io.py 28.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import errno
import inspect
import logging
import os
21
import warnings
22
import six
23
import numpy as np
24 25

import paddle
26 27 28 29 30 31 32 33 34 35 36 37
from paddle.fluid import (
    core,
    Variable,
    CompiledProgram,
    default_main_program,
    Program,
    layers,
    unique_name,
    program_guard, )
from paddle.fluid.io import prepend_feed_ops, append_fetch_ops
from paddle.fluid.framework import static_only, Parameter
from paddle.fluid.executor import Executor, global_scope
38 39 40 41 42
from paddle.fluid.log_helper import get_logger

__all__ = [
    'save_inference_model',
    'load_inference_model',
43 44 45 46 47 48
    'serialize_program',
    'serialize_persistables',
    'save_to_file',
    'deserialize_program',
    'deserialize_persistables',
    'load_from_file',
49 50 51 52 53 54
]

_logger = get_logger(
    __name__, logging.INFO, fmt='%(asctime)s-%(levelname)s: %(message)s')


55 56 57
def _check_args(caller, args, supported_args=None, deprecated_args=None):
    supported_args = [] if supported_args is None else supported_args
    deprecated_args = [] if deprecated_args is None else deprecated_args
58 59
    for arg in args:
        if arg in deprecated_args:
60 61 62
            raise ValueError(
                "argument '{}' in function '{}' is deprecated, only {} are supported.".
                format(arg, caller, supported_args))
63 64
        elif arg not in supported_args:
            raise ValueError(
65 66
                "function '{}' doesn't support argument '{}',\n only {} are supported.".
                format(caller, arg, supported_args))
67 68


69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
def _check_vars(name, var_list):
    if not isinstance(var_list, list):
        var_list = [var_list]
    if not var_list or not all([isinstance(var, Variable) for var in var_list]):
        raise ValueError(
            "'{}' should be a Variable or a list of Variable.".format(name))


def _normalize_path_prefix(path_prefix):
    """
    convert path_prefix to absolute path.
    """
    if not isinstance(path_prefix, six.string_types):
        raise ValueError("'path_prefix' should be a string.")
    if path_prefix.endswith("/"):
        raise ValueError("'path_prefix' should not be a directory")
    path_prefix = os.path.normpath(path_prefix)
    path_prefix = os.path.abspath(path_prefix)
    return path_prefix


def _get_valid_program(program=None):
    """
    return default main program if program is None.
    """
    if program is None:
        program = default_main_program()
    elif isinstance(program, CompiledProgram):
        program = program._program
        if program is None:
            raise TypeError(
                "The type of input program is invalid, expected tyep is Program, but received None"
            )
        warnings.warn(
            "The input is a CompiledProgram, this is not recommended.")
    if not isinstance(program, Program):
        raise TypeError(
            "The type of input program is invalid, expected type is fluid.Program, but received %s"
            % type(program))
    return program


def _clone_var_in_block(block, var):
    assert isinstance(var, Variable)
    if var.desc.type() == core.VarDesc.VarType.LOD_TENSOR:
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
            persistable=True)
    else:
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            persistable=True)


def _normalize_program(program, feed_vars, fetch_vars):
    """
    optimize program according feed_vars and fetch_vars.
    """
    # remind users to set auc_states to 0 if auc op were found.
    for op in program.global_block().ops:
        # clear device of Op
        device_attr_name = core.op_proto_and_checker_maker.kOpDeviceAttrName()
        op._set_attr(device_attr_name, "")
        if op.type == 'auc':
            warnings.warn("Be sure that you have set auc states to 0 "
                          "before saving inference model.")
            break

    # fix the bug that the activation op's output as target will be pruned.
    # will affect the inference performance.
    # TODO(Superjomn) add an IR pass to remove 1-scale op.
    with program_guard(program):
        uniq_fetch_vars = []
        for i, var in enumerate(fetch_vars):
            var = layers.scale(
                var, 1., name="save_infer_model/scale_{}".format(i))
            uniq_fetch_vars.append(var)
        fetch_vars = uniq_fetch_vars

    # serialize program
    copy_program = program.clone()
    global_block = copy_program.global_block()
    remove_op_idx = []
    for i, op in enumerate(global_block.ops):
        op.desc.set_is_target(False)
        if op.type == "feed" or op.type == "fetch":
            remove_op_idx.append(i)
    for idx in remove_op_idx[::-1]:
        global_block._remove_op(idx)
    copy_program.desc.flush()

    feed_var_names = [var.name for var in feed_vars]
    copy_program = copy_program._prune_with_input(
        feeded_var_names=feed_var_names, targets=fetch_vars)
    copy_program = copy_program._inference_optimize(prune_read_op=True)
    fetch_var_names = [var.name for var in fetch_vars]
    prepend_feed_ops(copy_program, feed_var_names)
    append_fetch_ops(copy_program, fetch_var_names)
    copy_program.desc._set_version()
    return copy_program


def is_persistable(var):
    """
    Check whether the given variable is persistable.

    Args:
        var(Variable): The variable to be checked.

    Returns:
        bool: True if the given `var` is persistable
        False if not.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.fluid as fluid

            paddle.enable_static()
            param = fluid.default_main_program().global_block().var('fc.b')
            res = fluid.io.is_persistable(param)
    """
    if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
                    var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
                    var.desc.type() == core.VarDesc.VarType.READER:
        return False
    return var.persistable


@static_only
207
def serialize_program(feed_vars, fetch_vars, **kwargs):
208 209 210 211 212 213 214 215
    """
    :api_attr: Static Graph

    Serialize default main program according to feed_vars and fetch_vars.

    Args:
        feed_vars(Variable | list[Variable]): Variables needed by inference.
        fetch_vars(Variable | list[Variable]): Variables returned by inference.
216 217 218 219
        kwargs: Supported keys including 'program'.
                Attention please, kwargs is used for backward compatibility mainly.
          - program(Program): specify a program if you don't want to use default main program.

220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
    Returns:
        bytes: serialized program.

    Raises:
        ValueError: If `feed_vars` is not a Variable or a list of Variable, an exception is thrown.
        ValueError: If `fetch_vars` is not a Variable or a list of Variable, an exception is thrown.

    Examples:
        .. code-block:: python

            import paddle

            paddle.enable_static()

            path_prefix = "./infer_model"

            # User defined network, here a softmax regession example
            image = paddle.static.data(name='img', shape=[None, 28, 28], dtype='float32')
            label = paddle.static.data(name='label', shape=[None, 1], dtype='int64')
            predict = paddle.static.nn.fc(image, 10, activation='softmax')

            loss = paddle.nn.functional.cross_entropy(predict, label)

            exe = paddle.static.Executor(paddle.CPUPlace())
            exe.run(paddle.static.default_startup_program())

            # serialize the default main program to bytes.
            serialized_program = paddle.static.serialize_program([image], [predict])

            # deserialize bytes to program
            deserialized_program = paddle.static.deserialize_program(serialized_program)

    """
    # verify feed_vars
    _check_vars('feed_vars', feed_vars)
    # verify fetch_vars
    _check_vars('fetch_vars', fetch_vars)

258
    program = _get_valid_program(kwargs.get('program', None))
259 260 261 262 263 264 265 266 267 268 269 270
    program = _normalize_program(program, feed_vars, fetch_vars)
    return _serialize_program(program)


def _serialize_program(program):
    """
    serialize given program to bytes.
    """
    return program.desc.serialize_to_string()


@static_only
271
def serialize_persistables(feed_vars, fetch_vars, executor, **kwargs):
272 273 274 275 276 277 278 279
    """
    :api_attr: Static Graph

    Serialize parameters using given executor and default main program according to feed_vars and fetch_vars.

    Args:
        feed_vars(Variable | list[Variable]): Variables needed by inference.
        fetch_vars(Variable | list[Variable]): Variables returned by inference.
280 281 282 283
        kwargs: Supported keys including 'program'.
                Attention please, kwargs is used for backward compatibility mainly.
          - program(Program): specify a program if you don't want to use default main program.

284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
    Returns:
        bytes: serialized program.

    Raises:
        ValueError: If `feed_vars` is not a Variable or a list of Variable, an exception is thrown.
        ValueError: If `fetch_vars` is not a Variable or a list of Variable, an exception is thrown.

    Examples:
        .. code-block:: python

            import paddle

            paddle.enable_static()

            path_prefix = "./infer_model"

            # User defined network, here a softmax regession example
            image = paddle.static.data(name='img', shape=[None, 28, 28], dtype='float32')
            label = paddle.static.data(name='label', shape=[None, 1], dtype='int64')
            predict = paddle.static.nn.fc(image, 10, activation='softmax')

            loss = paddle.nn.functional.cross_entropy(predict, label)

            exe = paddle.static.Executor(paddle.CPUPlace())
            exe.run(paddle.static.default_startup_program())

            # serialize parameters to bytes.
            serialized_params = paddle.static.serialize_persistables([image], [predict], exe)

            # deserialize bytes to parameters.
            main_program = paddle.static.default_main_program()
            deserialized_params = paddle.static.deserialize_persistables(main_program, serialized_params, exe)

    """
    # verify feed_vars
    _check_vars('feed_vars', feed_vars)
    # verify fetch_vars
    _check_vars('fetch_vars', fetch_vars)

323
    program = _get_valid_program(kwargs.get('program', None))
324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
    program = _normalize_program(program, feed_vars, fetch_vars)
    return _serialize_persistables(program, executor)


def _serialize_persistables(program, executor):
    """
    Serialize parameters using given program and executor.
    """
    vars_ = list(filter(is_persistable, program.list_vars()))
    # warn if no variable found in model
    if len(vars_) == 0:
        warnings.warn("no variable in your model, please ensure there are any "
                      "variables in your model to save")
        return None
    # create a new program and clone persitable vars to it
    save_program = Program()
    save_block = save_program.global_block()
    save_var_map = {}
    for var in vars_:
        if var.type != core.VarDesc.VarType.RAW:
            var_copy = _clone_var_in_block(save_block, var)
            save_var_map[var_copy.name] = var

    # create in_vars and out_var, then append a save_combine op to save_program
    in_vars = []
    for name in sorted(save_var_map.keys()):
        in_vars.append(save_var_map[name])

    out_var_name = unique_name.generate("out_var")
    out_var = save_block.create_var(
        type=core.VarDesc.VarType.RAW, name=out_var_name)
    out_var.desc.set_persistable(True)
    save_block.append_op(
        type='save_combine',
        inputs={'X': in_vars},
        outputs={'Y': out_var},
        attrs={'file_path': '',
               'save_to_memory': True})
    # run save_program to save vars
    # NOTE(zhiqiu): save op will add variable kLookupTablePath to save_program.desc,
    # which leads to diff between save_program and its desc. Call _sync_with_cpp
    # to keep consistency.
    save_program._sync_with_cpp()
    executor.run(save_program)
    # return serialized bytes in out_var
    return global_scope().find_var(out_var_name).get_bytes()


def save_to_file(path, content):
    """
    Save content to given path.
    Args:
        path(str): Path to write content to.
        content(bytes): Content to write.
    Returns:
        None
    """

    if not isinstance(content, bytes):
        raise ValueError("'content' type should be bytes.")
    with open(path, "wb") as f:
        f.write(content)


388
@static_only
389 390
def save_inference_model(path_prefix, feed_vars, fetch_vars, executor,
                         **kwargs):
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
    """
    :api_attr: Static Graph

    Save current model and its parameters to given path. i.e.
    Given path_prefix = "/path/to/modelname", after invoking
    save_inference_model(path_prefix, feed_vars, fetch_vars, executor),
    you will find two files named modelname.pdmodel and modelname.pdiparams
    under "/path/to", which represent your model and parameters respectively.

    Args:
        path_prefix(str): Directory path to save model + model name without suffix.
        feed_vars(Variable | list[Variable]): Variables needed by inference.
        fetch_vars(Variable | list[Variable]): Variables returned by inference.
        executor(Executor): The executor that saves the inference model. You can refer
                            to :ref:`api_guide_executor_en` for more details.
406 407 408
        kwargs: Supported keys including 'program'.
                Attention please, kwargs is used for backward compatibility mainly.
          - program(Program): specify a program if you don't want to use default main program.
409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
    Returns:
        None

    Raises:
        ValueError: If `feed_vars` is not a Variable or a list of Variable, an exception is thrown.
        ValueError: If `fetch_vars` is not a Variable or a list of Variable, an exception is thrown.

    Examples:
        .. code-block:: python

            import paddle

            paddle.enable_static()

            path_prefix = "./infer_model"

            # User defined network, here a softmax regession example
426 427 428
            image = paddle.static.data(name='img', shape=[None, 28, 28], dtype='float32')
            label = paddle.static.data(name='label', shape=[None, 1], dtype='int64')
            predict = paddle.static.nn.fc(image, 10, activation='softmax')
429

430
            loss = paddle.nn.functional.cross_entropy(predict, label)
431

432 433
            exe = paddle.static.Executor(paddle.CPUPlace())
            exe.run(paddle.static.default_startup_program())
434 435 436 437

            # Feed data and train process

            # Save inference model. Note we don't save label and loss in this example
438
            paddle.static.save_inference_model(path_prefix, [image], [predict], exe)
439 440 441 442 443 444 445

            # In this example, the save_inference_mode inference will prune the default
            # main program according to the network's input node (img) and output node(predict).
            # The pruned inference program is going to be saved in file "./infer_model.pdmodel"
            # and parameters are going to be saved in file "./infer_model.pdiparams".

    """
446

447
    # check path_prefix, set model_path and params_path
448
    path_prefix = _normalize_path_prefix(path_prefix)
449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
    try:
        # mkdir may conflict if pserver and trainer are running on the same machine
        dirname = os.path.dirname(path_prefix)
        os.makedirs(dirname)
    except OSError as e:
        if e.errno != errno.EEXIST:
            raise
    model_path = path_prefix + ".pdmodel"
    params_path = path_prefix + ".pdiparams"
    if os.path.isdir(model_path):
        raise ValueError("'{}' is an existing directory.".format(model_path))
    if os.path.isdir(params_path):
        raise ValueError("'{}' is an existing directory.".format(params_path))

    # verify feed_vars
464
    _check_vars('feed_vars', feed_vars)
465
    # verify fetch_vars
466
    _check_vars('fetch_vars', fetch_vars)
467

468
    program = _get_valid_program(kwargs.get('program', None))
469 470 471 472 473 474 475
    program = _normalize_program(program, feed_vars, fetch_vars)
    # serialize and save program
    program_bytes = _serialize_program(program)
    save_to_file(model_path, program_bytes)
    # serialize and save params
    params_bytes = _serialize_persistables(program, executor)
    save_to_file(params_path, params_bytes)
476

477

478 479 480 481
@static_only
def deserialize_program(data):
    """
    :api_attr: Static Graph
482

483 484 485 486
    Deserialize given data to a program.

    Args:
        data(bytes): serialized program.
487

488 489
    Returns:
        Program: deserialized program.
490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515

    Examples:
        .. code-block:: python

            import paddle

            paddle.enable_static()

            path_prefix = "./infer_model"

            # User defined network, here a softmax regession example
            image = paddle.static.data(name='img', shape=[None, 28, 28], dtype='float32')
            label = paddle.static.data(name='label', shape=[None, 1], dtype='int64')
            predict = paddle.static.nn.fc(image, 10, activation='softmax')

            loss = paddle.nn.functional.cross_entropy(predict, label)

            exe = paddle.static.Executor(paddle.CPUPlace())
            exe.run(paddle.static.default_startup_program())

            # serialize the default main program to bytes.
            serialized_program = paddle.static.serialize_program([image], [predict])

            # deserialize bytes to program
            deserialized_program = paddle.static.deserialize_program(serialized_program)

516 517 518 519 520 521 522 523 524 525 526 527 528 529
    """
    program = Program.parse_from_string(data)
    if not core._is_program_version_supported(program._version()):
        raise ValueError("Unsupported program version: %d\n" %
                         program._version())
    return program


@static_only
def deserialize_persistables(program, data, executor):
    """
    :api_attr: Static Graph

    Deserialize given data to parameters according to given program and executor.
530

531 532 533 534
    Args:
        program(Program): program that contains parameter names (to deserialize).
        data(bytes): serialized parameters.
        executor(Executor): executor used to run load op.
535

536 537
    Returns:
        Program: deserialized program.
538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565

    Examples:
        .. code-block:: python

            import paddle

            paddle.enable_static()

            path_prefix = "./infer_model"

            # User defined network, here a softmax regession example
            image = paddle.static.data(name='img', shape=[None, 28, 28], dtype='float32')
            label = paddle.static.data(name='label', shape=[None, 1], dtype='int64')
            predict = paddle.static.nn.fc(image, 10, activation='softmax')

            loss = paddle.nn.functional.cross_entropy(predict, label)

            exe = paddle.static.Executor(paddle.CPUPlace())
            exe.run(paddle.static.default_startup_program())

            # serialize parameters to bytes.
            serialized_params = paddle.static.serialize_persistables([image], [predict], exe)

            # deserialize bytes to parameters.
            main_program = paddle.static.default_main_program()
            deserialized_params = paddle.static.deserialize_persistables(main_program, serialized_params, exe)


566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631
    """
    if not isinstance(program, Program):
        raise TypeError(
            "program type must be `fluid.Program`, but received `%s`" %
            type(program))
    # load params to a tmp program
    load_program = Program()
    load_block = load_program.global_block()
    vars_ = list(filter(is_persistable, program.list_vars()))

    origin_shape_map = {}
    load_var_map = {}
    check_vars = []
    sparse_vars = []
    for var in vars_:
        assert isinstance(var, Variable)
        if var.type == core.VarDesc.VarType.RAW:
            continue
        if isinstance(var, Parameter):
            origin_shape_map[var.name] = tuple(var.desc.get_shape())
        if var.type == core.VarDesc.VarType.SELECTED_ROWS:
            sparse_vars.append(var)
            continue
        var_copy = _clone_var_in_block(load_block, var)
        check_vars.append(var)
        load_var_map[var_copy.name] = var_copy

    # append load_combine op to load parameters,
    load_var_list = []
    for name in sorted(load_var_map.keys()):
        load_var_list.append(load_var_map[name])
    load_block.append_op(
        type='load_combine',
        inputs={},
        outputs={"Out": load_var_list},
        # if load from memory, file_path is data
        attrs={'file_path': data,
               'model_from_memory': True})
    executor.run(load_program)
    # check var shape
    for var in check_vars:
        if not isinstance(var, Parameter):
            continue
        var_tmp = paddle.fluid.global_scope().find_var(var.name)
        assert var_tmp != None, "can't not find var: " + var.name
        new_shape = (np.array(var_tmp.get_tensor())).shape
        assert var.name in origin_shape_map, var.name + " MUST in var list."
        origin_shape = origin_shape_map.get(var.name)
        if new_shape != origin_shape:
            raise RuntimeError(
                "Shape mismatch, program needs a parameter with shape ({}), "
                "but the loaded parameter ('{}') has a shape of ({}).".format(
                    origin_shape, var.name, new_shape))


def load_from_file(path):
    """
    Load file in binary mode.
    Args:
        path(str): Path of an existed file.
    Returns:
        bytes: Content of file.
    """
    with open(path, 'rb') as f:
        data = f.read()
    return data
632 633 634


@static_only
635
def load_inference_model(path_prefix, executor, **kwargs):
636 637 638 639 640 641 642 643 644 645 646 647
    """
    :api_attr: Static Graph

    Load inference model from a given path. By this API, you can get the model
    structure(Inference Program) and model parameters.

    Args:
        path_prefix(str | None): One of the following:
          - Directory path to save model + model name without suffix.
          - Set to None when reading the model from memory.
        executor(Executor): The executor to run for loading inference model.
                            See :ref:`api_guide_executor_en` for more details about it.
648 649 650 651
        kwargs: Supported keys including 'model_filename', 'params_filename'.
                Attention please, kwargs is used for backward compatibility mainly.
          - model_filename(str): specify model_filename if you don't want to use default name.
          - params_filename(str): specify params_filename if you don't want to use default name.
652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673

    Returns:
        list: The return of this API is a list with three elements:
        (program, feed_target_names, fetch_targets). The `program` is a
        ``Program`` (refer to :ref:`api_guide_Program_en`), which is used for inference.
        The `feed_target_names` is a list of ``str``, which contains names of variables
        that need to feed data in the inference program. The `fetch_targets` is a list of
        ``Variable`` (refer to :ref:`api_guide_Program_en`). It contains variables from which
        we can get inference results.

    Raises:
        ValueError: If `path_prefix.pdmodel` or `path_prefix.pdiparams`  doesn't exist.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

            paddle.enable_static()

            # Build the model
674 675 676 677 678 679 680 681 682
            startup_prog = paddle.static.default_startup_program()
            main_prog = paddle.static.default_main_program()
            with paddle.static.program_guard(main_prog, startup_prog):
                image = paddle.static.data(name="img", shape=[64, 784])
                w = paddle.create_parameter(shape=[784, 200], dtype='float32')
                b = paddle.create_parameter(shape=[200], dtype='float32')
                hidden_w = paddle.matmul(x=image, y=w)
                hidden_b = paddle.add(hidden_w, b)
            exe = paddle.static.Executor(paddle.CPUPlace())
683 684 685 686
            exe.run(startup_prog)

            # Save the inference model
            path_prefix = "./infer_model"
687
            paddle.static.save_inference_model(path_prefix, [image], [hidden_b], exe)
688 689

            [inference_program, feed_target_names, fetch_targets] = (
690
                paddle.static.load_inference_model(path_prefix, exe))
691
            tensor_img = np.array(np.random.random((64, 784)), dtype=np.float32)
692 693 694 695 696 697 698 699 700 701 702
            results = exe.run(inference_program,
                          feed={feed_target_names[0]: tensor_img},
                          fetch_list=fetch_targets)

            # In this example, the inference program was saved in file
            # "./infer_model.pdmodel" and parameters were saved in file
            # " ./infer_model.pdiparams".
            # By the inference program, feed_target_names and
            # fetch_targets, we can use an executor to run the inference
            # program to get the inference result.
    """
703
    # check kwargs
704
    supported_args = ('model_filename', 'params_filename')
705
    deprecated_args = ('pserver_endpoints', )
706
    caller = inspect.currentframe().f_code.co_name
707
    _check_args(caller, kwargs, supported_args, deprecated_args)
708 709 710 711

    # load from memory
    if path_prefix is None:
        _logger.warning("Load inference model from memory is deprecated.")
712 713
        model_filename = kwargs.get('model_filename', None)
        params_filename = kwargs.get('params_filename', None)
714 715
        if params_filename is None:
            raise ValueError(
716
                "params_filename cannot be None when path_prefix is None.")
717 718
        load_dirname = ''
        program_bytes = model_filename
719 720 721 722
        params_filename = params_filename
    # load from file
    else:
        # check and norm path_prefix
723
        path_prefix = _normalize_path_prefix(path_prefix)
724 725 726

        # set model_path and params_path in new way,
        # path_prefix represents a file path without suffix in this case.
727
        if not kwargs:
728 729 730 731 732
            model_path = path_prefix + ".pdmodel"
            params_path = path_prefix + ".pdiparams"
        # set model_path and params_path in old way for compatible,
        # path_prefix represents a directory path.
        else:
733 734
            model_filename = kwargs.get('model_filename', None)
            params_filename = kwargs.get('params_filename', None)
735 736 737 738
            # set model_path
            if model_filename is None:
                model_path = os.path.join(path_prefix, "__model__")
            else:
739 740
                model_path = os.path.join(path_prefix,
                                          model_filename + ".pdmodel")
741 742 743 744 745 746
                if not os.path.exists(model_path):
                    model_path = os.path.join(path_prefix, model_filename)
            # set params_path
            if params_filename is None:
                params_path = os.path.join(path_prefix, "")
            else:
747 748
                params_path = os.path.join(path_prefix,
                                           params_filename + ".pdiparams")
749 750 751
                if not os.path.exists(params_path):
                    params_path = os.path.join(path_prefix, params_filename)
            _logger.warning("The old way to load inference model is deprecated."
752 753
                            " model path: {}, params path: {}".format(
                                model_path, params_path))
754
        program_bytes = load_from_file(model_path)
755 756 757
        load_dirname = os.path.dirname(params_path)
        params_filename = os.path.basename(params_path)

758 759 760 761 762 763 764
    # deserialize bytes to program
    program = deserialize_program(program_bytes)
    # load params data
    params_path = os.path.join(load_dirname, params_filename)
    params_bytes = load_from_file(params_path)
    # deserialize bytes to params
    deserialize_persistables(program, params_bytes, executor)
765 766 767 768 769 770 771 772

    feed_target_names = program.desc.get_feed_target_names()
    fetch_target_names = program.desc.get_fetch_target_names()
    fetch_targets = [
        program.global_block().var(name) for name in fetch_target_names
    ]

    return [program, feed_target_names, fetch_targets]