# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. __all__ = [] from paddle import _C_ops from paddle.fluid.framework import dygraph_only from paddle import in_dynamic_mode from paddle.fluid.layer_helper import LayerHelper def relu(x, name=None): """ sparse relu activation, requiring x to be a SparseCooTensor or SparseCsrTensor. .. math:: out = max(x, 0) Parameters: x (Tensor): The input Sparse Tensor with data type float32, float64. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: A Sparse Tensor with the same data type and shape as ``x`` . Examples: .. code-block:: python import paddle dense_x = paddle.to_tensor([-2., 0., 1.]) sparse_x = dense_x.to_sparse_coo(1) out = paddle.sparse.nn.functional.relu(sparse_x) # [0., 0., 1.] """ if in_dynamic_mode(): return _C_ops.sparse_relu(x) else: op_type = 'sparse_relu' helper = LayerHelper(op_type) out = helper.create_sparse_variable_for_type_inference(x.dtype) helper.append_op( type=op_type, inputs={'x': x}, outputs={'out': out}, attrs={} ) return out @dygraph_only def softmax(x, axis=-1, name=None): r""" sparse softmax activation, requiring x to be a SparseCooTensor or SparseCsrTensor. Note: Only support axis=-1 for SparseCsrTensor, which is faster when read data by row (axis=-1). From the point of view of dense matrix, for each row :math:`i` and each column :math:`j` in the matrix, we have: .. math:: softmax_ij = \frac{\exp(x_ij - max_j(x_ij))}{\sum_j(exp(x_ij - max_j(x_ij))} Parameters: x (Tensor): The input tensor. It can be SparseCooTensor/SparseCsrTensor. The data type can be float32 or float64. axis (int, optional): The axis along which to perform softmax calculations. Only support -1 for SparseCsrTensor. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: Tensor: SparseCoo or SparseCsr, whose layout is the same with `x` . Examples: .. code-block:: python import paddle paddle.seed(100) mask = paddle.rand((3, 4)) < 0.5 x = paddle.rand((3, 4)) * mask print(x) # Tensor(shape=[3, 4], dtype=float32, place=Place(gpu:0), stop_gradient=True, # [[0.83438963, 0.70008713, 0. , 0.88831252], # [0.02200012, 0. , 0.75432241, 0.65136462], # [0.96088767, 0.82938021, 0.35367414, 0.86653489]]) csr = x.to_sparse_csr() print(csr) # Tensor(shape=[3, 4], dtype=paddle.float32, place=Place(gpu:0), stop_gradient=True, # crows=[0 , 3 , 6 , 10], # cols=[0, 1, 3, 0, 2, 3, 0, 1, 2, 3], # values=[0.83438963, 0.70008713, 0.88831252, 0.02200012, 0.75432241, # 0.65136462, 0.96088767, 0.82938021, 0.35367414, 0.86653489]) out = paddle.sparse.nn.functional.softmax(csr) print(out) # Tensor(shape=[3, 4], dtype=paddle.float32, place=Place(gpu:0), stop_gradient=True, # crows=[0 , 3 , 6 , 10], # cols=[0, 1, 3, 0, 2, 3, 0, 1, 2, 3], # values=[0.34132850, 0.29843223, 0.36023921, 0.20176248, 0.41964680, # 0.37859070, 0.30015594, 0.26316854, 0.16354506, 0.27313042]) """ return _C_ops.sparse_softmax(x, axis) @dygraph_only def relu6(x, name=None): """ sparse relu6 activation, requiring x to be a SparseCooTensor or SparseCsrTensor. .. math:: relu6(x) = min(max(0, x), 6) Parameters: x (Tensor): The input Sparse Tensor with data type float32, float64. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: A Sparse Tensor with the same data type and shape as ``x`` . Examples: .. code-block:: python import paddle dense_x = paddle.to_tensor([-2., 0., 8.]) sparse_x = dense_x.to_sparse_coo(1) out = paddle.sparse.nn.functional.relu6(sparse_x) """ return _C_ops.sparse_relu6(x) @dygraph_only def leaky_relu(x, negative_slope=0.01, name=None): r""" sparse leaky_relu activation, requiring x to be a SparseCooTensor or SparseCsrTensor. .. math:: leaky\_relu(x)= \left\{ \begin{array}{rcl} x, & & if \ x >= 0 \\ negative\_slope * x, & & otherwise \\ \end{array} \right. Parameters: x (Tensor): The input Sparse Tensor with data type float32, float64. negative_slope (float, optional): Slope of the activation function at :math:`x < 0` . Default is 0.01. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: A Sparse Tensor with the same data type and shape as ``x`` . Examples: .. code-block:: python import paddle dense_x = paddle.to_tensor([-2., 0., 5.]) sparse_x = dense_x.to_sparse_coo(1) out = paddle.sparse.nn.functional.leaky_relu(sparse_x, 0.5) """ return _C_ops.sparse_leaky_relu(x, negative_slope)