test_sgd_op.py 6.9 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Q
Qiao Longfei 已提交
17
import unittest
Q
qijun 已提交
18
import numpy as np
19
import paddle.fluid as fluid
20 21
import paddle.fluid.core as core
from paddle.fluid.op import Operator
22
from op_test import OpTest
Q
Qiao Longfei 已提交
23 24


25
class TestSGDOp(OpTest):
Q
Qiao Longfei 已提交
26
    def setUp(self):
Q
qijun 已提交
27
        self.op_type = "sgd"
T
tensor-tang 已提交
28 29 30
        self.conf()
        w = np.random.random((self.h, self.w)).astype("float32")
        g = np.random.random((self.h, self.w)).astype("float32")
31
        lr = np.array([0.1]).astype("float32")
D
dangqingqing 已提交
32

33 34
        self.inputs = {'Param': w, 'Grad': g, 'LearningRate': lr}
        self.outputs = {'ParamOut': w - lr * g}
Q
Qiao Longfei 已提交
35

T
tensor-tang 已提交
36 37 38 39
    def conf(self):
        self.h = 102
        self.w = 105

Q
qijun 已提交
40 41 42
    def test_check_output(self):
        self.check_output()

Q
Qiao Longfei 已提交
43

T
tensor-tang 已提交
44 45 46 47 48 49
class TestSGDOpCase8X(TestSGDOp):
    def conf(self):
        self.h = 10
        self.w = 64


Q
qijun 已提交
50
class TestSparseSGDOp(unittest.TestCase):
Q
qijun 已提交
51
    def check_with_place(self, place):
Q
qijun 已提交
52 53 54 55 56
        scope = core.Scope()

        # create and initialize Grad Variable   
        height = 10
        rows = [0, 4, 7]
T
tensor-tang 已提交
57
        self.conf()
Q
qiaolongfei 已提交
58 59 60 61

        grad_selected_rows = scope.var('Grad').get_selected_rows()
        grad_selected_rows.set_height(height)
        grad_selected_rows.set_rows(rows)
T
tensor-tang 已提交
62
        np_array = np.ones((len(rows), self.row_numel)).astype("float32")
Q
qiaolongfei 已提交
63 64 65 66 67 68 69 70
        np_array[0, 0] = 2.0
        np_array[2, 8] = 4.0

        grad_tensor = grad_selected_rows.get_tensor()
        grad_tensor.set(np_array, place)

        # create and initialize Param Variable
        param = scope.var('Param').get_tensor()
T
tensor-tang 已提交
71
        param_array = np.full((height, self.row_numel), 5.0).astype("float32")
Q
qiaolongfei 已提交
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
        param.set(param_array, place)

        # create and initialize LeraningRate Variable
        lr = scope.var('LearningRate').get_tensor()
        lr_array = np.full((1), 2.0).astype("float32")
        lr.set(lr_array, place)

        # create and run sgd operator
        sgd_op = Operator(
            "sgd",
            Param='Param',
            Grad='Grad',
            ParamOut='Param',
            LearningRate='LearningRate')
        sgd_op.run(scope, place)

        # get and compare result
        result_array = np.array(param)

        # rows[0] = 0, 5.0 - 2.0 * 2.0
        self.assertAlmostEqual(1.0, result_array[rows[0], 0])
        # rows[0] = 0, 5.0 - 2.0 * 1.0
        self.assertAlmostEqual(3.0, result_array[rows[0], 2])
        # 5.0 - 2.0 * 0.0
        self.assertAlmostEqual(5.0, result_array[1, 0])
        # rows[1] = 4, 5.0 - 2.0 * 1.0
        self.assertAlmostEqual(3.0, result_array[rows[1], 10])
        # 5.0 - 2.0 * 0.0
        self.assertAlmostEqual(5.0, result_array[5, 8])
        # rows[2] = 7, 5.0 - 2.0 * 1.0
        self.assertAlmostEqual(3.0, result_array[rows[2], 1])
        # rows[2] = 7, 5.0 - 2.0 * 4.0
        self.assertAlmostEqual(-3.0, result_array[rows[2], 8])

    def test_sparse_sgd(self):
        places = [core.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(core.CUDAPlace(0))
        for place in places:
            self.check_with_place(place)

T
tensor-tang 已提交
113 114 115 116 117 118 119 120
    def conf(self):
        self.row_numel = 12


class TestSparseSGDOpCase8X(TestSparseSGDOp):
    def conf(self):
        self.row_numel = 16

Q
qiaolongfei 已提交
121 122 123 124 125

class TestSGDOpOptimizeSelectedRows(unittest.TestCase):
    def check_with_place(self, place):
        scope = core.Scope()

Q
qiaolongfei 已提交
126
        row_width = 12
Q
qiaolongfei 已提交
127
        # create and initialize Grad Variable
Q
qiaolongfei 已提交
128 129
        grad_height = 10
        grad_rows = [0, 4, 7]
Q
qijun 已提交
130 131

        grad_selected_rows = scope.var('Grad').get_selected_rows()
Q
qiaolongfei 已提交
132 133 134 135 136
        grad_selected_rows.set_height(grad_height)
        grad_selected_rows.set_rows(grad_rows)
        grad_array = np.ones((len(grad_rows), row_width)).astype("float32")
        grad_array[0, 0] = 2.0
        grad_array[2, 8] = 4.0
Q
qijun 已提交
137

Q
qijun 已提交
138
        grad_tensor = grad_selected_rows.get_tensor()
Q
qiaolongfei 已提交
139
        grad_tensor.set(grad_array, place)
Q
qijun 已提交
140 141

        # create and initialize Param Variable
Q
qiaolongfei 已提交
142 143 144 145 146 147 148
        # create and initialize W Variable
        param_rows = [0, 1, 2, 3, 4, 5, 6, 7]

        # init Param
        w_selected_rows = scope.var('Param').get_selected_rows()
        w_selected_rows.set_height(len(param_rows))
        w_selected_rows.set_rows(param_rows)
149
        w_selected_rows.sync_index()
Q
qiaolongfei 已提交
150 151 152 153 154 155 156
        w_array = np.ones((len(param_rows), row_width)).astype("float32")
        for i in range(len(param_rows)):
            w_array[i] *= i
        w_tensor = w_selected_rows.get_tensor()
        w_tensor.set(w_array, place)

        w_before_optimize = np.array(w_tensor)
Q
qijun 已提交
157 158

        # create and initialize LeraningRate Variable
Q
qiaolongfei 已提交
159
        lr_value = 0.1
Q
qijun 已提交
160
        lr = scope.var('LearningRate').get_tensor()
Q
qiaolongfei 已提交
161
        lr_array = np.full((1), lr_value).astype("float32")
Q
qijun 已提交
162 163
        lr.set(lr_array, place)

Q
qiaolongfei 已提交
164 165 166 167 168 169
        # optimize with Python
        w_after_optimize = np.copy(w_before_optimize)
        for index, id in enumerate(grad_rows):
            w_after_optimize[id] = w_before_optimize[
                id] - lr_value * grad_array[index]

Q
qijun 已提交
170 171 172 173 174 175 176
        # create and run sgd operator
        sgd_op = Operator(
            "sgd",
            Param='Param',
            Grad='Grad',
            ParamOut='Param',
            LearningRate='LearningRate')
D
dzhwinter 已提交
177
        sgd_op.run(scope, place)
Q
qijun 已提交
178 179

        # get and compare result
Q
qiaolongfei 已提交
180 181
        result_array = np.array(w_tensor)
        assert (result_array == w_after_optimize).all()
Q
qijun 已提交
182

183
    def test_sparse_parameter_sgd(self):
Q
qijun 已提交
184
        places = [core.CPUPlace()]
185
        # do not support GPU kernel currently
Q
qijun 已提交
186 187 188
        for place in places:
            self.check_with_place(place)

Q
qijun 已提交
189

190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
class TestSGDOpWithLargeInput(unittest.TestCase):
    def runTest(self):
        data = fluid.layers.fill_constant(shape=[1], value=128, dtype='int64')
        label = fluid.layers.fill_constant(
            shape=[1, 150], value=0.5, dtype='float32')
        emb = fluid.embedding(input=data, size=(10000000, 150), dtype='float32')
        out = fluid.layers.l2_normalize(x=emb, axis=-1)

        cost = fluid.layers.square_error_cost(input=out, label=label)
        avg_cost = fluid.layers.mean(cost)
        sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
        sgd_optimizer.minimize(avg_cost)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
        compiled_prog = fluid.compiler.CompiledProgram(
            fluid.default_main_program())
        result = exe.run(compiled_prog, fetch_list=[avg_cost])


Q
Qiao Longfei 已提交
211 212
if __name__ == "__main__":
    unittest.main()