io.py 31.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import errno
import inspect
import logging
import os
19 20
import warnings
import numpy as np
21 22

import paddle
23 24 25 26 27 28 29
from paddle.fluid import (
    core,
    Variable,
    CompiledProgram,
    default_main_program,
    Program,
    unique_name,
30 31
    program_guard,
)
32 33
from paddle.fluid.io import prepend_feed_ops, append_fetch_ops
from paddle.fluid.framework import static_only, Parameter
34
from paddle.fluid.executor import global_scope
35 36
from paddle.fluid.log_helper import get_logger

37 38
__all__ = []

39 40 41
_logger = get_logger(
    __name__, logging.INFO, fmt='%(asctime)s-%(levelname)s: %(message)s'
)
42 43


44 45 46
def _check_args(caller, args, supported_args=None, deprecated_args=None):
    supported_args = [] if supported_args is None else supported_args
    deprecated_args = [] if deprecated_args is None else deprecated_args
47 48
    for arg in args:
        if arg in deprecated_args:
49
            raise ValueError(
50 51 52 53
                "argument '{}' in function '{}' is deprecated, only {} are supported.".format(
                    arg, caller, supported_args
                )
            )
54 55
        elif arg not in supported_args:
            raise ValueError(
56 57 58 59
                "function '{}' doesn't support argument '{}',\n only {} are supported.".format(
                    caller, arg, supported_args
                )
            )
60 61


62 63 64 65 66
def _check_vars(name, var_list):
    if not isinstance(var_list, list):
        var_list = [var_list]
    if not var_list or not all([isinstance(var, Variable) for var in var_list]):
        raise ValueError(
67 68
            "'{}' should be a Variable or a list of Variable.".format(name)
        )
69 70 71 72 73 74


def _normalize_path_prefix(path_prefix):
    """
    convert path_prefix to absolute path.
    """
75
    if not isinstance(path_prefix, str):
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
        raise ValueError("'path_prefix' should be a string.")
    if path_prefix.endswith("/"):
        raise ValueError("'path_prefix' should not be a directory")
    path_prefix = os.path.normpath(path_prefix)
    path_prefix = os.path.abspath(path_prefix)
    return path_prefix


def _get_valid_program(program=None):
    """
    return default main program if program is None.
    """
    if program is None:
        program = default_main_program()
    elif isinstance(program, CompiledProgram):
        program = program._program
        if program is None:
            raise TypeError(
                "The type of input program is invalid, expected tyep is Program, but received None"
            )
        warnings.warn(
97 98
            "The input is a CompiledProgram, this is not recommended."
        )
99 100 101
    if not isinstance(program, Program):
        raise TypeError(
            "The type of input program is invalid, expected type is fluid.Program, but received %s"
102 103
            % type(program)
        )
104 105 106 107 108 109
    return program


def _clone_var_in_block(block, var):
    assert isinstance(var, Variable)
    if var.desc.type() == core.VarDesc.VarType.LOD_TENSOR:
110 111 112 113 114 115 116 117
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
            persistable=True,
        )
118
    else:
119 120 121 122 123 124 125
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            persistable=True,
        )
126 127


128
def normalize_program(program, feed_vars, fetch_vars):
129
    """
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
    :api_attr: Static Graph

    Normalize/Optimize a program according to feed_vars and fetch_vars.

    Args:
        program(Program): Specify a program you want to optimize.
        feed_vars(Variable | list[Variable]): Variables needed by inference.
        fetch_vars(Variable | list[Variable]): Variables returned by inference.

    Returns:
        Program: Normalized/Optimized program.

    Examples:
        .. code-block:: python

            import paddle

            paddle.enable_static()

            path_prefix = "./infer_model"

            # User defined network, here a softmax regession example
            image = paddle.static.data(name='img', shape=[None, 28, 28], dtype='float32')
            label = paddle.static.data(name='label', shape=[None, 1], dtype='int64')
            predict = paddle.static.nn.fc(image, 10, activation='softmax')

            loss = paddle.nn.functional.cross_entropy(predict, label)

            exe = paddle.static.Executor(paddle.CPUPlace())
            exe.run(paddle.static.default_startup_program())

            # normalize main program.
S
Shibo Tao 已提交
162
            program = paddle.static.default_main_program()
163 164
            normalized_program = paddle.static.normalize_program(program, [image], [predict])

165
    """
166 167
    if not isinstance(program, Program):
        raise TypeError(
168 169 170
            "program type must be `fluid.Program`, but received `%s`"
            % type(program)
        )
171 172 173 174
    if not isinstance(feed_vars, list):
        feed_vars = [feed_vars]
    if not all(isinstance(v, Variable) for v in feed_vars):
        raise TypeError(
175 176
            "feed_vars type must be a Variable or a list of Variable."
        )
177 178 179 180
    if not isinstance(fetch_vars, list):
        fetch_vars = [fetch_vars]
    if not all(isinstance(v, Variable) for v in fetch_vars):
        raise TypeError(
181 182
            "fetch_vars type must be a Variable or a list of Variable."
        )
183

184 185 186 187 188 189
    # remind users to set auc_states to 0 if auc op were found.
    for op in program.global_block().ops:
        # clear device of Op
        device_attr_name = core.op_proto_and_checker_maker.kOpDeviceAttrName()
        op._set_attr(device_attr_name, "")
        if op.type == 'auc':
190 191 192 193
            warnings.warn(
                "Be sure that you have set auc states to 0 "
                "before saving inference model."
            )
194 195 196 197 198 199 200 201
            break

    # fix the bug that the activation op's output as target will be pruned.
    # will affect the inference performance.
    # TODO(Superjomn) add an IR pass to remove 1-scale op.
    with program_guard(program):
        uniq_fetch_vars = []
        for i, var in enumerate(fetch_vars):
202
            if var.dtype != paddle.bool:
2
201716010711 已提交
203
                var = paddle.scale(
204 205
                    var, 1.0, name="save_infer_model/scale_{}".format(i)
                )
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
            uniq_fetch_vars.append(var)
        fetch_vars = uniq_fetch_vars

    # serialize program
    copy_program = program.clone()
    global_block = copy_program.global_block()
    remove_op_idx = []
    for i, op in enumerate(global_block.ops):
        op.desc.set_is_target(False)
        if op.type == "feed" or op.type == "fetch":
            remove_op_idx.append(i)
    for idx in remove_op_idx[::-1]:
        global_block._remove_op(idx)
    copy_program.desc.flush()

    feed_var_names = [var.name for var in feed_vars]
    copy_program = copy_program._prune_with_input(
223 224
        feeded_var_names=feed_var_names, targets=fetch_vars
    )
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
    copy_program = copy_program._inference_optimize(prune_read_op=True)
    fetch_var_names = [var.name for var in fetch_vars]
    prepend_feed_ops(copy_program, feed_var_names)
    append_fetch_ops(copy_program, fetch_var_names)
    copy_program.desc._set_version()
    return copy_program


def is_persistable(var):
    """
    Check whether the given variable is persistable.

    Args:
        var(Variable): The variable to be checked.

    Returns:
        bool: True if the given `var` is persistable
        False if not.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.fluid as fluid

            paddle.enable_static()
            param = fluid.default_main_program().global_block().var('fc.b')
            res = fluid.io.is_persistable(param)
    """
254 255 256 257 258
    if (
        var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH
        or var.desc.type() == core.VarDesc.VarType.FETCH_LIST
        or var.desc.type() == core.VarDesc.VarType.READER
    ):
259 260 261 262 263
        return False
    return var.persistable


@static_only
264
def serialize_program(feed_vars, fetch_vars, **kwargs):
265 266 267 268 269 270 271 272
    """
    :api_attr: Static Graph

    Serialize default main program according to feed_vars and fetch_vars.

    Args:
        feed_vars(Variable | list[Variable]): Variables needed by inference.
        fetch_vars(Variable | list[Variable]): Variables returned by inference.
C
Chen Long 已提交
273
        kwargs: Supported keys including 'program'.Attention please, kwargs is used for backward compatibility mainly.
274 275
          - program(Program): specify a program if you don't want to use default main program.

276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
    Returns:
        bytes: serialized program.

    Examples:
        .. code-block:: python

            import paddle

            paddle.enable_static()

            path_prefix = "./infer_model"

            # User defined network, here a softmax regession example
            image = paddle.static.data(name='img', shape=[None, 28, 28], dtype='float32')
            label = paddle.static.data(name='label', shape=[None, 1], dtype='int64')
            predict = paddle.static.nn.fc(image, 10, activation='softmax')

            loss = paddle.nn.functional.cross_entropy(predict, label)

            exe = paddle.static.Executor(paddle.CPUPlace())
            exe.run(paddle.static.default_startup_program())

            # serialize the default main program to bytes.
            serialized_program = paddle.static.serialize_program([image], [predict])

            # deserialize bytes to program
            deserialized_program = paddle.static.deserialize_program(serialized_program)

    """
    # verify feed_vars
    _check_vars('feed_vars', feed_vars)
    # verify fetch_vars
    _check_vars('fetch_vars', fetch_vars)

310
    program = _get_valid_program(kwargs.get('program', None))
311
    program = normalize_program(program, feed_vars, fetch_vars)
312 313 314 315 316 317 318 319 320 321 322
    return _serialize_program(program)


def _serialize_program(program):
    """
    serialize given program to bytes.
    """
    return program.desc.serialize_to_string()


@static_only
323
def serialize_persistables(feed_vars, fetch_vars, executor, **kwargs):
324 325 326 327 328 329 330 331
    """
    :api_attr: Static Graph

    Serialize parameters using given executor and default main program according to feed_vars and fetch_vars.

    Args:
        feed_vars(Variable | list[Variable]): Variables needed by inference.
        fetch_vars(Variable | list[Variable]): Variables returned by inference.
C
Chen Long 已提交
332
        kwargs: Supported keys including 'program'.Attention please, kwargs is used for backward compatibility mainly.
333 334
          - program(Program): specify a program if you don't want to use default main program.

335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
    Returns:
        bytes: serialized program.

    Examples:
        .. code-block:: python

            import paddle

            paddle.enable_static()

            path_prefix = "./infer_model"

            # User defined network, here a softmax regession example
            image = paddle.static.data(name='img', shape=[None, 28, 28], dtype='float32')
            label = paddle.static.data(name='label', shape=[None, 1], dtype='int64')
            predict = paddle.static.nn.fc(image, 10, activation='softmax')

            loss = paddle.nn.functional.cross_entropy(predict, label)

            exe = paddle.static.Executor(paddle.CPUPlace())
            exe.run(paddle.static.default_startup_program())

            # serialize parameters to bytes.
            serialized_params = paddle.static.serialize_persistables([image], [predict], exe)

            # deserialize bytes to parameters.
            main_program = paddle.static.default_main_program()
            deserialized_params = paddle.static.deserialize_persistables(main_program, serialized_params, exe)

    """
    # verify feed_vars
    _check_vars('feed_vars', feed_vars)
    # verify fetch_vars
    _check_vars('fetch_vars', fetch_vars)

370
    program = _get_valid_program(kwargs.get('program', None))
371
    program = normalize_program(program, feed_vars, fetch_vars)
372 373 374 375 376 377 378 379 380 381
    return _serialize_persistables(program, executor)


def _serialize_persistables(program, executor):
    """
    Serialize parameters using given program and executor.
    """
    vars_ = list(filter(is_persistable, program.list_vars()))
    # warn if no variable found in model
    if len(vars_) == 0:
382 383 384 385
        warnings.warn(
            "no variable in your model, please ensure there are any "
            "variables in your model to save"
        )
386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
        return None
    # create a new program and clone persitable vars to it
    save_program = Program()
    save_block = save_program.global_block()
    save_var_map = {}
    for var in vars_:
        if var.type != core.VarDesc.VarType.RAW:
            var_copy = _clone_var_in_block(save_block, var)
            save_var_map[var_copy.name] = var

    # create in_vars and out_var, then append a save_combine op to save_program
    in_vars = []
    for name in sorted(save_var_map.keys()):
        in_vars.append(save_var_map[name])

    out_var_name = unique_name.generate("out_var")
402 403 404
    out_var = save_block.create_var(
        type=core.VarDesc.VarType.RAW, name=out_var_name
    )
405
    out_var.desc.set_persistable(True)
406 407 408 409 410 411
    save_block.append_op(
        type='save_combine',
        inputs={'X': in_vars},
        outputs={'Y': out_var},
        attrs={'file_path': '', 'save_to_memory': True},
    )
412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
    # run save_program to save vars
    # NOTE(zhiqiu): save op will add variable kLookupTablePath to save_program.desc,
    # which leads to diff between save_program and its desc. Call _sync_with_cpp
    # to keep consistency.
    save_program._sync_with_cpp()
    executor.run(save_program)
    # return serialized bytes in out_var
    return global_scope().find_var(out_var_name).get_bytes()


def save_to_file(path, content):
    """
    Save content to given path.
    Args:
        path(str): Path to write content to.
        content(bytes): Content to write.
    Returns:
        None
430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448

    Examples:
        .. code-block:: python

            import paddle
            paddle.enable_static()
            path_prefix = "./infer_model"
            # 用户自定义网络,此处用 softmax 回归为例。
            image = paddle.static.data(name='img', shape=[None, 28, 28], dtype='float32')
            label = paddle.static.data(name='label', shape=[None, 1], dtype='int64')
            predict = paddle.static.nn.fc(image, 10, activation='softmax')
            loss = paddle.nn.functional.cross_entropy(predict, label)
            exe = paddle.static.Executor(paddle.CPUPlace())
            exe.run(paddle.static.default_startup_program())
            # 序列化参数
            serialized_params = paddle.static.serialize_persistables([image], [predict], exe)
            # 将序列化之后的参数保存到文件
            params_path = path_prefix + ".params"
            paddle.static.save_to_file(params_path, serialized_params)
449 450 451 452 453 454 455 456
    """

    if not isinstance(content, bytes):
        raise ValueError("'content' type should be bytes.")
    with open(path, "wb") as f:
        f.write(content)


457
@static_only
458 459 460
def save_inference_model(
    path_prefix, feed_vars, fetch_vars, executor, **kwargs
):
461 462 463 464 465 466 467 468 469 470 471 472 473
    """
    Save current model and its parameters to given path. i.e.
    Given path_prefix = "/path/to/modelname", after invoking
    save_inference_model(path_prefix, feed_vars, fetch_vars, executor),
    you will find two files named modelname.pdmodel and modelname.pdiparams
    under "/path/to", which represent your model and parameters respectively.

    Args:
        path_prefix(str): Directory path to save model + model name without suffix.
        feed_vars(Variable | list[Variable]): Variables needed by inference.
        fetch_vars(Variable | list[Variable]): Variables returned by inference.
        executor(Executor): The executor that saves the inference model. You can refer
                            to :ref:`api_guide_executor_en` for more details.
474
        kwargs: Supported keys including 'program' and "clip_extra". Attention please, kwargs is used for backward compatibility mainly.
475 476 477

            - program(Program): specify a program if you don't want to use default main program.

478
            - clip_extra(bool): the flag indicating whether to clip extra information for every operator. Default: True.
479

480 481 482 483 484 485 486 487 488 489 490 491 492
    Returns:
        None

    Examples:
        .. code-block:: python

            import paddle

            paddle.enable_static()

            path_prefix = "./infer_model"

            # User defined network, here a softmax regession example
493 494 495
            image = paddle.static.data(name='img', shape=[None, 28, 28], dtype='float32')
            label = paddle.static.data(name='label', shape=[None, 1], dtype='int64')
            predict = paddle.static.nn.fc(image, 10, activation='softmax')
496

497
            loss = paddle.nn.functional.cross_entropy(predict, label)
498

499 500
            exe = paddle.static.Executor(paddle.CPUPlace())
            exe.run(paddle.static.default_startup_program())
501 502 503 504

            # Feed data and train process

            # Save inference model. Note we don't save label and loss in this example
505
            paddle.static.save_inference_model(path_prefix, [image], [predict], exe)
506 507 508 509 510 511 512

            # In this example, the save_inference_mode inference will prune the default
            # main program according to the network's input node (img) and output node(predict).
            # The pruned inference program is going to be saved in file "./infer_model.pdmodel"
            # and parameters are going to be saved in file "./infer_model.pdiparams".

    """
513

514
    # check path_prefix, set model_path and params_path
515
    path_prefix = _normalize_path_prefix(path_prefix)
516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
    try:
        # mkdir may conflict if pserver and trainer are running on the same machine
        dirname = os.path.dirname(path_prefix)
        os.makedirs(dirname)
    except OSError as e:
        if e.errno != errno.EEXIST:
            raise
    model_path = path_prefix + ".pdmodel"
    params_path = path_prefix + ".pdiparams"
    if os.path.isdir(model_path):
        raise ValueError("'{}' is an existing directory.".format(model_path))
    if os.path.isdir(params_path):
        raise ValueError("'{}' is an existing directory.".format(params_path))

    # verify feed_vars
531
    _check_vars('feed_vars', feed_vars)
532
    # verify fetch_vars
533
    _check_vars('fetch_vars', fetch_vars)
534

535
    program = _get_valid_program(kwargs.get('program', None))
536
    clip_extra = kwargs.get('clip_extra', True)
537
    program = normalize_program(program, feed_vars, fetch_vars)
538
    # serialize and save program
539
    program_bytes = _serialize_program(
540 541
        program._remove_training_info(clip_extra=clip_extra)
    )
542 543 544
    save_to_file(model_path, program_bytes)
    # serialize and save params
    params_bytes = _serialize_persistables(program, executor)
545 546 547
    # program may not contain any parameter and just compute operation
    if params_bytes is not None:
        save_to_file(params_path, params_bytes)
548

549

550 551 552 553
@static_only
def deserialize_program(data):
    """
    :api_attr: Static Graph
554

555 556 557 558
    Deserialize given data to a program.

    Args:
        data(bytes): serialized program.
559

560 561
    Returns:
        Program: deserialized program.
562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587

    Examples:
        .. code-block:: python

            import paddle

            paddle.enable_static()

            path_prefix = "./infer_model"

            # User defined network, here a softmax regession example
            image = paddle.static.data(name='img', shape=[None, 28, 28], dtype='float32')
            label = paddle.static.data(name='label', shape=[None, 1], dtype='int64')
            predict = paddle.static.nn.fc(image, 10, activation='softmax')

            loss = paddle.nn.functional.cross_entropy(predict, label)

            exe = paddle.static.Executor(paddle.CPUPlace())
            exe.run(paddle.static.default_startup_program())

            # serialize the default main program to bytes.
            serialized_program = paddle.static.serialize_program([image], [predict])

            # deserialize bytes to program
            deserialized_program = paddle.static.deserialize_program(serialized_program)

588 589 590
    """
    program = Program.parse_from_string(data)
    if not core._is_program_version_supported(program._version()):
591 592 593
        raise ValueError(
            "Unsupported program version: %d\n" % program._version()
        )
594 595 596 597 598 599 600 601 602
    return program


@static_only
def deserialize_persistables(program, data, executor):
    """
    :api_attr: Static Graph

    Deserialize given data to parameters according to given program and executor.
603

604 605 606 607
    Args:
        program(Program): program that contains parameter names (to deserialize).
        data(bytes): serialized parameters.
        executor(Executor): executor used to run load op.
608

609 610
    Returns:
        Program: deserialized program.
611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638

    Examples:
        .. code-block:: python

            import paddle

            paddle.enable_static()

            path_prefix = "./infer_model"

            # User defined network, here a softmax regession example
            image = paddle.static.data(name='img', shape=[None, 28, 28], dtype='float32')
            label = paddle.static.data(name='label', shape=[None, 1], dtype='int64')
            predict = paddle.static.nn.fc(image, 10, activation='softmax')

            loss = paddle.nn.functional.cross_entropy(predict, label)

            exe = paddle.static.Executor(paddle.CPUPlace())
            exe.run(paddle.static.default_startup_program())

            # serialize parameters to bytes.
            serialized_params = paddle.static.serialize_persistables([image], [predict], exe)

            # deserialize bytes to parameters.
            main_program = paddle.static.default_main_program()
            deserialized_params = paddle.static.deserialize_persistables(main_program, serialized_params, exe)


639 640 641
    """
    if not isinstance(program, Program):
        raise TypeError(
642 643 644
            "program type must be `fluid.Program`, but received `%s`"
            % type(program)
        )
645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666
    # load params to a tmp program
    load_program = Program()
    load_block = load_program.global_block()
    vars_ = list(filter(is_persistable, program.list_vars()))

    origin_shape_map = {}
    load_var_map = {}
    check_vars = []
    sparse_vars = []
    for var in vars_:
        assert isinstance(var, Variable)
        if var.type == core.VarDesc.VarType.RAW:
            continue
        if isinstance(var, Parameter):
            origin_shape_map[var.name] = tuple(var.desc.get_shape())
        if var.type == core.VarDesc.VarType.SELECTED_ROWS:
            sparse_vars.append(var)
            continue
        var_copy = _clone_var_in_block(load_block, var)
        check_vars.append(var)
        load_var_map[var_copy.name] = var_copy

667
    if data is None:
668 669 670
        assert (
            len(origin_shape_map) == 0
        ), "Required 'data' shall be not None if program contains parameter, but received 'data' is None."
671 672
        return

673 674 675 676 677 678 679 680 681
    # append load_combine op to load parameters,
    load_var_list = []
    for name in sorted(load_var_map.keys()):
        load_var_list.append(load_var_map[name])
    load_block.append_op(
        type='load_combine',
        inputs={},
        outputs={"Out": load_var_list},
        # if load from memory, file_path is data
682 683
        attrs={'file_path': data, 'model_from_memory': True},
    )
684 685 686 687 688 689
    executor.run(load_program)
    # check var shape
    for var in check_vars:
        if not isinstance(var, Parameter):
            continue
        var_tmp = paddle.fluid.global_scope().find_var(var.name)
690
        assert var_tmp is not None, "can't not find var: " + var.name
691 692 693 694 695 696 697
        new_shape = (np.array(var_tmp.get_tensor())).shape
        assert var.name in origin_shape_map, var.name + " MUST in var list."
        origin_shape = origin_shape_map.get(var.name)
        if new_shape != origin_shape:
            raise RuntimeError(
                "Shape mismatch, program needs a parameter with shape ({}), "
                "but the loaded parameter ('{}') has a shape of ({}).".format(
698 699 700
                    origin_shape, var.name, new_shape
                )
            )
701 702 703 704 705 706 707 708 709


def load_from_file(path):
    """
    Load file in binary mode.
    Args:
        path(str): Path of an existed file.
    Returns:
        bytes: Content of file.
710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731

    Examples:

        .. code-block:: python

            import paddle
            paddle.enable_static()
            path_prefix = "./infer_model"
            # 用户自定义网络,此处用 softmax 回归为例。
            image = paddle.static.data(name='img', shape=[None, 28, 28], dtype='float32')
            label = paddle.static.data(name='label', shape=[None, 1], dtype='int64')
            predict = paddle.static.nn.fc(image, 10, activation='softmax')
            loss = paddle.nn.functional.cross_entropy(predict, label)
            exe = paddle.static.Executor(paddle.CPUPlace())
            exe.run(paddle.static.default_startup_program())
            # 序列化参数
            serialized_params = paddle.static.serialize_persistables([image], [predict], exe)
            # 将序列化之后的参数保存到文件
            params_path = path_prefix + ".params"
            paddle.static.save_to_file(params_path, serialized_params)
            # 从文件加载序列化之后的参数
            serialized_params_copy = paddle.static.load_from_file(params_path)
732 733 734 735
    """
    with open(path, 'rb') as f:
        data = f.read()
    return data
736 737 738


@static_only
739
def load_inference_model(path_prefix, executor, **kwargs):
740 741 742 743 744 745 746 747 748 749 750 751
    """
    :api_attr: Static Graph

    Load inference model from a given path. By this API, you can get the model
    structure(Inference Program) and model parameters.

    Args:
        path_prefix(str | None): One of the following:
          - Directory path to save model + model name without suffix.
          - Set to None when reading the model from memory.
        executor(Executor): The executor to run for loading inference model.
                            See :ref:`api_guide_executor_en` for more details about it.
C
Chen Long 已提交
752
        kwargs: Supported keys including 'model_filename', 'params_filename'.Attention please, kwargs is used for backward compatibility mainly.
753 754
          - model_filename(str): specify model_filename if you don't want to use default name.
          - params_filename(str): specify params_filename if you don't want to use default name.
755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773

    Returns:
        list: The return of this API is a list with three elements:
        (program, feed_target_names, fetch_targets). The `program` is a
        ``Program`` (refer to :ref:`api_guide_Program_en`), which is used for inference.
        The `feed_target_names` is a list of ``str``, which contains names of variables
        that need to feed data in the inference program. The `fetch_targets` is a list of
        ``Variable`` (refer to :ref:`api_guide_Program_en`). It contains variables from which
        we can get inference results.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

            paddle.enable_static()

            # Build the model
774 775 776 777 778 779 780 781 782
            startup_prog = paddle.static.default_startup_program()
            main_prog = paddle.static.default_main_program()
            with paddle.static.program_guard(main_prog, startup_prog):
                image = paddle.static.data(name="img", shape=[64, 784])
                w = paddle.create_parameter(shape=[784, 200], dtype='float32')
                b = paddle.create_parameter(shape=[200], dtype='float32')
                hidden_w = paddle.matmul(x=image, y=w)
                hidden_b = paddle.add(hidden_w, b)
            exe = paddle.static.Executor(paddle.CPUPlace())
783 784 785 786
            exe.run(startup_prog)

            # Save the inference model
            path_prefix = "./infer_model"
787
            paddle.static.save_inference_model(path_prefix, [image], [hidden_b], exe)
788 789

            [inference_program, feed_target_names, fetch_targets] = (
790
                paddle.static.load_inference_model(path_prefix, exe))
791
            tensor_img = np.array(np.random.random((64, 784)), dtype=np.float32)
792 793 794 795 796 797 798 799 800 801 802
            results = exe.run(inference_program,
                          feed={feed_target_names[0]: tensor_img},
                          fetch_list=fetch_targets)

            # In this example, the inference program was saved in file
            # "./infer_model.pdmodel" and parameters were saved in file
            # " ./infer_model.pdiparams".
            # By the inference program, feed_target_names and
            # fetch_targets, we can use an executor to run the inference
            # program to get the inference result.
    """
803
    # check kwargs
804
    supported_args = ('model_filename', 'params_filename')
805
    deprecated_args = ('pserver_endpoints',)
806
    caller = inspect.currentframe().f_code.co_name
807
    _check_args(caller, kwargs, supported_args, deprecated_args)
808 809 810 811

    # load from memory
    if path_prefix is None:
        _logger.warning("Load inference model from memory is deprecated.")
812 813
        model_filename = kwargs.get('model_filename', None)
        params_filename = kwargs.get('params_filename', None)
814 815
        if params_filename is None:
            raise ValueError(
816 817
                "params_filename cannot be None when path_prefix is None."
            )
818 819
        load_dirname = ''
        program_bytes = model_filename
820
        params_bytes = params_filename
821 822 823
    # load from file
    else:
        # check and norm path_prefix
824
        path_prefix = _normalize_path_prefix(path_prefix)
825 826 827

        # set model_path and params_path in new way,
        # path_prefix represents a file path without suffix in this case.
828
        if not kwargs:
829 830 831 832 833
            model_path = path_prefix + ".pdmodel"
            params_path = path_prefix + ".pdiparams"
        # set model_path and params_path in old way for compatible,
        # path_prefix represents a directory path.
        else:
834 835
            model_filename = kwargs.get('model_filename', None)
            params_filename = kwargs.get('params_filename', None)
836 837 838 839
            # set model_path
            if model_filename is None:
                model_path = os.path.join(path_prefix, "__model__")
            else:
840 841 842
                model_path = os.path.join(
                    path_prefix, model_filename + ".pdmodel"
                )
843 844 845 846 847 848
                if not os.path.exists(model_path):
                    model_path = os.path.join(path_prefix, model_filename)
            # set params_path
            if params_filename is None:
                params_path = os.path.join(path_prefix, "")
            else:
849 850 851
                params_path = os.path.join(
                    path_prefix, params_filename + ".pdiparams"
                )
852 853
                if not os.path.exists(params_path):
                    params_path = os.path.join(path_prefix, params_filename)
854 855 856 857 858 859
            _logger.warning(
                "The old way to load inference model is deprecated."
                " model path: {}, params path: {}".format(
                    model_path, params_path
                )
            )
860
        program_bytes = load_from_file(model_path)
861 862
        load_dirname = os.path.dirname(params_path)
        params_filename = os.path.basename(params_path)
863 864
        # load params data
        params_path = os.path.join(load_dirname, params_filename)
865 866 867
        params_bytes = None
        if os.path.exists(params_path):
            params_bytes = load_from_file(params_path)
868

869 870 871 872
    # deserialize bytes to program
    program = deserialize_program(program_bytes)
    # deserialize bytes to params
    deserialize_persistables(program, params_bytes, executor)
873 874 875 876 877 878 879 880

    feed_target_names = program.desc.get_feed_target_names()
    fetch_target_names = program.desc.get_fetch_target_names()
    fetch_targets = [
        program.global_block().var(name) for name in fetch_target_names
    ]

    return [program, feed_target_names, fetch_targets]