  std::shared_ptr<dnnl::memory> AcquireDiffDstMemory(
      const DenseTensor* diffdst) {
    const T* ptr = diffdst->data<T>();
480 481
    return this->AcquireMemoryFromPrimitive(bwd_pd_->diff_dst_desc(),
                                            to_void_cast<T>(ptr));
482 483 484 485 486 487 488 489
  }

  std::shared_ptr<dnnl::memory> AcquireDiffSrcMemory(DenseTensor* diffsrc) {
    T* ptr =
        diffsrc->mutable_data<T>(place_, bwd_pd_->diff_src_desc().get_size());
    return this->AcquireMemoryFromPrimitive(bwd_pd_->diff_src_desc(), ptr);
  }

490
  // Buffer of given DenseTensor is used for oneDNN computation
491 492 493 494
  std::shared_ptr<dnnl::memory> AcquireDiffWeightsMemory(
      DenseTensor* diff_weights) {
    PADDLE_ENFORCE_NOT_NULL(
        bwd_w_pd_,
495
        errors::Unavailable(
496 497 498 499 500 501 502 503 504 505 506
            "BWD_W_PD should be set when getting BWD grad of weights."));
    T* ptr = diff_weights->mutable_data<T>(
        place_, bwd_w_pd_->diff_weights_desc().get_size());
    return this->AcquireMemoryFromPrimitive(bwd_w_pd_->diff_weights_desc(),
                                            ptr);
  }

  // Buffer is allocated by oneDNN to store computation results
  std::shared_ptr<dnnl::memory> AcquireDiffWeightsMemory(void) {
    PADDLE_ENFORCE_NOT_NULL(
        bwd_w_pd_,
507
        errors::Unavailable(
508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
            "BWD_W_PD should be set when getting BWD grad of weights."));
    return this->AcquireMemoryFromPrimitive(bwd_w_pd_->diff_weights_desc());
  }

 protected:
  // If your primitive descriptor requires attributes, pass them as a
  // first argument and paramters to descriptor constructor in the following
  // arguments. Otherwise, all arguments will be forwarded to descriptor
  // constructor, including the first one.
  template <typename Arg, typename... Args>
  void AcquireForwardPrimitiveDescriptor(Arg&& first_arg, Args&&... args) {
    CreateForwardPrimitiveDescriptor(first_arg, std::forward<Args>(args)...);
  }

  // Using sfinae to specialise variadic function. Workaround for not having
  // if constexpr in C++ 11.
  template <class First, class... Args>
  typename std::enable_if<std::is_same<typename std::decay<First>::type,
                                       dnnl::primitive_attr>::value>::type
  CreateForwardPrimitiveDescriptor(First&& first, Args&&... args) {
    auto fwd_desc = typename TForward::desc(std::forward<Args>(args)...);
    fwd_pd_ = std::make_shared<typename TForward::primitive_desc>(
        fwd_desc, first, engine_);
  }

  template <class First, class... Args>
  typename std::enable_if<!std::is_same<typename std::decay<First>::type,
                                        dnnl::primitive_attr>::value>::type
  CreateForwardPrimitiveDescriptor(First&& first, Args&&... args) {
    auto fwd_desc = typename TForward::desc(std::forward<First>(first),
                                            std::forward<Args>(args)...);
    fwd_pd_ =
        std::make_shared<typename TForward::primitive_desc>(fwd_desc, engine_);
  }

  template <typename... Args>
  void AcquireBackwardPrimitiveDescriptor(Args&&... args) {
    // fwd_pd_ is set during grad by calling
    // AcquireForwardPrimitiveDescriptor
    PADDLE_ENFORCE_NOT_NULL(
        fwd_pd_,
549
        errors::Unavailable("Get oneDNN Forward primitive %s failed."));
550 551 552 553 554 555 556 557 558 559 560
    auto bwd_desc = typename TBackward::desc(std::forward<Args>(args)...);
    bwd_pd_ = std::make_shared<typename TBackward::primitive_desc>(
        bwd_desc, engine_, *fwd_pd_);
  }

  template <typename... Args>
  void AcquireBackwardWeightsPrimitiveDescriptor(Args&&... args) {
    // fwd_pd_ is set during grad by calling
    // AcquireForwardPrimitiveDescriptor
    PADDLE_ENFORCE_NOT_NULL(
        fwd_pd_,
561
        errors::Unavailable("Get oneDNN Forward primitive %s failed."));
562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582
    auto bwd_desc =
        typename TBackward_params::desc(std::forward<Args>(args)...);
    bwd_w_pd_ = std::make_shared<typename TBackward_params::primitive_desc>(
        bwd_desc, engine_, *fwd_pd_);
  }

  std::shared_ptr<dnnl::memory> AcquireMemoryFromPrimitive(
      dnnl::memory::desc md, void* ptr) {
    return std::make_shared<dnnl::memory>(md, engine_, ptr);
  }

  std::shared_ptr<dnnl::memory> AcquireMemoryFromPrimitive(
      dnnl::memory::desc md) {
    return std::make_shared<dnnl::memory>(md, engine_);
  }

  void AcquireReorder(const std::shared_ptr<dnnl::memory>& user_memory_p,
                      const std::shared_ptr<dnnl::memory>& target_memory_p) {
    auto reorder_p =
        std::make_shared<dnnl::reorder>(*user_memory_p, *target_memory_p);

583
    auto& astream = OneDNNContext::tls().get_stream();
584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614

    paddle::platform::RecordEvent record_reorder(
        "int_reorder",
        paddle::platform::TracerEventType::UserDefined,
        2,
        paddle::platform::EventRole::kUniqueOp);
    reorder_p->execute(
        astream,
        {{DNNL_ARG_FROM, *user_memory_p}, {DNNL_ARG_TO, *target_memory_p}});
    astream.wait();
  }

  template <typename F = T>
  std::shared_ptr<dnnl::memory> AcquireMemoryWithReorder(
      const dnnl::memory::desc& user_md,
      const dnnl::memory::desc& target_md,
      void* ptr,
      bool is_persistent = false,
      std::function<std::shared_ptr<F>(const F*)> custom_reorder_func = {}) {
    std::shared_ptr<dnnl::memory> target_memory_p;
    if (custom_reorder_func) {
      auto reordered_data =
          custom_reorder_func(reinterpret_cast<const F*>(ptr));
      ptr = reinterpret_cast<void*>(reordered_data.get());
    }
    auto user_memory_p = std::make_shared<dnnl::memory>(user_md, engine_, ptr);
    if (user_md != target_md) {
      target_memory_p = std::make_shared<dnnl::memory>(target_md, engine_);
      auto reorder_p =
          std::make_shared<dnnl::reorder>(*user_memory_p, *target_memory_p);

615
      auto& astream = OneDNNContext::tls().get_stream();
616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638
      paddle::platform::RecordEvent record_reorder(
          "int_reorder",
          paddle::platform::TracerEventType::UserDefined,
          2,
          paddle::platform::EventRole::kUniqueOp);
      reorder_p->execute(
          astream,
          {{DNNL_ARG_FROM, *user_memory_p}, {DNNL_ARG_TO, *target_memory_p}});
      astream.wait();
    } else {
      target_memory_p = user_memory_p;
    }
    return target_memory_p;
  }

  dnnl::engine engine_;
  Place place_;
  std::shared_ptr<typename TForward::primitive_desc> fwd_pd_;
  std::shared_ptr<typename TBackward::primitive_desc> bwd_pd_;
  std::shared_ptr<typename TBackward_params::primitive_desc> bwd_w_pd_;
};

template <typename T>
639
class ActivationOneDNNHandler
640
    : public OneDNNHandlerNoCachingT<T,
641 642 643
                                     dnnl::eltwise_forward,
                                     dnnl::eltwise_backward> {
 public:
644
  ActivationOneDNNHandler(dnnl::algorithm algorithm,
645 646 647 648 649
                          float alpha,
                          float beta,
                          const dnnl::engine engine,
                          Place cpu_place,
                          const DenseTensor* x)
650
      : OneDNNHandlerNoCachingT<T,
651 652 653 654 655 656 657 658 659
                                dnnl::eltwise_forward,
                                dnnl::eltwise_backward>(engine, cpu_place) {
    this->AcquireForwardPrimitiveDescriptor(dnnl::prop_kind::forward_training,
                                            algorithm,
                                            x->mem_desc(),
                                            alpha,
                                            beta);
  }

660
  ActivationOneDNNHandler(dnnl::algorithm algorithm,
661 662 663 664 665 666
                          float alpha,
                          float beta,
                          const dnnl::engine engine,
                          Place cpu_place,
                          const DenseTensor* x,
                          const DenseTensor* dout)
667
      : OneDNNHandlerNoCachingT<T,
668 669 670 671 672 673 674 675 676 677 678 679 680 681
                                dnnl::eltwise_forward,
                                dnnl::eltwise_backward>(engine, cpu_place) {
    this->AcquireForwardPrimitiveDescriptor(dnnl::prop_kind::forward_training,
                                            algorithm,
                                            x->mem_desc(),
                                            alpha,
                                            beta);
    this->AcquireBackwardPrimitiveDescriptor(
        algorithm, dout->mem_desc(), x->mem_desc(), alpha, beta);
  }

  std::shared_ptr<dnnl::memory> AcquireBackwardSrcMemory(
      const DenseTensor* input) {
    const T* input_data = input->data<T>();
682 683 684 685 686
    return this->AcquireMemoryFromPrimitive(this->bwd_pd_->src_desc(),
                                            to_void_cast<T>(input_data));
  }
};

687
class ReorderOneDNNHandler {
688
 public:
689
  ReorderOneDNNHandler(std::vector<int64_t>& dims,  // NOLINT
690 691 692 693 694 695 696 697 698 699
                       DataType ptype,
                       dnnl::memory::data_type dtype,
                       dnnl::engine engine)
      : dims_(dims),
        ptype_(ptype),
        ptype_dst_(ptype),
        dtype_(dtype),
        dtype_dst_(dtype),
        engine_(engine) {}

700
  ReorderOneDNNHandler(std::vector<int64_t>& dims,  // NOLINT
701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717
                       DataType ptype,
                       dnnl::memory::data_type dtype,
                       DataType ptype_dst,
                       dnnl::memory::data_type dtype_dst,
                       dnnl::engine engine)
      : dims_(dims),
        ptype_(ptype),
        ptype_dst_(ptype_dst),
        dtype_(dtype),
        dtype_dst_(dtype_dst),
        engine_(engine) {}

  std::shared_ptr<dnnl::memory> AcquireSrcMemory(const dnnl::memory::desc& md,
                                                 void* ptr) {
    return std::make_shared<dnnl::memory>(md, engine_, ptr);
  }

718
  std::shared_ptr<dnnl::memory> AcquireSrcMemory(const OneDNNMemoryFormat& fmt,
719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734
                                                 void* ptr) {
    auto md = dnnl::memory::desc(dims_, dtype_, fmt);
    return std::make_shared<dnnl::memory>(md, engine_, ptr);
  }

  std::shared_ptr<dnnl::memory> AcquireSubmemory(
      const std::vector<int64_t>& dims,
      const std::vector<int64_t>& offset,
      const std::shared_ptr<dnnl::memory>& mem_p) {
    auto sub_md = mem_p->get_desc().submemory_desc(dims, {offset});
    auto sub_mem_p = std::make_shared<dnnl::memory>(
        sub_md, engine_, mem_p->get_data_handle());
    return sub_mem_p;
  }

  std::shared_ptr<dnnl::memory> AcquireDstMemory(DenseTensor* output,
735
                                                 const OneDNNMemoryFormat& fmt,
736
                                                 Place place) {
737
    auto dst_md = OneDNNMemDesc(dims_, dtype_dst_, fmt);
738 739
    auto dst_data = output->mutable_data(place, ptype_dst_, dst_md.get_size());
    return std::make_shared<dnnl::memory>(dst_md, engine_, dst_data);
740
  }
741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759

  std::shared_ptr<dnnl::memory> AcquireDstMemory(
      DenseTensor* output, const dnnl::memory::desc& src_md, Place place) {
    if (ptype_dst_ == ptype_) {
      auto dst_data =
          output->mutable_data(place, ptype_dst_, src_md.get_size());
      return std::make_shared<dnnl::memory>(src_md, engine_, dst_data);
    } else {
      auto dst_md = src_md;
      dst_md.data.data_type = static_cast<dnnl_data_type_t>(dtype_dst_);
      auto dst_data =
          output->mutable_data(place, ptype_dst_, dst_md.get_size());
      return std::make_shared<dnnl::memory>(dst_md, engine_, dst_data);
    }
  }

  std::shared_ptr<dnnl::memory> AcquireDstMemory(
      DenseTensor* output,
      const std::vector<int64_t>& dims,
760
      const OneDNNMemoryFormat& fmt,
761
      Place place) {
762
    auto dst_md = OneDNNMemDesc(dims, dtype_dst_, fmt);
763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785
    auto dst_data = output->mutable_data(place, ptype_dst_, dst_md.get_size());
    return std::make_shared<dnnl::memory>(dst_md, engine_, dst_data);
  }

  std::shared_ptr<dnnl::reorder> AcquireReorder(
      std::shared_ptr<dnnl::memory> dst_memory_p,
      std::shared_ptr<dnnl::memory> src_memory_p) {
    return std::make_shared<dnnl::reorder>(*(src_memory_p), *(dst_memory_p));
  }

  std::shared_ptr<dnnl::reorder> AcquireReorder(
      std::shared_ptr<dnnl::memory> dst_memory_p,
      std::shared_ptr<dnnl::memory> src_memory_p,
      const dnnl::primitive_attr& attrs) {
    return std::make_shared<dnnl::reorder>(
        *(src_memory_p), *(dst_memory_p), attrs);
  }

 private:
  std::vector<int64_t> dims_;
  DataType ptype_, ptype_dst_;
  dnnl::memory::data_type dtype_, dtype_dst_;
  dnnl::engine engine_;
786 787
};

788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836
template <typename T>
class BinaryOneDNNHandler : public OneDNNHandlerNoCachingT<T, dnnl::binary> {
 public:
  BinaryOneDNNHandler(const dnnl::algorithm algo,
                      const int axis,
                      const dnnl::engine engine,
                      Place cpu_place,
                      const DenseTensor* x,
                      const DenseTensor* y,
                      DenseTensor* out,
                      float scale_x,
                      float scale_y,
                      float scale_out,
                      const dnnl::post_ops& post_ops = dnnl::post_ops{})
      : OneDNNHandlerNoCachingT<T, dnnl::binary>(engine, cpu_place) {
    const auto src_x_tz = vectorize(x->dims());
    const auto src_y_tz = vectorize(y->dims());
    // if output tensor(z) is nullptr then we are computing into oneDNN
    // managed buffer
    auto rankdiff = x->dims().size() - y->dims().size();
    const auto dst_tz = (out == nullptr) ? (rankdiff > 0 ? src_x_tz : src_y_tz)
                                         : vectorize(out->dims());

    auto src0_md = x->mem_desc();
    auto src1_md = y->mem_desc();
    if (rankdiff > 0) {  // Second input is of smaller rank than first
      std::vector<int64_t> dims1_ex(rankdiff, 1);
      dims1_ex.insert(next(dims1_ex.begin(), (axis == -1 ? rankdiff : axis)),
                      src_y_tz.begin(),
                      src_y_tz.end());
      // For broadcasting for NHWC we need rotate extended shape
      if (OneDNNContext::tls().get_cur_paddle_data_layout() ==
          DataLayout::kNHWC) {
        std::rotate(dims1_ex.begin() + 1, dims1_ex.end() - 1, dims1_ex.end());
      }
      src1_md = src1_md.reshape(dims1_ex);
    } else if (rankdiff < 0) {  // First input is of smaller than second
      std::vector<int64_t> dims0_ex(-rankdiff, 1);
      dims0_ex.insert(next(dims0_ex.begin(), (axis == -1 ? -rankdiff : axis)),
                      src_x_tz.begin(),
                      src_x_tz.end());
      // For broadcasting for NHWC we need rotate extended shape
      if (OneDNNContext::tls().get_cur_paddle_data_layout() ==
          DataLayout::kNHWC) {
        std::rotate(dims0_ex.begin() + 1, dims0_ex.end() - 1, dims0_ex.end());
      }
      src0_md = src0_md.reshape(dims0_ex);
    }
    const auto dst_md =
837
        memory::desc(dst_tz, OneDNNGetDataType<T>(), OneDNNMemoryFormat::any);
838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907

    auto attributes =
        CreateAttributes(algo, scale_x, scale_y, scale_out, post_ops);

    if (x->numel() < y->numel()) {
      this->AcquireForwardPrimitiveDescriptor(
          attributes, algo, src1_md, src0_md, dst_md);
    } else {
      this->AcquireForwardPrimitiveDescriptor(
          attributes, algo, src0_md, src1_md, dst_md);
    }
  }
  std::shared_ptr<dnnl::memory> AcquireSecondSrcMemory(
      const DenseTensor* input) {
    const T* input_data = input->data<T>();
    return this->AcquireMemoryFromPrimitive(this->fwd_pd_->src1_desc(),
                                            to_void_cast<T>(input_data));
  }

 private:
  static inline dnnl::primitive_attr CreateAttributes(
      dnnl::algorithm op,
      float scale_x,
      float scale_y,
      float scale_out,
      dnnl::post_ops post_ops = dnnl::post_ops{}) {
    // Scales set in attributes for inputs contibute to the output equation
    // in the following way (assuming no broadcasting takes place):
    // output_i = scale_0 * x_i <+ or *> scale_1 * y_i;
    // Hence we have to create scales that will:
    // 1. Dequantize both values, by multiplying with (1.0 / scale_x_or_y)
    // 2. Quantize their result to output scale range, by multiplying with
    // (scale_z)
    // If we combine these two, we end up with following equation
    // output = scale_out * (1/scale_x * x <* or +> 1/scale_y * y)
    // Hence, to mimic such behaviour using provided interface,
    // For add operation the equation is equal to:
    // output = (scale_out / scale_x) * x + (scale_out / scale_y) * y
    //                <scale_0>                  <scale_1>
    // For mul operation on the other hand
    // output = (scale_out / scale_x) * x * (1.0 / scale_y) * y
    //                <scale_0>                 <scale_1>
    float scale_0 = scale_out / scale_x;
    float scale_1 =
        op == dnnl::algorithm::binary_add ? scale_out / scale_y : 1.0 / scale_y;
    dnnl::primitive_attr attributes;
    attributes.set_scales(
        /* input_x_id = */ DNNL_ARG_SRC_0, /* mask = */ 0, {scale_0});
    attributes.set_scales(
        /* input_y_id = */ DNNL_ARG_SRC_1, /* mask = */ 0, {scale_1});
    if (post_ops.len() > 0) attributes.set_post_ops(post_ops);
    return attributes;
  }
};

template <typename T>
class BroadcastDataOneDNNHandler
    : public OneDNNHandlerNoCachingT<T, dnnl::binary> {
 public:
  BroadcastDataOneDNNHandler(const dnnl::algorithm algo,
                             const dnnl::engine engine,
                             Place cpu_place,
                             const DenseTensor* x,
                             DenseTensor* out,
                             float scale_x,
                             float scale_y,
                             const std::vector<int64_t>& extended_x_dims)
      : OneDNNHandlerNoCachingT<T, dnnl::binary>(engine, cpu_place) {
    const auto src0_tz = vectorize(out->dims());
    const auto src0_md = dnnl::memory::desc(
908
        src0_tz, OneDNNGetDataType<T>(), GetPlainOneDNNFormat(src0_tz.size()));
909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942
    const auto src1_md = x->mem_desc().reshape(extended_x_dims);

    dnnl::primitive_attr attributes;
    attributes.set_scales(DNNL_ARG_SRC_0, 0, {scale_x});
    attributes.set_scales(DNNL_ARG_SRC_1, 0, {scale_y});

    this->AcquireForwardPrimitiveDescriptor(
        attributes, algo, src0_md, src1_md, src0_md);
  }

  template <typename T_out = T>
  std::shared_ptr<dnnl::memory> AcquireZeroedDstMemory(DenseTensor* out) {
    T_out* ptr = out->mutable_data<T_out>(this->place_,
                                          this->fwd_pd_->dst_desc().get_size());
    memset(ptr, 0, this->fwd_pd_->dst_desc().get_size());
    return this->AcquireMemoryFromPrimitive(this->fwd_pd_->dst_desc(), ptr);
  }
};

template <typename T>
class ReductionOneDNNHandler
    : public OneDNNHandlerNoCachingT<T, dnnl::reduction> {
 public:
  ReductionOneDNNHandler(const dnnl::algorithm algo,
                         const float p,
                         const float eps,
                         const dnnl::engine engine,
                         Place cpu_place,
                         const DenseTensor* x,
                         const DenseTensor* out,
                         std::vector<int64_t> out_tz,
                         const dnnl::primitive_attr& attrs = NULL)
      : OneDNNHandlerNoCachingT<T, dnnl::reduction>(engine, cpu_place) {
    const auto out_md = memory::desc(
943
        out_tz, OneDNNGetDataType<T>(), dnnl::memory::format_tag::any);
944 945 946 947 948 949 950 951 952

    if (attrs)
      this->AcquireForwardPrimitiveDescriptor(
          attrs, algo, x->mem_desc(), out_md, p, eps);
    else
      this->AcquireForwardPrimitiveDescriptor(
          algo, x->mem_desc(), out_md, p, eps);
  }
};
953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146

template <typename T>
class ClipOneDNNHandler
    : public OneDNNHandlerNoCachingT<T,
                                     dnnl::eltwise_forward,
                                     dnnl::eltwise_backward> {
 public:
  ClipOneDNNHandler(const Scalar& min,
                    const Scalar& max,
                    const dnnl::engine engine,
                    Place cpu_place,
                    const DenseTensor* x)
      : OneDNNHandlerNoCachingT<T,
                                dnnl::eltwise_forward,
                                dnnl::eltwise_backward>(engine, cpu_place) {
    float alpha = min.to<float>();
    float beta = max.to<float>();

    this->AcquireForwardPrimitiveDescriptor(dnnl::prop_kind::forward_training,
                                            dnnl::algorithm::eltwise_clip_v2,
                                            x->mem_desc(),
                                            alpha,
                                            beta);
  }

  ClipOneDNNHandler(const Scalar& min,
                    const Scalar& max,
                    const dnnl::engine engine,
                    Place cpu_place,
                    const DenseTensor* x,
                    const DenseTensor* dout)
      : OneDNNHandlerNoCachingT<T,
                                dnnl::eltwise_forward,
                                dnnl::eltwise_backward>(engine, cpu_place) {
    float alpha = min.to<float>();
    float beta = max.to<float>();

    this->AcquireForwardPrimitiveDescriptor(dnnl::prop_kind::forward_training,
                                            dnnl::algorithm::eltwise_clip_v2,
                                            x->mem_desc(),
                                            alpha,
                                            beta);
    this->AcquireBackwardPrimitiveDescriptor(dnnl::algorithm::eltwise_clip_v2,
                                             dout->mem_desc(),
                                             x->mem_desc(),
                                             alpha,
                                             beta);
  }
  std::shared_ptr<dnnl::memory> AcquireBackwardSrcMemory(
      const DenseTensor* input) {
    const T* input_data = input->data<T>();
    return this->AcquireMemoryFromPrimitive(this->bwd_pd_->src_desc(),
                                            to_void_cast<T>(input_data));
  }
};

template <typename T>
class PoolingOneDNNHandler
    : public OneDNNHandlerNoCachingT<T,
                                     dnnl::pooling_forward,
                                     dnnl::pooling_backward> {
 public:
  PoolingOneDNNHandler(const std::string& pooling_type,
                       const IntArray& kernel_size,
                       const std::vector<int>& strides,
                       const std::vector<int>& paddings,
                       bool global_pooling,
                       const std::string& padding_algorithm,
                       bool ceil_mode,
                       bool exclusive,
                       bool adaptive,
                       const dnnl::engine engine,
                       Place cpu_place,
                       const DenseTensor* input,
                       DenseTensor* output)
      : OneDNNHandlerNoCachingT<T,
                                dnnl::pooling_forward,
                                dnnl::pooling_backward>(engine, cpu_place) {
    std::vector<int64_t> copied_kernel_size(kernel_size.GetData().begin(),
                                            kernel_size.GetData().end());
    std::vector<int64_t> copied_strides(strides.begin(), strides.end());
    std::vector<int64_t> copied_paddings(paddings.begin(), paddings.end());
    // Only 2D pooling is supported now
    PADDLE_ENFORCE_EQ(
        copied_kernel_size.size(),
        2,
        errors::InvalidArgument("The copied_kernel_size must be 2D, i.e. 2D "
                                "pooling, but received %dD.",
                                copied_kernel_size.size()));
    PADDLE_ENFORCE_EQ(
        pooling_type == "max" || pooling_type == "avg",
        true,
        errors::InvalidArgument(
            "The pooling_type must be 'max' or 'avg', but received %s.",
            pooling_type));
    PADDLE_ENFORCE_EQ(
        input->dims().size(),
        4,
        errors::InvalidArgument(
            "Input dim must be with 4, i.e. NCHW, but received %d.",
            input->dims().size()));

    const auto input_dims = input->dims();
    DDim data_dims = slice_ddim(input_dims, 2, input_dims.size());

    if (global_pooling) {
      UpdateKernelSize<int64_t>(&copied_kernel_size, data_dims);
    }

    UpdatePadding<int64_t>(&copied_paddings,
                           global_pooling,
                           0,
                           padding_algorithm,
                           data_dims,
                           copied_strides,
                           copied_kernel_size);

    auto onednn_paddings = ToOneDNNPadding(copied_paddings);

    const auto dt = ToOneDNNDataType(input->dtype());
    const auto src_tz = vectorize(input->dims());
    const auto dst_tz = vectorize(output->dims());
    const auto dst_md = OneDNNMemDesc(dst_tz, dt, OneDNNMemoryFormat::any);

    if (ceil_mode) {
      CorrectOutputSize(src_tz,
                        dst_tz,
                        copied_kernel_size,
                        copied_paddings,
                        copied_strides,
                        onednn_paddings[1]);
    }

    if (adaptive) {
      ComputeAdaptivePoolParameters(
          src_tz, &copied_kernel_size, &copied_strides);
    }
    this->AcquireForwardPrimitiveDescriptor(
        dnnl::prop_kind::forward_training,
        pooling_type == "max"
            ? dnnl::algorithm::pooling_max
            : (exclusive ? dnnl::algorithm::pooling_avg_exclude_padding
                         : dnnl::algorithm::pooling_avg_include_padding),
        input->mem_desc(),
        dst_md,
        copied_strides,
        copied_kernel_size,
        onednn_paddings[0],
        onednn_paddings[1]);
  }

  PoolingOneDNNHandler(const std::string& pooling_type,
                       const IntArray& kernel_size,
                       const std::vector<int>& strides,
                       const std::vector<int>& paddings,
                       bool global_pooling,
                       const std::string& padding_algorithm,
                       bool ceil_mode,
                       bool exclusive,
                       bool adaptive,
                       const dnnl::engine engine,
                       Place cpu_place,
                       const DenseTensor* in_x,
                       const DenseTensor* out_grad,
                       DenseTensor* in_x_grad)

      : OneDNNHandlerNoCachingT<T,
                                dnnl::pooling_forward,
                                dnnl::pooling_backward>(engine, cpu_place) {
    std::vector<int64_t> copied_kernel_size(kernel_size.GetData().begin(),
                                            kernel_size.GetData().end());
    std::vector<int64_t> copied_strides(strides.begin(), strides.end());
    std::vector<int64_t> copied_paddings(paddings.begin(), paddings.end());
    auto in_x_dims = in_x->dims();
    DDim data_dims = slice_ddim(in_x_dims, 2, in_x_dims.size());
    if (global_pooling) {
      UpdateKernelSize<int64_t>(&copied_kernel_size, data_dims);
    }

    UpdatePadding<int64_t>(&copied_paddings,
                           global_pooling,
                           0,
                           padding_algorithm,
                           data_dims,
                           copied_strides,
                           copied_kernel_size);

    auto src_tz = vectorize<int64_t>(in_x->dims());
    auto diff_src_tz = vectorize<int64_t>(in_x_grad->dims());
    auto diff_dst_tz = vectorize<int64_t>(out_grad->dims());

    const auto dt = ToOneDNNDataType(in_x->dtype());
    auto dst_md = dnnl::memory::desc(diff_dst_tz, dt, OneDNNMemoryFormat::any);
    auto diff_src_md = dnnl::memory::desc(
1147
        diff_src_tz, OneDNNGetDataType<T>(), OneDNNMemoryFormat::any);
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260

    auto onednn_paddings = ToOneDNNPadding(copied_paddings);

    if (ceil_mode) {
      CorrectOutputSize(src_tz,
                        diff_dst_tz,
                        copied_kernel_size,
                        copied_paddings,
                        copied_strides,
                        onednn_paddings[1]);
    }

    if (adaptive) {
      ComputeAdaptivePoolParameters(
          diff_src_tz, &copied_kernel_size, &copied_strides);
    }

    this->AcquireForwardPrimitiveDescriptor(
        dnnl::prop_kind::forward_training,
        pooling_type == "max"
            ? dnnl::algorithm::pooling_max
            : (exclusive ? dnnl::algorithm::pooling_avg_exclude_padding
                         : dnnl::algorithm::pooling_avg_include_padding),
        in_x->mem_desc(),
        dst_md,
        copied_strides,
        copied_kernel_size,
        onednn_paddings[0],
        onednn_paddings[1]);

    this->AcquireBackwardPrimitiveDescriptor(
        pooling_type == "max"
            ? dnnl::algorithm::pooling_max
            : (exclusive ? dnnl::algorithm::pooling_avg_exclude_padding
                         : dnnl::algorithm::pooling_avg_include_padding),
        diff_src_md,
        out_grad->mem_desc(),
        copied_strides,
        copied_kernel_size,
        onednn_paddings[0],
        onednn_paddings[1]);
  }

  std::shared_ptr<dnnl::memory> AcquireWorkspaceMemory(
      const OneDNNContext& dev_ctx, const std::string& unique_name) {
    dnnl::memory::desc workspace_md = this->fwd_pd_->workspace_desc();
    // Pooling Workspace has to be passed to Grad op that
    // may be executed by diffrent thread, hence
    // for that one we use key that does not contain TID
    std::string workspace_key = CreateKey(dev_ctx,
                                          workspace_md.dims(),
                                          workspace_md.data_type(),
                                          unique_name,
                                          "@wrk");
    auto mem_p =
        std::static_pointer_cast<dnnl::memory>(dev_ctx.GetBlob(workspace_key));
    if (mem_p == nullptr) {
      static std::mutex acquire_barrier;
      std::lock_guard<std::mutex> block_threads_until_finish_this_job(
          acquire_barrier);
      mem_p = std::static_pointer_cast<dnnl::memory>(
          dev_ctx.GetBlob(workspace_key));
      if (mem_p == nullptr) {
        mem_p = std::make_shared<dnnl::memory>(workspace_md, this->engine_);
        dev_ctx.SetBlob(workspace_key, mem_p);
      }
    }
    return mem_p;
  }

  static void ComputeAdaptivePoolParameters(const std::vector<int64_t>& src_tz,
                                            std::vector<int64_t>* kernel_size,
                                            std::vector<int64_t>* strides) {
    // https://github.com/oneapi-src/oneDNN/tree/bkocot/adaptive-pooling/rfcs/20200818-adaptive-pooling
    auto IH = static_cast<double>(src_tz[src_tz.size() - 2]);
    auto IW = static_cast<double>(src_tz[src_tz.size() - 1]);
    auto OH = static_cast<double>(kernel_size->at(0));
    auto OW = static_cast<double>(kernel_size->at(1));

    strides->at(0) =
        static_cast<int64_t>(floor((IH * 2.0) / OH) - floor(IH / OH));
    strides->at(1) =
        static_cast<int64_t>(floor((IW * 2.0) / OW) - floor(IW / OW));
    kernel_size->at(0) =
        static_cast<int64_t>(ceil((IH * 2.0) / OH) - floor(IH / OH));
    kernel_size->at(1) =
        static_cast<int64_t>(ceil((IW * 2.0) / OW) - floor(IW / OW));
  }

 private:
  static inline int ComputeCeiledOutput(int input_size,
                                        int kernel_size,
                                        int padding,
                                        int stride) {
    return (input_size - kernel_size + 2 * padding) / stride + 1;
  }

  static inline void CorrectOutputSize(
      const std::vector<int64_t>& src_tz,
      const std::vector<int64_t>& dst_tz,
      const std::vector<int64_t>& kernel_size,
      const std::vector<int64_t>& paddings,
      const std::vector<int64_t>& strides,
      std::vector<int64_t>& right_bot_padding) {  // NOLINT
    for (size_t i = 0; i < right_bot_padding.size(); i++) {
      int desired_size = ComputeCeiledOutput(
          src_tz[i + 2], kernel_size[i], paddings[i], strides[i]);
      if (desired_size != dst_tz[i + 2]) {
        right_bot_padding[i] += strides[i] - 1;
      }
    }
  }
};
1261 1262
}  // namespace funcs
}  // namespace phi