Training and Inference¶
Parameters¶
-
class
paddle.v2.parameters.
Parameters
Parameters manages all the learnable parameters in a neural network. It stores parameters’ information in an OrderedDict. The key is the name of a parameter, and value is a parameter’s configuration(in protobuf format), such as initialization mean and std, its size, whether it is a static parameter, and so on.
Parameters: - __param_conf__ (OrderedDict) – store the configurations of learnable parameters in the network in an OrderedDict. Parameter is added one by one into the dict by following their created order in the network: parameters of the previous layers in a network are careted first. You can visit the parameters from bottom to top by iterating over this dict.
- __gradient_machines__ (list) – all of the parameters in a neural network are appended to a PaddlePaddle gradient machine, which is used internally to copy parameter values between C++ and Python end.
- __tmp_params__ (dict) – a dict to store dummy parameters if no __gradient_machines__ is appended to Parameters.
Basically usage is
data = paddle.layers.data(...) ... out = paddle.layers.fc(...) parameters = paddle.parameters.create(out) parameter_names = parameters.names() fc_mat = parameters.get('fc') print fc_mat
-
keys
() keys are the names of each parameter.
Returns: list of parameter name Return type: list
-
names
() names of each parameter.
Returns: list of parameter name Return type: list
-
has_key
(key) has_key return true if there are such parameter name == key
Parameters: key (basestring) – Parameter name Returns: True if contains such key
-
get_shape
(key) get shape of the parameter.
Parameters: key (basestring) – parameter name Returns: parameter’s shape Return type: tuple
-
get
(parameter_name) Get parameter by parameter name.
Note: It will always copy the parameter from C++ side. Parameters: parameter_name (basestring) – parameter name Returns: The parameter matrix. Return type: np.ndarray
-
get_grad
(key) Get grandient by parameter name.
Note: It will always copy the parameter from C++ side. Parameters: key (basestring) – parameter name Returns: The grandient matrix. Return type: np.ndarray
-
set
(parameter_name, value) Set parameter by parameter name & matrix.
Parameters: - parameter_name (basestring) – parameter name
- value (np.ndarray) – parameter matrix
Returns: Nothing.
-
append_gradient_machine
(gradient_machine) append gradient machine to parameters. This method is used internally in Trainer.train.
Parameters: gradient_machine (api.GradientMachine) – PaddlePaddle C++ GradientMachine object. Returns:
-
serialize
(name, f) Parameters: - name –
- f (file) –
Returns:
-
deserialize
(name, f) Parameters: - name –
- f (file) –
Returns:
-
to_tar
(f) Save parameters to a tar file.
- WARNING: You should use paddle.v2.trainer.SGD.save_parameter_to_tar(f)
- to save parameters most of the time. Otherwise, some settings such as model average will not take effect.
Parameters: f (file) – Returns:
-
static
from_tar
(f) Create a Parameters object from the given file. And the Parameters only contains the parameters in this file. It is adapted the parameters are same in the defined network and the given file. For example, it can be used in the inference.
Parameters: f (tar file) – the initialized model file. Returns: A Parameters object. Return type: Parameters.
-
init_from_tar
(f) Different from from_tar, this interface can be used to init partial network parameters from another saved model.
Parameters: f (tar file) – the initialized model file. Returns: Nothing.
Trainer¶
Module Trainer
-
class
paddle.v2.trainer.
SGD
(cost, parameters, update_equation, extra_layers=None, is_local=True, pserver_spec=None, use_etcd=True) Simple SGD Trainer. SGD Trainer combines data reader, network topolopy and update_equation together to train/test a neural network.
Parameters: - cost (paddle.v2.config_base.Layer) – Target cost that neural network should be optimized.
- parameters (paddle.v2.parameters.Parameters) – The parameters dictionary.
- update_equation (paddle.v2.optimizer.Optimizer) – The optimizer object.
- extra_layers (paddle.v2.config_base.Layer) – Some layers in the neural network graph are not in the path of cost layer.
- is_local (bool) – Whether trainning locally
- pserver_spec (string) – comma string for pserver location, eg:127.10.0.10:3000,127.10.0.11:3000, and this parameter is only used for fault tolerant mode cluster training.
- use_etcd – Whether using etcd pserver.
- use_etcd – bool
-
train
(reader, num_passes=1, event_handler=None, feeding=None) Training method. Will train num_passes of input data.
Parameters: - reader (collections.Iterable) – A reader that reads and yeilds data items. Usually we use a batched reader to do mini-batch training.
- num_passes – The total train passes.
- event_handler ((BaseEvent) => None) – Event handler. A method will be invoked when event occurred.
- feeding (dict|list) – Feeding is a map of neural network input name and array index that reader returns.
Returns:
-
test
(reader, feeding=None) Testing method. Will test input data.
Parameters: - reader (collections.Iterable) – A batch reader that reads and yeilds data items, it should be a paddle.v2.batch.
- feeding (dict) – Feeding is a map of neural network input name and array index that reader returns.
Returns:
Event¶
Testing and training events.
There are:
- TestResult
- BeginIteration
- EndIteration
- BeginPass
- EndPass
-
class
paddle.v2.event.
TestResult
(evaluator, cost) Result that trainer.test return.
-
class
paddle.v2.event.
BeginPass
(pass_id) Event On One Pass Training Start.
-
class
paddle.v2.event.
EndPass
(pass_id, evaluator, gm) Event On One Pass Training Complete. To get the output of a specific layer, add “event.gm.getLayerOutputs(‘predict_layer’)” in your event_handler call back
-
class
paddle.v2.event.
BeginIteration
(pass_id, batch_id) Event On One Batch Training Start.
-
class
paddle.v2.event.
EndForwardBackward
(pass_id, batch_id, gm) Event On One Batch ForwardBackward Complete.
-
class
paddle.v2.event.
EndIteration
(pass_id, batch_id, cost, evaluator, gm) Event On One Batch Training Complete. To get the output of a specific layer, add “event.gm.getLayerOutputs(‘predict_layer’)” in your event_handler call back
Inference¶
-
paddle.v2.
infer
(output_layer, parameters, input, feeding=None, field='value') Infer a neural network by given neural network output and parameters. The user should pass either a batch of input data or reader method.
Example usage for sinlge output_layer:
result = paddle.infer(output_layer=prediction, parameters=parameters, input=SomeData) print result
Example usage for multiple outout_layers and fields:
result = paddle.infer(output_layer=[prediction1, prediction2], parameters=parameters, input=SomeData, field=[id, value]]) print result
Parameters: - output_layer (paddle.v2.config_base.Layer or a list of paddle.v2.config_base.Layer) – output of the neural network that would be inferred
- parameters (paddle.v2.parameters.Parameters) – parameters of the neural network.
- input (collections.Iterable) – input data batch. Should be a python iterable object, and each element is the data batch.
- feeding – Reader dictionary. Default could generate from input value.
- field (str) – The prediction field. It should in [value, id, prob]. value and prob mean return the prediction probabilities, id means return the prediction labels. Default is value. Note that prob only used when output_layer is beam_search or max_id.
Returns: The prediction result. If there are multiple outout_layers and fields, the return order is outout_layer1.field1, outout_layer2.field1, ..., outout_layer1.field2, outout_layer2.field2 ...
Return type: numpy.ndarray