run_logic.html 34.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36


<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
  <meta charset="utf-8">
  
  <meta name="viewport" content="width=device-width, initial-scale=1.0">
  
  <title>Training and Inference &mdash; PaddlePaddle  documentation</title>
  

  
  

  

  
  
    

  

  
  
    <link rel="stylesheet" href="../../_static/css/theme.css" type="text/css" />
  

  
  
        <link rel="index" title="Index"
              href="../../genindex.html"/>
        <link rel="search" title="Search" href="../../search.html"/>
    <link rel="top" title="PaddlePaddle  documentation" href="../../index.html"/>
        <link rel="up" title="API" href="../index_en.html"/>
37 38
        <link rel="next" title="Fluid" href="fluid.html"/>
        <link rel="prev" title="Dataset" href="data/dataset.html"/> 
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67

  <link rel="stylesheet" href="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/css/perfect-scrollbar.min.css" type="text/css" />
  <link rel="stylesheet" href="../../_static/css/override.css" type="text/css" />
  <script>
  var _hmt = _hmt || [];
  (function() {
    var hm = document.createElement("script");
    hm.src = "//hm.baidu.com/hm.js?b9a314ab40d04d805655aab1deee08ba";
    var s = document.getElementsByTagName("script")[0]; 
    s.parentNode.insertBefore(hm, s);
  })();
  </script>

  

  
  <script src="../../_static/js/modernizr.min.js"></script>

</head>

<body class="wy-body-for-nav" role="document">

  
  <header class="site-header">
    <div class="site-logo">
      <a href="/"><img src="../../_static/images/PP_w.png"></a>
    </div>
    <div class="site-nav-links">
      <div class="site-menu">
68
        <a class="fork-on-github" href="https://github.com/PaddlePaddle/Paddle" target="_blank"><i class="fa fa-github"></i>Fork me on Github</a>
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
        <div class="language-switcher dropdown">
          <a type="button" data-toggle="dropdown">
            <span>English</span>
            <i class="fa fa-angle-up"></i>
            <i class="fa fa-angle-down"></i>
          </a>
          <ul class="dropdown-menu">
            <li><a href="/doc_cn">中文</a></li>
            <li><a href="/doc">English</a></li>
          </ul>
        </div>
        <ul class="site-page-links">
          <li><a href="/">Home</a></li>
        </ul>
      </div>
      <div class="doc-module">
        
        <ul class="current">
<li class="toctree-l1"><a class="reference internal" href="../../getstarted/index_en.html">GET STARTED</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../howto/index_en.html">HOW TO</a></li>
<li class="toctree-l1 current"><a class="reference internal" href="../index_en.html">API</a></li>
90
<li class="toctree-l1"><a class="reference internal" href="../../mobile/index_en.html">MOBILE</a></li>
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
</ul>

        
<div role="search">
  <form id="rtd-search-form" class="wy-form" action="../../search.html" method="get">
    <input type="text" name="q" placeholder="Search docs" />
    <input type="hidden" name="check_keywords" value="yes" />
    <input type="hidden" name="area" value="default" />
  </form>
</div>        
      </div>
    </div>
  </header>
  
  <div class="main-content-wrap">

    
    <nav class="doc-menu-vertical" role="navigation">
        
          
          <ul class="current">
<li class="toctree-l1"><a class="reference internal" href="../../getstarted/index_en.html">GET STARTED</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../../getstarted/build_and_install/index_en.html">Install and Build</a><ul>
114 115 116 117
<li class="toctree-l3"><a class="reference internal" href="../../getstarted/build_and_install/pip_install_en.html">Install Using pip</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../getstarted/build_and_install/docker_install_en.html">Run in Docker Containers</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../howto/dev/build_en.html">Build using Docker</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../getstarted/build_and_install/build_from_source_en.html">Build from Sources</a></li>
118 119 120 121 122 123 124 125 126 127 128
</ul>
</li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../howto/index_en.html">HOW TO</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../../howto/usage/cmd_parameter/index_en.html">Set Command-line Parameters</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../howto/usage/cmd_parameter/use_case_en.html">Use Case</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../howto/usage/cmd_parameter/arguments_en.html">Argument Outline</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../howto/usage/cmd_parameter/detail_introduction_en.html">Detail Description</a></li>
</ul>
</li>
129
<li class="toctree-l2"><a class="reference internal" href="../../howto/usage/cluster/cluster_train_en.html">PaddlePaddle Distributed Training</a></li>
130 131 132 133
<li class="toctree-l2"><a class="reference internal" href="../../howto/usage/k8s/k8s_en.html">Paddle On Kubernetes</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../howto/usage/k8s/k8s_aws_en.html">Distributed PaddlePaddle Training on AWS with Kubernetes</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../howto/dev/new_layer_en.html">Write New Layers</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../howto/dev/contribute_to_paddle_en.html">Contribute Code</a></li>
134 135 136 137 138
<li class="toctree-l2"><a class="reference internal" href="../../howto/dev/write_docs_en.html">Contribute Documentation</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../howto/deep_model/rnn/index_en.html">RNN Models</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../howto/deep_model/rnn/rnn_config_en.html">RNN Configuration</a></li>
</ul>
</li>
139 140 141 142 143 144 145
<li class="toctree-l2"><a class="reference internal" href="../../howto/optimization/gpu_profiling_en.html">Tune GPU Performance</a></li>
</ul>
</li>
<li class="toctree-l1 current"><a class="reference internal" href="../index_en.html">API</a><ul class="current">
<li class="toctree-l2"><a class="reference internal" href="model_configs.html">Model Configuration</a><ul>
<li class="toctree-l3"><a class="reference internal" href="config/activation.html">Activation</a></li>
<li class="toctree-l3"><a class="reference internal" href="config/layer.html">Layers</a></li>
146
<li class="toctree-l3"><a class="reference internal" href="config/evaluators.html">Evaluators</a></li>
147 148 149 150 151 152
<li class="toctree-l3"><a class="reference internal" href="config/optimizer.html">Optimizer</a></li>
<li class="toctree-l3"><a class="reference internal" href="config/pooling.html">Pooling</a></li>
<li class="toctree-l3"><a class="reference internal" href="config/networks.html">Networks</a></li>
<li class="toctree-l3"><a class="reference internal" href="config/attr.html">Parameter Attribute</a></li>
</ul>
</li>
153 154 155 156 157 158
<li class="toctree-l2"><a class="reference internal" href="data.html">Data Reader Interface and DataSets</a><ul>
<li class="toctree-l3"><a class="reference internal" href="data/data_reader.html">Data Reader Interface</a></li>
<li class="toctree-l3"><a class="reference internal" href="data/image.html">Image Interface</a></li>
<li class="toctree-l3"><a class="reference internal" href="data/dataset.html">Dataset</a></li>
</ul>
</li>
159
<li class="toctree-l2 current"><a class="current reference internal" href="#">Training and Inference</a></li>
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
<li class="toctree-l2"><a class="reference internal" href="fluid.html">Fluid</a><ul>
<li class="toctree-l3"><a class="reference internal" href="fluid/layers.html">Layers</a></li>
<li class="toctree-l3"><a class="reference internal" href="fluid/data_feeder.html">DataFeeder</a></li>
<li class="toctree-l3"><a class="reference internal" href="fluid/executor.html">Executor</a></li>
<li class="toctree-l3"><a class="reference internal" href="fluid/initializer.html">Initializer</a></li>
<li class="toctree-l3"><a class="reference internal" href="fluid/evaluator.html">Evaluator</a></li>
<li class="toctree-l3"><a class="reference internal" href="fluid/nets.html">Nets</a></li>
<li class="toctree-l3"><a class="reference internal" href="fluid/optimizer.html">Optimizer</a></li>
<li class="toctree-l3"><a class="reference internal" href="fluid/param_attr.html">ParamAttr</a></li>
<li class="toctree-l3"><a class="reference internal" href="fluid/profiler.html">Profiler</a></li>
<li class="toctree-l3"><a class="reference internal" href="fluid/regularizer.html">Regularizer</a></li>
</ul>
</li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../mobile/index_en.html">MOBILE</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../../mobile/cross_compiling_for_android_en.html">Build PaddlePaddle for Android</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../mobile/cross_compiling_for_raspberry_en.html">Build PaddlePaddle for Raspberry Pi</a></li>
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
</ul>
</li>
</ul>

        
    </nav>
    
    <section class="doc-content-wrap">

      

 







<div role="navigation" aria-label="breadcrumbs navigation">
  <ul class="wy-breadcrumbs">
      
        <li><a href="../index_en.html">API</a> > </li>
      
    <li>Training and Inference</li>
  </ul>
</div>
      
      <div class="wy-nav-content" id="doc-content">
        <div class="rst-content">
          <div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
           <div itemprop="articleBody">
            
  <div class="section" id="training-and-inference">
<h1>Training and Inference<a class="headerlink" href="#training-and-inference" title="Permalink to this headline"></a></h1>
<div class="section" id="parameters">
<h2>Parameters<a class="headerlink" href="#parameters" title="Permalink to this headline"></a></h2>
<dl class="class">
<dt>
<em class="property">class </em><code class="descclassname">paddle.v2.parameters.</code><code class="descname">Parameters</code></dt>
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
<dd><p><cite>Parameters</cite> manages all the learnable parameters in a neural network.
It stores parameters&#8217; information in an OrderedDict. The key is
the name of a parameter, and value is a parameter&#8217;s configuration(in
protobuf format), such as initialization mean and std, its size, whether it
is a static parameter, and so on.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first last simple">
<li><strong>__param_conf__</strong> (<em>OrderedDict</em>) &#8211; store the configurations of learnable parameters in
the network in an OrderedDict. Parameter is added one by one into the
dict by following their created order in the network: parameters of
the previous layers in a network are careted first. You can visit the
parameters from bottom to top by iterating over this dict.</li>
<li><strong>__gradient_machines__</strong> (<em>list</em>) &#8211; all of the parameters in a neural network are
appended to a PaddlePaddle gradient machine, which is used internally to
copy parameter values between C++ and Python end.</li>
<li><strong>__tmp_params__</strong> (<em>dict</em>) &#8211; a dict to store dummy parameters if no
__gradient_machines__ is appended to <cite>Parameters</cite>.</li>
</ul>
</td>
</tr>
</tbody>
</table>
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
<p>Basically usage is</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">data</span> <span class="o">=</span> <span class="n">paddle</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">data</span><span class="p">(</span><span class="o">...</span><span class="p">)</span>
<span class="o">...</span>
<span class="n">out</span> <span class="o">=</span> <span class="n">paddle</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">fc</span><span class="p">(</span><span class="o">...</span><span class="p">)</span>

<span class="n">parameters</span> <span class="o">=</span> <span class="n">paddle</span><span class="o">.</span><span class="n">parameters</span><span class="o">.</span><span class="n">create</span><span class="p">(</span><span class="n">out</span><span class="p">)</span>

<span class="n">parameter_names</span> <span class="o">=</span> <span class="n">parameters</span><span class="o">.</span><span class="n">names</span><span class="p">()</span>
<span class="n">fc_mat</span> <span class="o">=</span> <span class="n">parameters</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s1">&#39;fc&#39;</span><span class="p">)</span>
<span class="k">print</span> <span class="n">fc_mat</span>
</pre></div>
</div>
<dl class="method">
<dt>
<code class="descname">keys</code><span class="sig-paren">(</span><span class="sig-paren">)</span></dt>
<dd><p>keys are the names of each parameter.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Returns:</th><td class="field-body">list of parameter name</td>
</tr>
<tr class="field-even field"><th class="field-name">Return type:</th><td class="field-body">list</td>
</tr>
</tbody>
</table>
</dd></dl>

<dl class="method">
<dt>
<code class="descname">names</code><span class="sig-paren">(</span><span class="sig-paren">)</span></dt>
<dd><p>names of each parameter.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Returns:</th><td class="field-body">list of parameter name</td>
</tr>
<tr class="field-even field"><th class="field-name">Return type:</th><td class="field-body">list</td>
</tr>
</tbody>
</table>
</dd></dl>

<dl class="method">
<dt>
<code class="descname">has_key</code><span class="sig-paren">(</span><em>key</em><span class="sig-paren">)</span></dt>
<dd><p>has_key return true if there are such parameter name == key</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><strong>key</strong> (<em>basestring</em>) &#8211; Parameter name</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body">True if contains such key</td>
</tr>
</tbody>
</table>
</dd></dl>

<dl class="method">
<dt>
<code class="descname">get_shape</code><span class="sig-paren">(</span><em>key</em><span class="sig-paren">)</span></dt>
<dd><p>get shape of the parameter.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><strong>key</strong> (<em>basestring</em>) &#8211; parameter name</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body">parameter&#8217;s shape</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body">tuple</td>
</tr>
</tbody>
</table>
</dd></dl>

<dl class="method">
<dt>
<code class="descname">get</code><span class="sig-paren">(</span><em>parameter_name</em><span class="sig-paren">)</span></dt>
<dd><p>Get parameter by parameter name.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Note:</th><td class="field-body">It will always copy the parameter from C++ side.</td>
</tr>
<tr class="field-even field"><th class="field-name">Parameters:</th><td class="field-body"><strong>parameter_name</strong> (<em>basestring</em>) &#8211; parameter name</td>
</tr>
<tr class="field-odd field"><th class="field-name">Returns:</th><td class="field-body">The parameter matrix.</td>
</tr>
<tr class="field-even field"><th class="field-name">Return type:</th><td class="field-body">np.ndarray</td>
</tr>
</tbody>
</table>
</dd></dl>

341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
<dl class="method">
<dt>
<code class="descname">get_grad</code><span class="sig-paren">(</span><em>key</em><span class="sig-paren">)</span></dt>
<dd><p>Get grandient by parameter name.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Note:</th><td class="field-body">It will always copy the parameter from C++ side.</td>
</tr>
<tr class="field-even field"><th class="field-name">Parameters:</th><td class="field-body"><strong>key</strong> (<em>basestring</em>) &#8211; parameter name</td>
</tr>
<tr class="field-odd field"><th class="field-name">Returns:</th><td class="field-body">The grandient matrix.</td>
</tr>
<tr class="field-even field"><th class="field-name">Return type:</th><td class="field-body">np.ndarray</td>
</tr>
</tbody>
</table>
</dd></dl>

361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
<dl class="method">
<dt>
<code class="descname">set</code><span class="sig-paren">(</span><em>parameter_name</em>, <em>value</em><span class="sig-paren">)</span></dt>
<dd><p>Set parameter by parameter name &amp; matrix.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>parameter_name</strong> (<em>basestring</em>) &#8211; parameter name</li>
<li><strong>value</strong> (<em>np.ndarray</em>) &#8211; parameter matrix</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last">Nothing.</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

<dl class="method">
<dt>
<code class="descname">append_gradient_machine</code><span class="sig-paren">(</span><em>gradient_machine</em><span class="sig-paren">)</span></dt>
<dd><p>append gradient machine to parameters. This method is used internally in
Trainer.train.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
391
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><strong>gradient_machine</strong> (<em>api.GradientMachine</em>) &#8211; PaddlePaddle C++ GradientMachine object.</td>
392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"></td>
</tr>
</tbody>
</table>
</dd></dl>

<dl class="method">
<dt>
<code class="descname">serialize</code><span class="sig-paren">(</span><em>name</em>, <em>f</em><span class="sig-paren">)</span></dt>
<dd><table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>name</strong> &#8211; </li>
<li><strong>f</strong> (<em>file</em>) &#8211; </li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last"></p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

<dl class="method">
<dt>
<code class="descname">deserialize</code><span class="sig-paren">(</span><em>name</em>, <em>f</em><span class="sig-paren">)</span></dt>
<dd><table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>name</strong> &#8211; </li>
<li><strong>f</strong> (<em>file</em>) &#8211; </li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last"></p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
<dl class="method">
<dt>
<code class="descname">to_tar</code><span class="sig-paren">(</span><em>f</em><span class="sig-paren">)</span></dt>
<dd><p>Save parameters to a tar file.</p>
<dl class="docutils">
<dt>WARNING: You should use <cite>paddle.v2.trainer.SGD.save_parameter_to_tar(f)</cite></dt>
<dd>to save parameters most of the time. Otherwise, some settings such
as model average will not take effect.</dd>
</dl>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><strong>f</strong> (<em>file</em>) &#8211; </td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"></td>
</tr>
</tbody>
</table>
</dd></dl>

<dl class="staticmethod">
<dt>
<em class="property">static </em><code class="descname">from_tar</code><span class="sig-paren">(</span><em>f</em><span class="sig-paren">)</span></dt>
<dd><p>Create a <cite>Parameters</cite> object from the given file. And
the <cite>Parameters</cite> only contains the parameters in this
file. It is adapted the parameters are same in the
defined network and the given file. For example, it
can be used in the inference.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><strong>f</strong> (<em>tar file</em>) &#8211; the initialized model file.</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body">A Parameters object.</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body">Parameters.</td>
</tr>
</tbody>
</table>
</dd></dl>

<dl class="method">
<dt>
<code class="descname">init_from_tar</code><span class="sig-paren">(</span><em>f</em><span class="sig-paren">)</span></dt>
<dd><p>Different from <cite>from_tar</cite>, this interface can be used to
init partial network parameters from another saved model.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><strong>f</strong> (<em>tar file</em>) &#8211; the initialized model file.</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body">Nothing.</td>
</tr>
</tbody>
</table>
</dd></dl>

499 500 501 502 503 504 505 506
</dd></dl>

</div>
<div class="section" id="trainer">
<h2>Trainer<a class="headerlink" href="#trainer" title="Permalink to this headline"></a></h2>
<p>Module Trainer</p>
<dl class="class">
<dt>
507
<em class="property">class </em><code class="descclassname">paddle.v2.trainer.</code><code class="descname">SGD</code><span class="sig-paren">(</span><em>cost</em>, <em>parameters</em>, <em>update_equation</em>, <em>extra_layers=None</em>, <em>is_local=True</em>, <em>pserver_spec=None</em>, <em>use_etcd=True</em><span class="sig-paren">)</span></dt>
508 509 510 511 512 513 514 515 516 517
<dd><p>Simple SGD Trainer.
SGD Trainer combines data reader, network topolopy and update_equation together
to train/test a neural network.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first last simple">
<li><strong>cost</strong> (<em>paddle.v2.config_base.Layer</em>) &#8211; Target cost that neural network should be optimized.</li>
<li><strong>parameters</strong> (<em>paddle.v2.parameters.Parameters</em>) &#8211; The parameters dictionary.</li>
518
<li><strong>update_equation</strong> (<em>paddle.v2.optimizer.Optimizer</em>) &#8211; The optimizer object.</li>
519 520
<li><strong>extra_layers</strong> (<em>paddle.v2.config_base.Layer</em>) &#8211; Some layers in the neural network graph are not
in the path of cost layer.</li>
521 522 523 524 525 526 527
<li><strong>is_local</strong> (<em>bool</em>) &#8211; Whether trainning locally</li>
<li><strong>pserver_spec</strong> (<em>string</em>) &#8211; comma string for pserver location,
eg:127.10.0.10:3000,127.10.0.11:3000,
and this parameter is only used for fault
tolerant mode cluster training.</li>
<li><strong>use_etcd</strong> &#8211; Whether using etcd pserver.</li>
<li><strong>use_etcd</strong> &#8211; bool</li>
528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
</ul>
</td>
</tr>
</tbody>
</table>
<dl class="method">
<dt>
<code class="descname">train</code><span class="sig-paren">(</span><em>reader</em>, <em>num_passes=1</em>, <em>event_handler=None</em>, <em>feeding=None</em><span class="sig-paren">)</span></dt>
<dd><p>Training method. Will train num_passes of input data.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>reader</strong> (<em>collections.Iterable</em>) &#8211; A reader that reads and yeilds data items. Usually we use a
batched reader to do mini-batch training.</li>
<li><strong>num_passes</strong> &#8211; The total train passes.</li>
545
<li><strong>event_handler</strong> (<em>(</em><em>BaseEvent</em><em>) </em><em>=&gt; None</em>) &#8211; Event handler. A method will be invoked when event
546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
occurred.</li>
<li><strong>feeding</strong> (<em>dict|list</em>) &#8211; Feeding is a map of neural network input name and array
index that reader returns.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last"></p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

<dl class="method">
<dt>
<code class="descname">test</code><span class="sig-paren">(</span><em>reader</em>, <em>feeding=None</em><span class="sig-paren">)</span></dt>
<dd><p>Testing method. Will test input data.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
568 569
<li><strong>reader</strong> (<em>collections.Iterable</em>) &#8211; A batch reader that reads and yeilds data items,
it should be a paddle.v2.batch.</li>
570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609
<li><strong>feeding</strong> (<em>dict</em>) &#8211; Feeding is a map of neural network input name and array
index that reader returns.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last"></p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

</dd></dl>

</div>
<div class="section" id="event">
<h2>Event<a class="headerlink" href="#event" title="Permalink to this headline"></a></h2>
<p>Testing and training events.</p>
<p>There are:</p>
<ul class="simple">
<li>TestResult</li>
<li>BeginIteration</li>
<li>EndIteration</li>
<li>BeginPass</li>
<li>EndPass</li>
</ul>
<dl class="class">
<dt>
<em class="property">class </em><code class="descclassname">paddle.v2.event.</code><code class="descname">TestResult</code><span class="sig-paren">(</span><em>evaluator</em>, <em>cost</em><span class="sig-paren">)</span></dt>
<dd><p>Result that trainer.test return.</p>
</dd></dl>

<dl class="class">
<dt>
<em class="property">class </em><code class="descclassname">paddle.v2.event.</code><code class="descname">BeginPass</code><span class="sig-paren">(</span><em>pass_id</em><span class="sig-paren">)</span></dt>
<dd><p>Event On One Pass Training Start.</p>
</dd></dl>

<dl class="class">
<dt>
610 611 612 613
<em class="property">class </em><code class="descclassname">paddle.v2.event.</code><code class="descname">EndPass</code><span class="sig-paren">(</span><em>pass_id</em>, <em>evaluator</em>, <em>gm</em><span class="sig-paren">)</span></dt>
<dd><p>Event On One Pass Training Complete.
To get the output of a specific layer, add &#8220;event.gm.getLayerOutputs(&#8216;predict_layer&#8217;)&#8221;
in your event_handler call back</p>
614 615 616 617 618 619 620 621 622 623
</dd></dl>

<dl class="class">
<dt>
<em class="property">class </em><code class="descclassname">paddle.v2.event.</code><code class="descname">BeginIteration</code><span class="sig-paren">(</span><em>pass_id</em>, <em>batch_id</em><span class="sig-paren">)</span></dt>
<dd><p>Event On One Batch Training Start.</p>
</dd></dl>

<dl class="class">
<dt>
624 625 626 627 628 629 630 631 632 633
<em class="property">class </em><code class="descclassname">paddle.v2.event.</code><code class="descname">EndForwardBackward</code><span class="sig-paren">(</span><em>pass_id</em>, <em>batch_id</em>, <em>gm</em><span class="sig-paren">)</span></dt>
<dd><p>Event On One Batch ForwardBackward Complete.</p>
</dd></dl>

<dl class="class">
<dt>
<em class="property">class </em><code class="descclassname">paddle.v2.event.</code><code class="descname">EndIteration</code><span class="sig-paren">(</span><em>pass_id</em>, <em>batch_id</em>, <em>cost</em>, <em>evaluator</em>, <em>gm</em><span class="sig-paren">)</span></dt>
<dd><p>Event On One Batch Training Complete.
To get the output of a specific layer, add &#8220;event.gm.getLayerOutputs(&#8216;predict_layer&#8217;)&#8221;
in your event_handler call back</p>
634 635 636 637 638 639 640 641 642 643
</dd></dl>

</div>
<div class="section" id="inference">
<h2>Inference<a class="headerlink" href="#inference" title="Permalink to this headline"></a></h2>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.</code><code class="descname">infer</code><span class="sig-paren">(</span><em>output_layer</em>, <em>parameters</em>, <em>input</em>, <em>feeding=None</em>, <em>field='value'</em><span class="sig-paren">)</span></dt>
<dd><p>Infer a neural network by given neural network output and parameters.  The
user should pass either a batch of input data or reader method.</p>
644 645 646 647 648 649 650 651 652 653 654 655
<p>Example usage for sinlge output_layer:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">result</span> <span class="o">=</span> <span class="n">paddle</span><span class="o">.</span><span class="n">infer</span><span class="p">(</span><span class="n">output_layer</span><span class="o">=</span><span class="n">prediction</span><span class="p">,</span>
                      <span class="n">parameters</span><span class="o">=</span><span class="n">parameters</span><span class="p">,</span>
                      <span class="nb">input</span><span class="o">=</span><span class="n">SomeData</span><span class="p">)</span>
<span class="k">print</span> <span class="n">result</span>
</pre></div>
</div>
<p>Example usage for multiple outout_layers and fields:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">result</span> <span class="o">=</span> <span class="n">paddle</span><span class="o">.</span><span class="n">infer</span><span class="p">(</span><span class="n">output_layer</span><span class="o">=</span><span class="p">[</span><span class="n">prediction1</span><span class="p">,</span> <span class="n">prediction2</span><span class="p">],</span>
                      <span class="n">parameters</span><span class="o">=</span><span class="n">parameters</span><span class="p">,</span>
                      <span class="nb">input</span><span class="o">=</span><span class="n">SomeData</span><span class="p">,</span>
                      <span class="n">field</span><span class="o">=</span><span class="p">[</span><span class="nb">id</span><span class="p">,</span> <span class="n">value</span><span class="p">]])</span>
656 657 658 659 660 661 662 663
<span class="k">print</span> <span class="n">result</span>
</pre></div>
</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
664 665
<li><strong>output_layer</strong> (<em>paddle.v2.config_base.Layer</em><em> or </em><em>a list of
paddle.v2.config_base.Layer</em>) &#8211; output of the neural network that would be inferred</li>
666 667 668 669 670 671 672 673 674 675 676 677 678
<li><strong>parameters</strong> (<em>paddle.v2.parameters.Parameters</em>) &#8211; parameters of the neural network.</li>
<li><strong>input</strong> (<em>collections.Iterable</em>) &#8211; input data batch. Should be a python iterable object, and each
element is the data batch.</li>
<li><strong>feeding</strong> &#8211; Reader dictionary. Default could generate from input
value.</li>
<li><strong>field</strong> (<em>str</em>) &#8211; The prediction field. It should in [<cite>value</cite>, <cite>id</cite>, <cite>prob</cite>].
<cite>value</cite> and <cite>prob</cite> mean return the prediction probabilities,
<cite>id</cite> means return the prediction labels. Default is <cite>value</cite>.
Note that <cite>prob</cite> only used when output_layer is beam_search
or max_id.</li>
</ul>
</td>
</tr>
679 680 681
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">The prediction result. If there are multiple outout_layers and fields,
the return order is outout_layer1.field1, outout_layer2.field1, ...,
outout_layer1.field2, outout_layer2.field2 ...</p>
682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">numpy.ndarray</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

</div>
</div>


           </div>
          </div>
          <footer>
  
    <div class="rst-footer-buttons" role="navigation" aria-label="footer navigation">
      
701
        <a href="fluid.html" class="btn btn-neutral float-right" title="Fluid" accesskey="n">Next <span class="fa fa-arrow-circle-right"></span></a>
702 703
      
      
704
        <a href="data/dataset.html" class="btn btn-neutral" title="Dataset" accesskey="p"><span class="fa fa-arrow-circle-left"></span> Previous</a>
705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759
      
    </div>
  

  <hr/>

  <div role="contentinfo">
    <p>
        &copy; Copyright 2016, PaddlePaddle developers.

    </p>
  </div>
  Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>. 

</footer>

        </div>
      </div>

    </section>

  </div>
  


  

    <script type="text/javascript">
        var DOCUMENTATION_OPTIONS = {
            URL_ROOT:'../../',
            VERSION:'',
            COLLAPSE_INDEX:false,
            FILE_SUFFIX:'.html',
            HAS_SOURCE:  true,
            SOURCELINK_SUFFIX: ".txt",
        };
    </script>
      <script type="text/javascript" src="../../_static/jquery.js"></script>
      <script type="text/javascript" src="../../_static/underscore.js"></script>
      <script type="text/javascript" src="../../_static/doctools.js"></script>
      <script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
       
  

  
  
    <script type="text/javascript" src="../../_static/js/theme.js"></script>
  
  
  <script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstrap.min.js" integrity="sha384-Tc5IQib027qvyjSMfHjOMaLkfuWVxZxUPnCJA7l2mCWNIpG9mGCD8wGNIcPD7Txa" crossorigin="anonymous"></script>
  <script src="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/js/perfect-scrollbar.jquery.min.js"></script>
  <script src="../../_static/js/paddle_doc_init.js"></script> 

</body>
</html>