Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
2337e609
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2305
Star
20932
Fork
5423
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
2337e609
编写于
11月 07, 2022
作者:
S
Sławomir Siwek
提交者:
GitHub
11月 07, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[PHI] Migrate batch_norm (#47652)
* init changes * bnorm * method signature * change order * bnorm * removed unused args
上级
9db507f1
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
237 addition
and
119 deletion
+237
-119
paddle/fluid/framework/ir/mkldnn/mkldnn_conv_bn_fuse_pass_tester.cc
...id/framework/ir/mkldnn/mkldnn_conv_bn_fuse_pass_tester.cc
+1
-1
paddle/fluid/operators/mkldnn/batch_norm_mkldnn_op.cc
paddle/fluid/operators/mkldnn/batch_norm_mkldnn_op.cc
+0
-118
paddle/phi/backends/onednn/onednn_reuse.h
paddle/phi/backends/onednn/onednn_reuse.h
+90
-0
paddle/phi/kernels/onednn/batch_norm_kernel.cc
paddle/phi/kernels/onednn/batch_norm_kernel.cc
+146
-0
未找到文件。
paddle/fluid/framework/ir/mkldnn/mkldnn_conv_bn_fuse_pass_tester.cc
浏览文件 @
2337e609
...
...
@@ -32,7 +32,7 @@ PD_DECLARE_KERNEL(add, CPU, ALL_LAYOUT);
PD_DECLARE_KERNEL
(
gelu
,
CPU
,
ALL_LAYOUT
);
USE_OP_ITSELF
(
batch_norm
);
USE_OP_DEVICE_KERNEL
(
batch_norm
,
MKL
DNN
);
PD_DECLARE_KERNEL
(
batch_norm
,
OneDNN
,
ONE
DNN
);
USE_OP_ITSELF
(
conv2d_transpose
);
USE_OP_DEVICE_KERNEL
(
conv2d_transpose
,
MKLDNN
);
USE_OP_ITSELF
(
elementwise_add
);
...
...
paddle/fluid/operators/mkldnn/batch_norm_mkldnn_op.cc
浏览文件 @
2337e609
...
...
@@ -35,38 +35,6 @@ class BatchNormMKLDNNHandler : public platform::MKLDNNHandlerNoCachingT<
dnnl
::
batch_normalization_forward
,
dnnl
::
batch_normalization_backward
>
{
public:
BatchNormMKLDNNHandler
(
const
paddle
::
framework
::
ExecutionContext
&
ctx
,
const
dnnl
::
engine
mkldnn_engine
,
const
Tensor
*
x
,
const
bool
global_stats
,
const
bool
test_mode
)
:
platform
::
MKLDNNHandlerNoCachingT
<
T
,
dnnl
::
batch_normalization_forward
,
dnnl
::
batch_normalization_backward
>
(
mkldnn_engine
,
ctx
.
GetPlace
())
{
const
float
epsilon
=
ctx
.
Attr
<
float
>
(
"epsilon"
);
const
bool
fuse_with_relu
=
ctx
.
HasAttr
(
"fuse_with_relu"
)
?
ctx
.
Attr
<
bool
>
(
"fuse_with_relu"
)
:
false
;
std
::
vector
<
std
::
string
>
DataLayout_error_msg
=
{
"kNHWC"
,
"kNCHW"
,
"kAnyLayout"
,
"kMKLDNN"
};
// Flags are added by bitwise OR operation
auto
flags
=
dnnl
::
normalization_flags
::
use_scale_shift
;
// 001
if
(
global_stats
)
flags
|=
dnnl
::
normalization_flags
::
use_global_stats
;
// 010
if
(
fuse_with_relu
&&
test_mode
)
flags
|=
dnnl
::
normalization_flags
::
fuse_norm_relu
;
// 100
this
->
AcquireForwardPrimitiveDescriptor
(
global_stats
==
true
?
dnnl
::
prop_kind
::
forward_scoring
:
dnnl
::
prop_kind
::
forward_training
,
x
->
mem_desc
(),
epsilon
,
flags
);
}
BatchNormMKLDNNHandler
(
const
paddle
::
framework
::
ExecutionContext
&
ctx
,
const
dnnl
::
engine
mkldnn_engine
,
const
Tensor
*
in_x
,
...
...
@@ -157,88 +125,6 @@ class BatchNormMKLDNNHandler : public platform::MKLDNNHandlerNoCachingT<
}
};
template
<
typename
T
>
class
BatchNormMKLDNNOpKernel
:
public
paddle
::
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
&
dev_ctx
=
ctx
.
template
device_context
<
MKLDNNDeviceContext
>();
const
auto
&
mkldnn_engine
=
dev_ctx
.
GetEngine
();
const
bool
is_test
=
ctx
.
Attr
<
bool
>
(
"is_test"
);
const
bool
use_global_stats
=
ctx
.
Attr
<
bool
>
(
"use_global_stats"
);
const
bool
trainable_stats
=
ctx
.
Attr
<
bool
>
(
"trainable_statistics"
);
const
bool
test_mode
=
is_test
&&
(
!
trainable_stats
);
const
bool
global_stats
=
test_mode
||
use_global_stats
;
const
auto
*
x
=
ctx
.
Input
<
phi
::
DenseTensor
>
(
"X"
);
const
auto
*
scale
=
ctx
.
Input
<
phi
::
DenseTensor
>
(
"Scale"
);
const
auto
*
shift
=
ctx
.
Input
<
phi
::
DenseTensor
>
(
"Bias"
);
auto
*
y
=
ctx
.
Output
<
phi
::
DenseTensor
>
(
"Y"
);
auto
*
batch_mean
=
ctx
.
Output
<
phi
::
DenseTensor
>
(
"SavedMean"
);
auto
*
batch_variance
=
ctx
.
Output
<
phi
::
DenseTensor
>
(
"SavedVariance"
);
BatchNormMKLDNNHandler
<
T
>
handler
(
ctx
,
mkldnn_engine
,
x
,
global_stats
,
test_mode
);
auto
src_memory
=
handler
.
AcquireSrcMemory
(
x
);
auto
scaleshift_memory
=
handler
.
AcquireScaleShiftMemory
(
scale
,
shift
);
auto
dst_memory
=
handler
.
AcquireDstMemory
(
y
);
auto
batch_norm_p
=
handler
.
AcquireForwardPrimitive
();
std
::
shared_ptr
<
memory
>
mean_memory
;
std
::
shared_ptr
<
memory
>
variance_memory
;
if
(
global_stats
)
{
// mean and variance are taken from input Tensor
const
auto
*
mean
=
ctx
.
Input
<
phi
::
DenseTensor
>
(
"Mean"
);
const
auto
*
variance
=
ctx
.
Input
<
phi
::
DenseTensor
>
(
"Variance"
);
mean_memory
=
handler
.
AcquireMeanMemory
(
mean
);
variance_memory
=
handler
.
AcquireVarianceMemory
(
variance
);
}
else
{
// mean and variance are calculated and saved in output Tensor
mean_memory
=
handler
.
AcquireMeanMemory
(
batch_mean
);
variance_memory
=
handler
.
AcquireVarianceMemory
(
batch_variance
);
}
y
->
set_mem_desc
(
dst_memory
->
get_desc
());
auto
&
astream
=
platform
::
MKLDNNDeviceContext
::
tls
().
get_stream
();
batch_norm_p
->
execute
(
astream
,
{{
DNNL_ARG_SRC
,
*
src_memory
},
{
DNNL_ARG_SCALE_SHIFT
,
*
scaleshift_memory
},
{
DNNL_ARG_MEAN
,
*
mean_memory
},
{
DNNL_ARG_VARIANCE
,
*
variance_memory
},
{
DNNL_ARG_DST
,
*
dst_memory
}});
astream
.
wait
();
if
(
!
global_stats
)
{
auto
*
mean_out
=
ctx
.
Output
<
phi
::
DenseTensor
>
(
"MeanOut"
);
auto
*
variance_out
=
ctx
.
Output
<
phi
::
DenseTensor
>
(
"VarianceOut"
);
const
float
momentum
=
ctx
.
Attr
<
float
>
(
"momentum"
);
const
unsigned
int
C
=
phi
::
vectorize
(
scale
->
dims
())[
0
];
// mkldnn only compute stats for current batch
// so we need compute momentum stats via Eigen lib
EigenVectorArrayMap
<
T
>
batch_mean_e
(
batch_mean
->
mutable_data
<
T
>
(
ctx
.
GetPlace
()),
C
);
EigenVectorArrayMap
<
T
>
batch_variance_e
(
batch_variance
->
mutable_data
<
T
>
(
ctx
.
GetPlace
()),
C
);
EigenVectorArrayMap
<
T
>
running_mean_e
(
mean_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
()),
C
);
EigenVectorArrayMap
<
T
>
running_variance_e
(
variance_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
()),
C
);
running_mean_e
=
running_mean_e
*
momentum
+
batch_mean_e
*
(
1.
-
momentum
);
running_variance_e
=
running_variance_e
*
momentum
+
batch_variance_e
*
(
1.
-
momentum
);
}
}
};
template
<
typename
T
>
class
BatchNormMKLDNNGradOpKernel
:
public
paddle
::
framework
::
OpKernel
<
T
>
{
public:
...
...
@@ -308,10 +194,6 @@ class BatchNormMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_KERNEL
(
batch_norm
,
MKLDNN
,
::
paddle
::
platform
::
CPUPlace
,
ops
::
BatchNormMKLDNNOpKernel
<
float
>
);
REGISTER_OP_KERNEL
(
batch_norm_grad
,
MKLDNN
,
::
paddle
::
platform
::
CPUPlace
,
...
...
paddle/phi/backends/onednn/onednn_reuse.h
浏览文件 @
2337e609
...
...
@@ -1155,6 +1155,96 @@ class ClipOneDNNHandler
}
};
template
<
typename
T
>
class
BatchNormOneDNNHandler
:
public
OneDNNHandlerNoCachingT
<
T
,
dnnl
::
batch_normalization_forward
,
dnnl
::
batch_normalization_backward
>
{
public:
BatchNormOneDNNHandler
(
const
dnnl
::
engine
engine
,
Place
cpu_place
,
const
DenseTensor
*
x
,
const
float
epsilon
,
const
bool
fuse_with_relu
,
const
bool
global_stats
,
const
bool
test_mode
)
:
OneDNNHandlerNoCachingT
<
T
,
dnnl
::
batch_normalization_forward
,
dnnl
::
batch_normalization_backward
>
(
engine
,
cpu_place
)
{
// Flags are added by bitwise OR operation
auto
flags
=
dnnl
::
normalization_flags
::
use_scale_shift
;
// 001
if
(
global_stats
)
flags
|=
dnnl
::
normalization_flags
::
use_global_stats
;
// 010
if
(
fuse_with_relu
&&
test_mode
)
flags
|=
dnnl
::
normalization_flags
::
fuse_norm_relu
;
// 100
this
->
AcquireForwardPrimitiveDescriptor
(
global_stats
?
dnnl
::
prop_kind
::
forward_scoring
:
dnnl
::
prop_kind
::
forward_training
,
x
->
mem_desc
(),
epsilon
,
flags
);
}
std
::
shared_ptr
<
dnnl
::
memory
>
AcquireScaleShiftMemory
(
const
DenseTensor
*
scale
,
const
DenseTensor
*
shift
)
{
auto
scale_tz
=
phi
::
vectorize
(
scale
->
dims
());
const
unsigned
int
C
=
scale_tz
[
0
];
PADDLE_ENFORCE_EQ
(
scale_tz
.
size
(),
1
,
phi
::
errors
::
InvalidArgument
(
"Dims of scale tensor must be 1, but received scale's size is %d"
,
scale_tz
.
size
()));
auto
scaleshift_memory
=
this
->
AcquireMemoryFromPrimitive
(
this
->
fwd_pd_
->
weights_desc
());
// MKLDNN requires a single piece of memory for scale and shift/bias data
auto
mem_data_handle
=
reinterpret_cast
<
T
*>
(
scaleshift_memory
->
get_data_handle
());
std
::
copy
(
scale
->
data
<
T
>
(),
scale
->
data
<
T
>
()
+
C
,
mem_data_handle
);
std
::
copy
(
shift
->
data
<
T
>
(),
shift
->
data
<
T
>
()
+
C
,
mem_data_handle
+
C
);
return
scaleshift_memory
;
}
std
::
shared_ptr
<
dnnl
::
memory
>
AcquireDiffScaleShiftMemory
(
T
*
diff_scaleshift_data
)
{
return
this
->
AcquireMemoryFromPrimitive
(
this
->
bwd_pd_
->
diff_weights_desc
(),
diff_scaleshift_data
);
}
std
::
shared_ptr
<
dnnl
::
memory
>
AcquireMeanMemory
(
const
phi
::
DenseTensor
*
mean
)
{
const
T
*
mean_data
=
mean
->
data
<
T
>
();
return
this
->
AcquireMemoryFromPrimitive
(
this
->
fwd_pd_
->
mean_desc
(),
to_void_cast
<
T
>
(
mean_data
));
}
std
::
shared_ptr
<
dnnl
::
memory
>
AcquireMeanMemory
(
phi
::
DenseTensor
*
mean
)
{
T
*
mean_data
=
mean
->
mutable_data
<
T
>
(
this
->
place_
,
this
->
fwd_pd_
->
mean_desc
().
get_size
());
return
this
->
AcquireMemoryFromPrimitive
(
this
->
fwd_pd_
->
mean_desc
(),
mean_data
);
}
std
::
shared_ptr
<
dnnl
::
memory
>
AcquireVarianceMemory
(
const
phi
::
DenseTensor
*
variance
)
{
const
T
*
variance_data
=
variance
->
data
<
T
>
();
return
this
->
AcquireMemoryFromPrimitive
(
this
->
fwd_pd_
->
variance_desc
(),
to_void_cast
<
T
>
(
variance_data
));
}
std
::
shared_ptr
<
dnnl
::
memory
>
AcquireVarianceMemory
(
phi
::
DenseTensor
*
variance
)
{
T
*
variance_data
=
variance
->
mutable_data
<
T
>
(
this
->
place_
,
this
->
fwd_pd_
->
variance_desc
().
get_size
());
return
this
->
AcquireMemoryFromPrimitive
(
this
->
fwd_pd_
->
variance_desc
(),
variance_data
);
}
};
template
<
typename
T
>
class
PoolingOneDNNHandler
:
public
OneDNNHandlerNoCachingT
<
T
,
...
...
paddle/phi/kernels/onednn/batch_norm_kernel.cc
0 → 100644
浏览文件 @
2337e609
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/batch_norm_kernel.h"
#include "paddle/phi/backends/onednn/onednn_reuse.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/eigen/common.h"
namespace
phi
{
template
<
typename
T
>
using
EigenVectorArrayMap
=
Eigen
::
Map
<
Eigen
::
Array
<
T
,
Eigen
::
Dynamic
,
1
>>
;
template
<
typename
T
,
typename
Context
>
void
BatchNormKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
DenseTensor
&
mean
,
const
DenseTensor
&
variance
,
const
DenseTensor
&
scale
,
const
DenseTensor
&
bias
,
bool
is_test
,
float
momentum
,
float
epsilon
,
const
std
::
string
&
data_layout
,
bool
use_global_stats
,
bool
trainable_statistics
,
DenseTensor
*
y
,
DenseTensor
*
mean_out
,
DenseTensor
*
variance_out
,
DenseTensor
*
saved_mean
,
DenseTensor
*
saved_variance
,
DenseTensor
*
reserve_space
)
{
const
bool
test_mode
=
is_test
&&
(
!
trainable_statistics
);
const
bool
global_stats
=
test_mode
||
use_global_stats
;
const
bool
fuse_with_relu
=
dev_ctx
.
HasDnnAttr
(
"fuse_with_relu"
)
?
PADDLE_GET_CONST
(
bool
,
dev_ctx
.
GetDnnAttr
(
"fuse_with_relu"
))
:
false
;
funcs
::
BatchNormOneDNNHandler
<
T
>
handler
(
dev_ctx
.
GetEngine
(),
dev_ctx
.
GetPlace
(),
&
x
,
epsilon
,
fuse_with_relu
,
global_stats
,
test_mode
);
auto
src_memory
=
handler
.
AcquireSrcMemory
(
&
x
);
auto
scaleshift_memory
=
handler
.
AcquireScaleShiftMemory
(
&
scale
,
&
bias
);
auto
dst_memory
=
handler
.
AcquireDstMemory
(
y
);
auto
batch_norm_p
=
handler
.
AcquireForwardPrimitive
();
std
::
shared_ptr
<
dnnl
::
memory
>
mean_memory
;
std
::
shared_ptr
<
dnnl
::
memory
>
variance_memory
;
// mean and variance can be taken either from input or output Tensor
if
(
global_stats
)
{
mean_memory
=
handler
.
AcquireMeanMemory
(
&
mean
);
variance_memory
=
handler
.
AcquireVarianceMemory
(
&
variance
);
}
else
{
mean_memory
=
handler
.
AcquireMeanMemory
(
saved_mean
);
variance_memory
=
handler
.
AcquireVarianceMemory
(
saved_variance
);
}
y
->
set_mem_desc
(
dst_memory
->
get_desc
());
auto
&
astream
=
OneDNNContext
::
tls
().
get_stream
();
batch_norm_p
->
execute
(
astream
,
{{
DNNL_ARG_SRC
,
*
src_memory
},
{
DNNL_ARG_SCALE_SHIFT
,
*
scaleshift_memory
},
{
DNNL_ARG_MEAN
,
*
mean_memory
},
{
DNNL_ARG_VARIANCE
,
*
variance_memory
},
{
DNNL_ARG_DST
,
*
dst_memory
}});
astream
.
wait
();
if
(
!
global_stats
)
{
const
unsigned
int
C
=
phi
::
vectorize
(
scale
.
dims
())[
0
];
// mkldnn only compute stats for current batch
// so we need compute momentum stats via Eigen lib
EigenVectorArrayMap
<
T
>
batch_mean_e
(
dev_ctx
.
template
Alloc
<
T
>(
saved_mean
),
C
);
EigenVectorArrayMap
<
T
>
batch_variance_e
(
dev_ctx
.
template
Alloc
<
T
>(
saved_variance
),
C
);
EigenVectorArrayMap
<
T
>
running_mean_e
(
dev_ctx
.
template
Alloc
<
T
>(
mean_out
),
C
);
EigenVectorArrayMap
<
T
>
running_variance_e
(
dev_ctx
.
template
Alloc
<
T
>(
variance_out
),
C
);
running_mean_e
=
running_mean_e
*
momentum
+
batch_mean_e
*
(
1.
-
momentum
);
running_variance_e
=
running_variance_e
*
momentum
+
batch_variance_e
*
(
1.
-
momentum
);
}
}
template
<
typename
T
,
typename
Context
>
void
BatchNormInferKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
DenseTensor
&
mean
,
const
DenseTensor
&
variance
,
const
DenseTensor
&
scale
,
const
DenseTensor
&
bias
,
float
momentum
,
float
epsilon
,
const
std
::
string
&
data_layout
,
DenseTensor
*
y
,
DenseTensor
*
mean_out
,
DenseTensor
*
variance_out
)
{
BatchNormKernel
<
T
,
Context
>
(
dev_ctx
,
x
,
mean
,
variance
,
scale
,
bias
,
/*is_test=*/
true
,
momentum
,
epsilon
,
data_layout
,
/*use_global_stats=*/
false
,
/*trainable_statistics=*/
false
,
y
,
mean_out
,
variance_out
,
/*saved_mean*/
nullptr
,
/*saved_variance*/
nullptr
,
/*reserve_space=*/
nullptr
);
}
}
// namespace phi
PD_REGISTER_KERNEL
(
batch_norm
,
OneDNN
,
ONEDNN
,
phi
::
BatchNormKernel
,
float
)
{}
PD_REGISTER_KERNEL
(
batch_norm_infer
,
OneDNN
,
ONEDNN
,
phi
::
BatchNormInferKernel
,
float
)
{}
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录