test_slice_op.py 32.4 KB
Newer Older
W
whs 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
16 17

import gradient_checker
W
whs 已提交
18
import numpy as np
19
from decorator_helper import prog_scope
20
from op_test import OpTest, convert_float_to_uint16
21

22
import paddle
23 24
import paddle.fluid as fluid
import paddle.fluid.core as core
25
from paddle.tensor.manipulation import tensor_array_to_tensor
W
whs 已提交
26

27 28
paddle.enable_static()

W
whs 已提交
29

30 31
# Situation 1: starts(list, no tensor), ends(list, no tensor)
# 1.1 without attr(decrease)
W
whs 已提交
32 33 34
class TestSliceOp(OpTest):
    def setUp(self):
        self.op_type = "slice"
X
xiaoguoguo626807 已提交
35 36
        self.prim_op_type = "prim"
        self.python_api = paddle.slice
W
whs 已提交
37 38 39 40 41 42
        self.config()
        self.inputs = {'Input': self.input}
        self.outputs = {'Out': self.out}
        self.attrs = {
            'axes': self.axes,
            'starts': self.starts,
43
            'ends': self.ends,
44
            'infer_flags': self.infer_flags,
W
whs 已提交
45 46 47
        }

    def config(self):
48
        self.input = np.random.random([3, 4, 5, 6]).astype("float64")
W
whs 已提交
49 50 51
        self.starts = [1, 0, 2]
        self.ends = [3, 3, 4]
        self.axes = [0, 1, 2]
52
        self.infer_flags = [1, 1, 1]
W
whs 已提交
53 54 55
        self.out = self.input[1:3, 0:3, 2:4, :]

    def test_check_output(self):
56
        self.check_output()
W
whs 已提交
57

58
    def test_check_grad_normal(self):
X
xiaoguoguo626807 已提交
59 60 61
        self.check_grad(
            ['Input'], 'Out', max_relative_error=0.006, check_prim=True
        )
62

W
whs 已提交
63

64 65
class TestCase1(TestSliceOp):
    def config(self):
66
        self.input = np.random.random([3, 4, 5, 6]).astype("float64")
67 68 69 70 71 72 73 74 75
        self.starts = [-3, 0, 2]
        self.ends = [3, 100, -1]
        self.axes = [0, 1, 2]
        self.infer_flags = [1, 1, 1]
        self.out = self.input[-3:3, 0:100, 2:-1, :]


class TestCase2(TestSliceOp):
    def config(self):
76
        self.input = np.random.random([3, 4, 5, 6]).astype("float64")
77 78 79 80 81 82 83
        self.starts = [-3, 0, 2]
        self.ends = [3, 100, -1]
        self.axes = [0, 1, 3]
        self.infer_flags = [1, 1, 1]
        self.out = self.input[-3:3, 0:100, :, 2:-1]


84 85 86
class TestSliceZerosShapeTensor(OpTest):
    def setUp(self):
        self.op_type = "slice"
X
xiaoguoguo626807 已提交
87 88
        self.prim_op_type = "prim"
        self.python_api = paddle.slice
89 90 91 92 93 94 95 96
        self.config()
        self.inputs = {'Input': self.input}
        self.outputs = {'Out': self.out}
        self.attrs = {
            'axes': self.axes,
            'starts': self.starts,
            'ends': self.ends,
            'infer_flags': self.infer_flags,
97
            'use_mkldnn': True,
98 99 100 101 102 103 104 105 106 107 108 109 110 111
        }

    def config(self):
        self.input = np.random.random([0, 0, 0]).astype("float32")
        self.starts = [1]
        self.ends = [2]
        self.axes = [0]
        self.infer_flags = []
        self.out = self.input[1:2]

    def test_check_output(self):
        self.check_output_with_place(paddle.CPUPlace())


112
# 1.2 with attr(decrease)
H
Hongyu Liu 已提交
113 114
class TestSliceOp_decs_dim(OpTest):
    def setUp(self):
115
        self.enable_cinn = True
H
Hongyu Liu 已提交
116
        self.op_type = "slice"
X
xiaoguoguo626807 已提交
117 118
        self.prim_op_type = "prim"
        self.python_api = paddle.slice
H
Hongyu Liu 已提交
119 120 121 122 123 124 125
        self.config()
        self.inputs = {'Input': self.input}
        self.outputs = {'Out': self.out}
        self.attrs = {
            'axes': self.axes,
            'starts': self.starts,
            'ends': self.ends,
126
            'infer_flags': self.infer_flags,
H
Hongyu Liu 已提交
127 128 129 130
            'decrease_axis': self.decrease_axis,
        }

    def config(self):
131
        self.input = np.random.random([3, 4, 5, 6]).astype("float64")
H
Hongyu Liu 已提交
132 133 134 135
        self.starts = [1, 0, 2]
        self.ends = [2, 3, 4]
        self.axes = [0, 1, 2]
        self.decrease_axis = [0]
136
        self.infer_flags = [1, 1, 1]
H
Hongyu Liu 已提交
137 138 139
        self.out = self.input[1, 0:3, 2:4, :]

    def test_check_output(self):
140
        self.check_output()
H
Hongyu Liu 已提交
141 142

    def test_check_grad_normal(self):
X
xiaoguoguo626807 已提交
143 144 145
        self.check_grad(
            ['Input'], 'Out', max_relative_error=0.006, check_prim=True
        )
H
Hongyu Liu 已提交
146 147


148 149
class TestSliceOp_decs_dim_2(TestSliceOp_decs_dim):
    def config(self):
150
        self.enable_cinn = True
151
        self.input = np.random.random([3, 4, 5, 6]).astype("float64")
152 153 154 155 156 157 158 159 160 161
        self.starts = [1, 0, 2]
        self.ends = [2, 1, 4]
        self.axes = [0, 1, 2]
        self.decrease_axis = [0, 1]
        self.infer_flags = [1, 1, 1]
        self.out = self.input[1, 0, 2:4, :]


class TestSliceOp_decs_dim_3(TestSliceOp_decs_dim):
    def config(self):
162
        self.enable_cinn = True
163
        self.input = np.random.random([3, 4, 5, 6]).astype("float64")
164 165 166 167 168 169 170 171 172 173
        self.starts = [-1, 0, 2]
        self.ends = [1000000, 1, 4]
        self.axes = [0, 1, 2]
        self.decrease_axis = [0, 1]
        self.infer_flags = [1, 1, 1]
        self.out = self.input[-1, 0, 2:4, :]


class TestSliceOp_decs_dim_4(TestSliceOp_decs_dim):
    def config(self):
X
xiaoguoguo626807 已提交
174
        self.enable_cinn = True
175
        self.input = np.random.random([3, 4, 5, 7]).astype("float64")
176 177 178 179 180 181 182 183 184 185
        self.starts = [0, 1, 2, 3]
        self.ends = [1, 2, 3, 4]
        self.axes = [0, 1, 2, 3]
        self.decrease_axis = [0, 1, 2, 3]
        self.infer_flags = [1, 1, 1]
        self.out = self.input[0, 1, 2, 3:4]


class TestSliceOp_decs_dim_5(TestSliceOp_decs_dim):
    def config(self):
186
        self.enable_cinn = True
187
        self.input = np.random.random([3, 4, 5, 6]).astype("float64")
188 189 190 191 192 193 194 195
        self.starts = [-1]
        self.ends = [1000000]
        self.axes = [3]
        self.decrease_axis = [3]
        self.infer_flags = [1, 1, 1]
        self.out = self.input[:, :, :, -1]


X
xiaoguoguo626807 已提交
196
# test_6 with test_2 with test_3
197 198
class TestSliceOp_decs_dim_6(TestSliceOp_decs_dim):
    def config(self):
199
        self.enable_cinn = True
200
        self.input = np.random.random([3, 4, 5, 6]).astype("float64")
201 202 203 204 205 206 207 208 209 210 211
        self.starts = [0, 1, 2, 3]
        self.ends = [1, 2, 3, 4]
        self.axes = [0, 1, 2, 3]
        self.decrease_axis = [0, 1, 2, 3]
        self.infer_flags = [1, 1, 1]
        self.out = self.input[0, 1, 2, 3:4]


# Situation 2: starts(list, have tensor), ends(list, no tensor)
# without attr(decrease)
class TestSliceOp_starts_ListTensor(OpTest):
H
Hongyu Liu 已提交
212 213
    def setUp(self):
        self.op_type = "slice"
X
xiaoguoguo626807 已提交
214
        self.python_api = paddle.slice
H
Hongyu Liu 已提交
215
        self.config()
216 217 218

        starts_tensor = []
        for index, ele in enumerate(self.starts):
219 220 221
            starts_tensor.append(
                ("x" + str(index), np.ones((1)).astype('int64') * ele)
            )
222 223

        self.inputs = {'Input': self.input, 'StartsTensorList': starts_tensor}
H
Hongyu Liu 已提交
224 225 226
        self.outputs = {'Out': self.out}
        self.attrs = {
            'axes': self.axes,
227
            'starts': self.starts_infer,
H
Hongyu Liu 已提交
228
            'ends': self.ends,
229
            'infer_flags': self.infer_flags,
H
Hongyu Liu 已提交
230 231 232
        }

    def config(self):
233
        self.input = np.random.random([3, 4, 5, 6]).astype("float64")
H
Hongyu Liu 已提交
234
        self.starts = [1, 0, 2]
235
        self.ends = [3, 3, 4]
H
Hongyu Liu 已提交
236
        self.axes = [0, 1, 2]
237 238 239 240
        self.infer_flags = [-1, 1, -1]
        self.out = self.input[1:3, 0:3, 2:4, :]

        self.starts_infer = [-1, 0, -1]
H
Hongyu Liu 已提交
241 242

    def test_check_output(self):
243
        self.check_output()
H
Hongyu Liu 已提交
244 245

    def test_check_grad_normal(self):
246
        self.check_grad(['Input'], 'Out', max_relative_error=0.006)
H
Hongyu Liu 已提交
247 248


249 250 251
# Situation 2: starts(list, have tensor), ends(list, no tensor)
#  with attr(decrease)
class TestSliceOp_decs_dim_starts_ListTensor(OpTest):
H
Hongyu Liu 已提交
252 253
    def setUp(self):
        self.op_type = "slice"
X
xiaoguoguo626807 已提交
254
        self.python_api = paddle.slice
H
Hongyu Liu 已提交
255
        self.config()
256 257 258

        starts_tensor = []
        for index, ele in enumerate(self.starts):
259 260 261
            starts_tensor.append(
                ("x" + str(index), np.ones((1)).astype('int32') * ele)
            )
262 263 264

        self.inputs = {'Input': self.input, 'StartsTensorList': starts_tensor}

H
Hongyu Liu 已提交
265 266 267
        self.outputs = {'Out': self.out}
        self.attrs = {
            'axes': self.axes,
268
            'starts': self.starts_infer,
H
Hongyu Liu 已提交
269
            'ends': self.ends,
270
            'infer_flags': self.infer_flags,
H
Hongyu Liu 已提交
271 272 273 274
            'decrease_axis': self.decrease_axis,
        }

    def config(self):
275
        self.input = np.random.random([3, 4, 5, 6]).astype("float64")
276 277
        self.starts = [1, 0, 2]
        self.ends = [2, 3, 4]
H
Hongyu Liu 已提交
278
        self.axes = [0, 1, 2]
279 280 281 282 283
        self.decrease_axis = [0]
        self.infer_flags = [1, -1, 1]
        self.out = self.input[1, 0:3, 2:4, :]

        self.starts_infer = [1, -1, 2]
H
Hongyu Liu 已提交
284 285

    def test_check_output(self):
286
        self.check_output()
H
Hongyu Liu 已提交
287 288

    def test_check_grad_normal(self):
289
        self.check_grad(['Input'], 'Out', max_relative_error=0.006)
H
Hongyu Liu 已提交
290 291


292
class TestSliceOp_decs_dim_5_starts_ListTensor(
293 294
    TestSliceOp_decs_dim_starts_ListTensor
):
295
    def config(self):
296
        self.input = np.random.random([3, 4, 5, 6]).astype("float64")
297 298 299 300 301 302 303 304 305 306 307 308 309
        self.starts = [-1]
        self.ends = [1000000]
        self.axes = [3]
        self.decrease_axis = [3]
        self.infer_flags = [-1]
        self.out = self.input[:, :, :, -1]

        self.starts_infer = [-1]


# Situation 3: starts(tensor), ends(list, no tensor)
# with attr(decrease)
class TestSliceOp_decs_dim_starts_OneTensor(OpTest):
H
Hongyu Liu 已提交
310 311
    def setUp(self):
        self.op_type = "slice"
X
xiaoguoguo626807 已提交
312
        self.python_api = paddle.slice
H
Hongyu Liu 已提交
313
        self.config()
314 315
        self.inputs = {
            'Input': self.input,
316
            "StartsTensor": np.array(self.starts, dtype="int32"),
317
        }
H
Hongyu Liu 已提交
318 319 320
        self.outputs = {'Out': self.out}
        self.attrs = {
            'axes': self.axes,
321
            # 'starts': self.starts,
H
Hongyu Liu 已提交
322
            'ends': self.ends,
323
            'infer_flags': self.infer_flags,
H
Hongyu Liu 已提交
324 325 326 327
            'decrease_axis': self.decrease_axis,
        }

    def config(self):
328
        self.input = np.random.random([3, 4, 5, 6]).astype("float64")
329 330 331 332 333 334
        self.starts = [1, 0, 2]
        self.ends = [2, 3, 4]
        self.axes = [0, 1, 2]
        self.decrease_axis = [0]
        self.infer_flags = [-1, -1, -1]
        self.out = self.input[1, 0:3, 2:4, :]
H
Hongyu Liu 已提交
335 336

    def test_check_output(self):
337
        self.check_output()
H
Hongyu Liu 已提交
338 339

    def test_check_grad_normal(self):
340
        self.check_grad(['Input'], 'Out', max_relative_error=0.006)
H
Hongyu Liu 已提交
341 342


343 344 345
# Situation 4: starts(tensor), ends(tensor)
#  without attr(decrease)
class TestSliceOp_starts_OneTensor_ends_OneTensor(OpTest):
H
Hongyu Liu 已提交
346 347
    def setUp(self):
        self.op_type = "slice"
X
xiaoguoguo626807 已提交
348
        self.python_api = paddle.slice
H
Hongyu Liu 已提交
349
        self.config()
350 351 352

        self.inputs = {
            'Input': self.input,
353
            "StartsTensor": np.array(self.starts, dtype="int64"),
354
            "EndsTensor": np.array(self.ends, dtype="int32"),
355
        }
H
Hongyu Liu 已提交
356 357 358
        self.outputs = {'Out': self.out}
        self.attrs = {
            'axes': self.axes,
359 360
            # 'starts': self.starts,
            # 'ends': self.ends_infer,
361
            'infer_flags': self.infer_flags,
H
Hongyu Liu 已提交
362 363 364
        }

    def config(self):
365
        self.input = np.random.random([3, 4, 5, 6]).astype("float64")
366 367 368 369 370
        self.starts = [1, 0, 2]
        self.ends = [3, 3, 4]
        self.axes = [0, 1, 2]
        self.infer_flags = [-1, -1, -1]
        self.out = self.input[1:3, 0:3, 2:4, :]
H
Hongyu Liu 已提交
371 372

    def test_check_output(self):
373
        self.check_output()
H
Hongyu Liu 已提交
374 375

    def test_check_grad_normal(self):
376
        self.check_grad(['Input'], 'Out', max_relative_error=0.006)
H
Hongyu Liu 已提交
377 378


379 380 381 382 383
# Situation 5: starts(tensor), ends(tensor)
#  with attr(decrease)
class TestSliceOp_decs_dim_starts_and_ends_OneTensor(OpTest):
    def setUp(self):
        self.op_type = "slice"
X
xiaoguoguo626807 已提交
384
        self.python_api = paddle.slice
385 386 387
        self.config()
        self.inputs = {
            'Input': self.input,
388
            "StartsTensor": np.array(self.starts, dtype="int32"),
389
            "EndsTensor": np.array(self.ends, dtype="int32"),
390 391 392 393
        }
        self.outputs = {'Out': self.out}
        self.attrs = {
            'axes': self.axes,
394 395
            # 'starts': self.starts,
            # 'ends': self.ends,
396 397 398 399
            'infer_flags': self.infer_flags,
            'decrease_axis': self.decrease_axis,
        }

W
whs 已提交
400
    def config(self):
401
        self.input = np.random.random([3, 4, 5, 6]).astype("float64")
402 403
        self.starts = [1, 0, 2]
        self.ends = [2, 1, 4]
W
whs 已提交
404
        self.axes = [0, 1, 2]
405 406 407 408 409
        self.decrease_axis = [0, 1]
        self.infer_flags = [-1, -1, -1]
        self.out = self.input[1, 0, 2:4, :]

    def test_check_output(self):
410
        self.check_output()
411 412

    def test_check_grad_normal(self):
413
        self.check_grad(['Input'], 'Out', max_relative_error=0.006)
W
whs 已提交
414 415


416 417 418 419 420
# Situation 6: starts(tensor), ends(list, have tensor)
# without attr(decrease)
class TestSliceOp_starts_OneTensor_ends_ListTensor(OpTest):
    def setUp(self):
        self.op_type = "slice"
X
xiaoguoguo626807 已提交
421
        self.python_api = paddle.slice
422 423 424 425
        self.config()

        ends_tensor = []
        for index, ele in enumerate(self.ends):
426 427 428
            ends_tensor.append(
                ("y" + str(index), np.ones((1)).astype('int32') * ele)
            )
429 430 431

        self.inputs = {
            'Input': self.input,
432
            "StartsTensor": np.array(self.starts, dtype="int32"),
433
            'EndsTensorList': ends_tensor,
434 435 436 437
        }
        self.outputs = {'Out': self.out}
        self.attrs = {
            'axes': self.axes,
438
            # 'starts': self.starts,
439
            'ends': self.ends_infer,
440
            'infer_flags': self.infer_flags,
441 442
        }

W
whs 已提交
443
    def config(self):
444
        self.input = np.random.random([3, 4, 5, 6]).astype("float64")
445 446 447 448 449 450 451 452 453
        self.starts = [1, 0, 2]
        self.ends = [3, 3, 4]
        self.axes = [0, 1, 2]
        self.infer_flags = [-1, -1, -1]
        self.out = self.input[1:3, 0:3, 2:4, :]

        self.ends_infer = [-1, 3, 4]

    def test_check_output(self):
454
        self.check_output()
455 456

    def test_check_grad_normal(self):
457
        self.check_grad(['Input'], 'Out', max_relative_error=0.006)
W
whs 已提交
458 459


460
# Test CUDA float16
461 462 463
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
464 465 466
class TestFP16(OpTest):
    def setUp(self):
        self.op_type = "slice"
X
xiaoguoguo626807 已提交
467 468
        self.prim_op_type = "prim"
        self.python_api = paddle.slice
469 470 471 472 473 474 475
        self.config()
        self.inputs = {'Input': self.input}
        self.outputs = {'Out': self.out}
        self.attrs = {
            'axes': self.axes,
            'starts': self.starts,
            'ends': self.ends,
476
            'infer_flags': self.infer_flags,
477 478
        }

479 480 481 482 483 484 485
    def config(self):
        self.dtype = "float16"
        self.input = np.random.random([3, 4, 5, 6]).astype(self.dtype)
        self.starts = [-3, 0, 2]
        self.ends = [3, 100, -1]
        self.axes = [0, 1, 3]
        self.out = self.input[-3:3, 0:100, :, 2:-1]
486
        self.infer_flags = [1, 1, 1]
487 488 489 490

    def test_check_output(self):
        place = core.CUDAPlace(0)
        if core.is_float16_supported(place):
491
            self.check_output_with_place(place, check_prim=True)
492 493 494

    def test_check_grad_normal(self):
        place = core.CUDAPlace(0)
X
xiaoguoguo626807 已提交
495
        print("core:", core.is_float16_supported(place))
496
        if core.is_float16_supported(place):
497
            self.check_grad_with_place(
X
xiaoguoguo626807 已提交
498 499 500 501
                place,
                ['Input'],
                'Out',
                check_prim=True,
502
            )
503 504


505 506 507
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
508 509 510
class TestFP16_2(OpTest):
    def setUp(self):
        self.op_type = "slice"
X
xiaoguoguo626807 已提交
511 512
        self.prim_op_type = "prim"
        self.python_api = paddle.slice
513 514 515 516 517 518 519
        self.config()
        self.inputs = {'Input': self.input}
        self.outputs = {'Out': self.out}
        self.attrs = {
            'axes': self.axes,
            'starts': self.starts,
            'ends': self.ends,
520
            'infer_flags': self.infer_flags,
521 522
        }

523 524
    def config(self):
        self.dtype = "float16"
Z
zhupengyang 已提交
525
        self.input = np.random.random([3, 4, 10]).astype(self.dtype)
526 527 528 529
        self.starts = [0]
        self.ends = [1]
        self.axes = [1]
        self.out = self.input[:, 0:1, :]
530
        self.infer_flags = [1]
531 532 533 534

    def test_check_output(self):
        place = core.CUDAPlace(0)
        if core.is_float16_supported(place):
535
            self.check_output_with_place(place, check_prim=True)
536 537 538 539

    def test_check_grad_normal(self):
        place = core.CUDAPlace(0)
        if core.is_float16_supported(place):
540 541 542 543 544
            self.check_grad_with_place(
                place,
                ['Input'],
                'Out',
                numeric_grad_delta=0.5,
X
xiaoguoguo626807 已提交
545
                check_prim=True,
546
            )
547 548


549 550 551
class TestBF16(OpTest):
    def setUp(self):
        self.op_type = "slice"
X
xiaoguoguo626807 已提交
552 553
        self.prim_op_type = "prim"
        self.python_api = paddle.slice
554 555 556 557 558 559 560
        self.config()
        self.inputs = {'Input': convert_float_to_uint16(self.input)}
        self.outputs = {'Out': convert_float_to_uint16(self.out)}
        self.attrs = {
            'axes': self.axes,
            'starts': self.starts,
            'ends': self.ends,
561
            'infer_flags': self.infer_flags,
562 563 564 565 566 567 568 569 570 571 572 573 574 575
        }

    def config(self):
        self.dtype = np.uint16
        self.input = np.random.random([3, 4, 5, 6]).astype(np.float32)
        self.starts = [-3, 0, 2]
        self.ends = [3, 100, -1]
        self.axes = [0, 1, 3]
        self.out = self.input[-3:3, 0:100, :, 2:-1]
        self.infer_flags = [1, 1, 1]

    def test_check_output(self):
        self.check_output()

576
    # pad not support bfloat16, so we can't test prim.
577 578 579 580
    def test_check_grad_normal(self):
        self.check_grad(['Input'], 'Out')


581
# Test python API
582
class TestSliceAPI(unittest.TestCase):
583
    def test_1(self):
584
        input = np.random.random([3, 4, 5, 6]).astype("float64")
585
        minus_1 = fluid.layers.fill_constant([1], "int32", -1)
586
        minus_3 = fluid.layers.fill_constant([1], "int64", -3)
G
GGBond8488 已提交
587 588
        starts = paddle.static.data(
            name='starts', shape=[1, 3], dtype="float32"
589
        )
G
GGBond8488 已提交
590 591 592 593
        starts.desc.set_need_check_feed(False)
        ends = paddle.static.data(name='ends', shape=[3], dtype="float32")
        ends.desc.set_need_check_feed(False)
        x = paddle.static.data(
594 595 596 597
            name="x",
            shape=[3, 4, 5, 6],
            dtype="float64",
        )
598

599 600 601
        # value_int64 is greater than 2147483647 which is the max of int32
        value_int64 = fluid.layers.fill_constant([1], "int64", 2147483648)

602 603 604 605 606 607 608 609 610
        out_1 = paddle.slice(
            x, axes=[0, 1, 2], starts=[-3, 0, 2], ends=[value_int64, 100, -1]
        )
        out_2 = paddle.slice(
            x, axes=[0, 1, 3], starts=[minus_3, 0, 2], ends=[3, 100, -1]
        )
        out_3 = paddle.slice(
            x, axes=[0, 1, 3], starts=[minus_3, 0, 2], ends=[3, 100, minus_1]
        )
611
        out_4 = paddle.slice(x, axes=[0, 1, 2], starts=starts, ends=ends)
612 613 614 615 616 617 618 619 620 621 622

        out_5 = x[-3:3, 0:100, 2:-1]
        out_6 = x[minus_3:3, 0:100, :, 2:-1]
        out_7 = x[minus_1, 0:100, :, 2:minus_1]

        exe = fluid.Executor(place=fluid.CPUPlace())
        res_1, res_2, res_3, res_4, res_5, res_6, res_7 = exe.run(
            fluid.default_main_program(),
            feed={
                "x": input,
                'starts': np.array([-3, 0, 2]).astype("int32"),
623
                'ends': np.array([3, 100, -1]).astype("int32"),
624
            },
625 626
            fetch_list=[out_1, out_2, out_3, out_4, out_5, out_6, out_7],
        )
627 628 629 630 631 632 633 634 635 636

        assert np.array_equal(res_1, input[-3:3, 0:100, 2:-1, :])
        assert np.array_equal(res_2, input[-3:3, 0:100, :, 2:-1])
        assert np.array_equal(res_3, input[-3:3, 0:100, :, 2:-1])
        assert np.array_equal(res_4, input[-3:3, 0:100, 2:-1, :])
        assert np.array_equal(res_5, input[-3:3, 0:100, 2:-1, :])
        assert np.array_equal(res_6, input[-3:3, 0:100, :, 2:-1])
        assert np.array_equal(res_7, input[-1, 0:100, :, 2:-1])


637 638 639 640 641 642 643
class TestSliceApiWithTensor(unittest.TestCase):
    def test_starts_ends_is_tensor(self):
        with paddle.fluid.dygraph.guard():
            a = paddle.rand(shape=[4, 5, 6], dtype='float32')
            axes = [0, 1, 2]
            starts = [-3, 0, 2]
            ends = [3, 2, 4]
644 645 646 647 648 649
            a_1 = paddle.slice(
                a,
                axes=axes,
                starts=paddle.to_tensor(starts, dtype='int32'),
                ends=paddle.to_tensor(ends, dtype='int32'),
            )
650 651
            a_2 = paddle.slice(a, axes=axes, starts=starts, ends=ends)

652
            np.testing.assert_array_equal(a_1.numpy(), a_2.numpy())
653

W
WeiXin 已提交
654 655 656 657 658 659 660 661 662 663 664 665 666 667
    def test_bool_tensor(self):
        with paddle.fluid.dygraph.guard():
            array = (np.arange(60).reshape([3, 4, 5]) % 3).astype('bool')
            tt = paddle.to_tensor(array)
            tt.stop_gradient = False

            starts = [0, 1, 2]
            ends = [3, 5, 4]
            axes = [0, 1, 2]

            y_paddle = paddle.slice(tt, axes, starts, ends)
            y_np = tt[0:3, 1:5, 2:4]

            self.assertTrue(paddle.bool == y_paddle.dtype)
668
            np.testing.assert_array_equal(y_paddle.numpy(), y_np)
W
WeiXin 已提交
669

670

H
hong 已提交
671 672 673
class TestSliceApiEager(unittest.TestCase):
    def test_slice_api(self):
        with paddle.fluid.dygraph.guard():
W
Weilong Wu 已提交
674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695
            a = paddle.rand(shape=[4, 5, 6], dtype='float32')
            a.stop_gradient = False
            axes = [0, 1, 2]
            starts = [-3, 0, 2]
            ends = [3, 2, 4]
            a_1 = paddle.slice(a, axes=axes, starts=starts, ends=ends)

            a_2 = paddle.slice(
                a,
                axes=axes,
                starts=paddle.to_tensor(starts),
                ends=paddle.to_tensor(ends),
            )
            np.testing.assert_array_equal(a_1.numpy(), a_2.numpy())
            a_1.backward()
            grad_truth = paddle.zeros_like(a)
            grad_truth[-3:3, 0:2, 2:4] = 1
            np.testing.assert_array_equal(grad_truth, a.gradient())

            np.testing.assert_allclose(
                a_1.numpy(), a[-3:3, 0:2, 2:4], rtol=1e-05
            )
H
hong 已提交
696 697


698 699 700 701 702 703 704 705 706
class TestSliceApiWithLoDTensorArray(unittest.TestCase):
    def setUp(self):
        self.shape = (3, 4)
        self.data = np.random.random(size=self.shape).astype('float32')
        self.idx = 0
        self.start = 0
        self.end = 2
        self.axis = 1

707 708 709 710 711
        self.place = (
            fluid.CUDAPlace(0)
            if fluid.is_compiled_with_cuda()
            else fluid.CPUPlace()
        )
712 713 714 715 716
        self.exe = fluid.Executor(self.place)

    def set_program_and_run(self, main_program, case_num):
        with fluid.program_guard(main_program):
            x = [
717 718
                fluid.data(name='x0', shape=self.shape, dtype="float32"),
                fluid.data(name='x1', shape=self.shape, dtype="float32"),
719
                fluid.data(name='x2', shape=self.shape, dtype="float32"),
720 721 722 723 724
            ]

            for each_x in x:
                each_x.stop_gradient = False

725
            arr = paddle.tensor.create_array(dtype="float32")
726
            for i in range(3):
727
                idx = paddle.tensor.array_length(arr)
728
                arr = paddle.tensor.array_write(x=x[i], i=idx, array=arr)
729 730 731 732 733

            if case_num == 1:
                self.sliced_arr = output = arr[0]

            elif case_num == 2:
734
                end = (
735
                    paddle.tensor.array_length(arr) - 1
736 737
                )  # dtype of end is int64
                self.sliced_arr = slice_arr = arr[self.start : end]
738
                output, _ = tensor_array_to_tensor(
739 740
                    slice_arr, axis=self.axis, use_stack=True
                )
741
            elif case_num == 3:
742 743 744 745
                value_int64 = fluid.layers.fill_constant(
                    [1], "int64", 2147483648
                )
                self.sliced_arr = slice_arr = arr[self.start : value_int64]
746
                output, _ = tensor_array_to_tensor(
747 748
                    slice_arr, axis=self.axis, use_stack=True
                )
749

750
            loss = paddle.sum(output)
751 752
            fluid.backward.append_backward(loss)
            g_vars = list(
753 754 755 756 757 758 759 760 761 762
                map(
                    main_program.global_block().var,
                    [each_x.name + "@GRAD" for each_x in x],
                )
            )
            self.out, self.g_x0, self.g_x1, self.g_x2 = self.exe.run(
                main_program,
                feed={'x0': self.data, 'x1': self.data, 'x2': self.data},
                fetch_list=[output] + g_vars,
            )
763 764 765 766 767 768 769

    def test_case_1(self):
        main_program = fluid.Program()
        self.set_program_and_run(main_program, 1)

        self.assertTrue(self.sliced_arr.type == core.VarDesc.VarType.LOD_TENSOR)
        self.assertEqual(self.sliced_arr.shape, self.shape)
770 771 772 773
        np.testing.assert_array_equal(self.out, self.data)
        np.testing.assert_array_equal(self.g_x0, np.ones_like(self.data))
        np.testing.assert_array_equal(self.g_x1, np.zeros_like(self.data))
        np.testing.assert_array_equal(self.g_x2, np.zeros_like(self.data))
774 775 776 777 778 779

    def test_case_2(self):
        main_program = fluid.Program()
        self.set_program_and_run(main_program, 2)

        self.assertTrue(
780 781
            self.sliced_arr.type == core.VarDesc.VarType.LOD_TENSOR_ARRAY
        )
782
        self.assertEqual(self.sliced_arr.shape, self.shape)
783
        np.testing.assert_array_equal(
784 785
            self.out, np.stack([self.data, self.data], axis=self.axis)
        )
786 787 788
        np.testing.assert_array_equal(self.g_x0, np.ones_like(self.data))
        np.testing.assert_array_equal(self.g_x1, np.ones_like(self.data))
        np.testing.assert_array_equal(self.g_x2, np.zeros_like(self.data))
789

790 791 792 793 794
    def test_case_3(self):
        main_program = fluid.Program()
        self.set_program_and_run(main_program, 3)

        self.assertTrue(
795 796
            self.sliced_arr.type == core.VarDesc.VarType.LOD_TENSOR_ARRAY
        )
797
        self.assertEqual(self.sliced_arr.shape, self.shape)
798
        np.testing.assert_array_equal(
799 800 801
            self.out,
            np.stack([self.data, self.data, self.data], axis=self.axis),
        )
802 803 804
        np.testing.assert_array_equal(self.g_x0, np.ones_like(self.data))
        np.testing.assert_array_equal(self.g_x1, np.ones_like(self.data))
        np.testing.assert_array_equal(self.g_x2, np.ones_like(self.data))
805

806

807 808 809 810 811
class TestImperativeVarBaseGetItem(unittest.TestCase):
    def test_getitem_with_long(self):
        with fluid.dygraph.guard():
            data = np.random.random((2, 80, 16128)).astype('float32')
            var = fluid.dygraph.to_variable(data)
812
            sliced = var[:, 10:, : var.shape[1]]  # var.shape[1] is 80L here
813 814
            self.assertEqual(sliced.shape, [2, 70, 80])

815
            sliced = var[:, var.shape[0] :, var.shape[0] : var.shape[1]]
816 817 818 819 820 821 822
            self.assertEqual(sliced.shape, [2, 78, 78])

    def test_getitem_with_float(self):
        def test_float_in_slice_item():
            with fluid.dygraph.guard():
                data = np.random.random((2, 80, 16128)).astype('float32')
                var = fluid.dygraph.to_variable(data)
823
                sliced = var[:, 1.1:, : var.shape[1]]
824 825 826 827 828 829 830 831 832 833 834 835

        self.assertRaises(Exception, test_float_in_slice_item)

        def test_float_in_index():
            with fluid.dygraph.guard():
                data = np.random.random((2, 80, 16128)).astype('float32')
                var = fluid.dygraph.to_variable(data)
                sliced = var[1.1]

        self.assertRaises(Exception, test_float_in_index)


836 837 838 839 840 841 842
class TestInferShape(unittest.TestCase):
    def test(self):
        x = paddle.ones(shape=[3, 4, 5])
        x.desc.set_shape([3, -1, 5])
        self.assertEqual(x.shape, (3, -1, 5))

        out0 = paddle.slice(x, axes=[1], starts=[0], ends=[3])
843
        self.assertEqual(out0.shape, (3, -1, 5))
844

845 846 847 848 849 850
    def test_axis_less_than_zero(self):
        # Using paddle.disable_static will make other unittests fail.
        with fluid.dygraph.guard():
            x_arr = np.arange(0, 24, dtype=np.float32).reshape([2, 3, 4])
            x = paddle.to_tensor(x_arr)

851 852 853 854 855 856 857 858
            pp_slice = paddle.slice(
                x,
                [
                    100,
                ],
                [0],
                [1],
            )
859
            np_slice = x_arr[:, :, 0:1]
860
            np.testing.assert_array_equal(pp_slice, np_slice)
861

862
            pp_slice = paddle.slice(x, (-100,), [0], [1])
863
            np_slice = x_arr[0:1]
864
            np.testing.assert_array_equal(pp_slice, np_slice)
865 866 867 868 869

            x_arr = np.array([], dtype=np.float32)
            x = paddle.to_tensor(np.reshape(x_arr, (0, 0, 0)))

            starts = paddle.to_tensor(
870 871
                np.reshape(np.array([], dtype=np.int32), (0,))
            )
872
            ends = paddle.to_tensor(
873 874
                np.reshape(np.array([], dtype=np.int32), (0,))
            )
875 876 877 878 879 880 881 882 883 884 885 886 887

            with self.assertRaises(ValueError):
                paddle.slice(x, [-1000000], starts, ends)

            with self.assertRaises(ValueError):
                paddle.slice(x, [1000000], starts, ends)

            with self.assertRaises(ValueError):
                paddle.slice(x, [], starts, ends)

            with self.assertRaises(ValueError):
                paddle.slice(x, 0, starts, ends)

888

889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909
class TestSliceOpError(unittest.TestCase):
    def test_dismatch_shape(self):
        with fluid.dygraph.guard():
            with self.assertRaises(ValueError):
                array = np.array([], dtype=np.float32)
                x = paddle.to_tensor(np.reshape(array, [0]), dtype='float32')
                paddle.slice(x, axes=[0], starts=[], ends=[])

            with self.assertRaises(ValueError):
                array = np.array([], dtype=np.float32)
                x = paddle.to_tensor(np.reshape(array, [0]), dtype='float32')
                paddle.slice(x, axes=[0], starts=[0], ends=[])

            # if shape match, pass
            array = np.array([], dtype=np.float32)
            x = paddle.to_tensor(np.reshape(array, [0]), dtype='float32')
            out = paddle.slice(x, axes=[0], starts=[0], ends=[0])
            self.assertEqual(out.numel(), 0)
            # self.assertEqual(out.shape)


910 911 912
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
913 914 915 916
class TestImperativeCUDAPinnedInput(unittest.TestCase):
    def test_input_cuda_pinned_var(self):
        with fluid.dygraph.guard():
            data = np.random.random((2, 80, 16128)).astype('float32')
W
Weilong Wu 已提交
917
            var = core.eager.Tensor(
918 919 920 921 922 923 924
                value=data,
                name='',
                persistable=False,
                place=fluid.CUDAPinnedPlace(),
                zero_copy=False,
            )
            sliced = var[:, 10:, : var.shape[1]]
925 926 927
            self.assertEqual(sliced.shape, [2, 70, 80])


928 929
class TestSliceDoubleGradCheck(unittest.TestCase):
    def slice_wrapper(self, x):
930 931 932
        return paddle.slice(
            x[0], axes=[0, 1, 2], starts=[-3, 0, 2], ends=[3, 2, 4]
        )
933 934 935 936 937 938 939

    @prog_scope()
    def func(self, place):
        # the shape of input variable should be clearly specified, not inlcude -1.
        eps = 0.005
        dtype = np.float32

G
GGBond8488 已提交
940
        data = paddle.static.data('data', [4, 5, 6], dtype)
941
        data.persistable = True
942 943 944
        out = paddle.slice(
            data, axes=[0, 1, 2], starts=[-3, 0, 2], ends=[3, 2, 4]
        )
945 946
        data_arr = np.random.uniform(-1, 1, data.shape).astype(dtype)

947 948 949 950 951 952
        gradient_checker.double_grad_check(
            [data], out, x_init=[data_arr], place=place, eps=eps
        )
        gradient_checker.double_grad_check_for_dygraph(
            self.slice_wrapper, [data], out, x_init=[data_arr], place=place
        )
953 954 955 956 957 958 959 960 961 962 963 964

    def test_grad(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestSliceTripleGradCheck(unittest.TestCase):
    def slice_wrapper(self, x):
965 966 967
        return paddle.slice(
            x[0], axes=[0, 1, 2], starts=[-3, 0, 2], ends=[3, 2, 4]
        )
968 969 970 971 972 973 974

    @prog_scope()
    def func(self, place):
        # the shape of input variable should be clearly specified, not inlcude -1.
        eps = 0.005
        dtype = np.float32

G
GGBond8488 已提交
975
        data = paddle.static.data('data', [4, 5, 6], dtype)
976
        data.persistable = True
977 978 979
        out = paddle.slice(
            data, axes=[0, 1, 2], starts=[-3, 0, 2], ends=[3, 2, 4]
        )
980 981
        data_arr = np.random.uniform(-1, 1, data.shape).astype(dtype)

982 983 984 985 986 987
        gradient_checker.triple_grad_check(
            [data], out, x_init=[data_arr], place=place, eps=eps
        )
        gradient_checker.triple_grad_check_for_dygraph(
            self.slice_wrapper, [data], out, x_init=[data_arr], place=place
        )
988 989 990 991 992 993 994 995 996 997

    def test_grad(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


W
whs 已提交
998
if __name__ == '__main__':
H
hong 已提交
999
    paddle.enable_static()
W
whs 已提交
1000
    unittest.main()