test_slice_op.py 33.1 KB
Newer Older
W
whs 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
16 17

import gradient_checker
W
whs 已提交
18
import numpy as np
19
from decorator_helper import prog_scope
20
from op_test import OpTest, convert_float_to_uint16
21

22
import paddle
23 24
import paddle.fluid as fluid
import paddle.fluid.core as core
25
from paddle.tensor.manipulation import tensor_array_to_tensor
W
whs 已提交
26

27 28
paddle.enable_static()

W
whs 已提交
29

30 31
# Situation 1: starts(list, no tensor), ends(list, no tensor)
# 1.1 without attr(decrease)
W
whs 已提交
32 33 34
class TestSliceOp(OpTest):
    def setUp(self):
        self.op_type = "slice"
X
xiaoguoguo626807 已提交
35 36
        self.prim_op_type = "prim"
        self.python_api = paddle.slice
37
        self.enable_cinn = True
W
whs 已提交
38 39 40 41 42 43
        self.config()
        self.inputs = {'Input': self.input}
        self.outputs = {'Out': self.out}
        self.attrs = {
            'axes': self.axes,
            'starts': self.starts,
44
            'ends': self.ends,
45
            'infer_flags': self.infer_flags,
W
whs 已提交
46 47 48
        }

    def config(self):
49
        self.input = np.random.random([3, 4, 5, 6]).astype("float64")
W
whs 已提交
50 51 52
        self.starts = [1, 0, 2]
        self.ends = [3, 3, 4]
        self.axes = [0, 1, 2]
53
        self.infer_flags = [1, 1, 1]
W
whs 已提交
54 55 56
        self.out = self.input[1:3, 0:3, 2:4, :]

    def test_check_output(self):
X
xiaoguoguo626807 已提交
57
        self.check_output(check_prim=True)
W
whs 已提交
58

59
    def test_check_grad_normal(self):
X
xiaoguoguo626807 已提交
60 61 62
        self.check_grad(
            ['Input'], 'Out', max_relative_error=0.006, check_prim=True
        )
63

W
whs 已提交
64

65 66
class TestCase1(TestSliceOp):
    def config(self):
67
        self.input = np.random.random([3, 4, 5, 6]).astype("float64")
68 69 70 71 72 73 74 75 76
        self.starts = [-3, 0, 2]
        self.ends = [3, 100, -1]
        self.axes = [0, 1, 2]
        self.infer_flags = [1, 1, 1]
        self.out = self.input[-3:3, 0:100, 2:-1, :]


class TestCase2(TestSliceOp):
    def config(self):
77
        self.enable_cinn = True
78
        self.input = np.random.random([3, 4, 5, 6]).astype("float64")
79 80 81 82 83 84 85
        self.starts = [-3, 0, 2]
        self.ends = [3, 100, -1]
        self.axes = [0, 1, 3]
        self.infer_flags = [1, 1, 1]
        self.out = self.input[-3:3, 0:100, :, 2:-1]


86 87 88
class TestSliceZerosShapeTensor(OpTest):
    def setUp(self):
        self.op_type = "slice"
X
xiaoguoguo626807 已提交
89 90
        self.prim_op_type = "prim"
        self.python_api = paddle.slice
91 92 93 94 95 96 97 98
        self.config()
        self.inputs = {'Input': self.input}
        self.outputs = {'Out': self.out}
        self.attrs = {
            'axes': self.axes,
            'starts': self.starts,
            'ends': self.ends,
            'infer_flags': self.infer_flags,
99
            'use_mkldnn': True,
100 101 102 103 104 105 106 107 108 109 110 111 112 113
        }

    def config(self):
        self.input = np.random.random([0, 0, 0]).astype("float32")
        self.starts = [1]
        self.ends = [2]
        self.axes = [0]
        self.infer_flags = []
        self.out = self.input[1:2]

    def test_check_output(self):
        self.check_output_with_place(paddle.CPUPlace())


114
# 1.2 with attr(decrease)
H
Hongyu Liu 已提交
115 116
class TestSliceOp_decs_dim(OpTest):
    def setUp(self):
117
        self.enable_cinn = True
H
Hongyu Liu 已提交
118
        self.op_type = "slice"
X
xiaoguoguo626807 已提交
119 120
        self.prim_op_type = "prim"
        self.python_api = paddle.slice
H
Hongyu Liu 已提交
121 122 123 124 125 126 127
        self.config()
        self.inputs = {'Input': self.input}
        self.outputs = {'Out': self.out}
        self.attrs = {
            'axes': self.axes,
            'starts': self.starts,
            'ends': self.ends,
128
            'infer_flags': self.infer_flags,
H
Hongyu Liu 已提交
129 130 131 132
            'decrease_axis': self.decrease_axis,
        }

    def config(self):
133
        self.input = np.random.random([3, 4, 5, 6]).astype("float64")
H
Hongyu Liu 已提交
134 135 136 137
        self.starts = [1, 0, 2]
        self.ends = [2, 3, 4]
        self.axes = [0, 1, 2]
        self.decrease_axis = [0]
138
        self.infer_flags = [1, 1, 1]
H
Hongyu Liu 已提交
139 140 141
        self.out = self.input[1, 0:3, 2:4, :]

    def test_check_output(self):
X
xiaoguoguo626807 已提交
142
        self.check_output(check_prim=True)
H
Hongyu Liu 已提交
143 144

    def test_check_grad_normal(self):
X
xiaoguoguo626807 已提交
145 146 147
        self.check_grad(
            ['Input'], 'Out', max_relative_error=0.006, check_prim=True
        )
H
Hongyu Liu 已提交
148 149


150 151
class TestSliceOp_decs_dim_2(TestSliceOp_decs_dim):
    def config(self):
152
        self.enable_cinn = True
153
        self.input = np.random.random([3, 4, 5, 6]).astype("float64")
154 155 156 157 158 159 160 161 162 163
        self.starts = [1, 0, 2]
        self.ends = [2, 1, 4]
        self.axes = [0, 1, 2]
        self.decrease_axis = [0, 1]
        self.infer_flags = [1, 1, 1]
        self.out = self.input[1, 0, 2:4, :]


class TestSliceOp_decs_dim_3(TestSliceOp_decs_dim):
    def config(self):
164
        self.enable_cinn = True
165
        self.input = np.random.random([3, 4, 5, 6]).astype("float64")
166 167 168 169 170 171 172 173 174 175
        self.starts = [-1, 0, 2]
        self.ends = [1000000, 1, 4]
        self.axes = [0, 1, 2]
        self.decrease_axis = [0, 1]
        self.infer_flags = [1, 1, 1]
        self.out = self.input[-1, 0, 2:4, :]


class TestSliceOp_decs_dim_4(TestSliceOp_decs_dim):
    def config(self):
X
xiaoguoguo626807 已提交
176
        self.enable_cinn = True
177
        self.input = np.random.random([3, 4, 5, 7]).astype("float64")
178 179 180 181 182 183 184 185 186 187
        self.starts = [0, 1, 2, 3]
        self.ends = [1, 2, 3, 4]
        self.axes = [0, 1, 2, 3]
        self.decrease_axis = [0, 1, 2, 3]
        self.infer_flags = [1, 1, 1]
        self.out = self.input[0, 1, 2, 3:4]


class TestSliceOp_decs_dim_5(TestSliceOp_decs_dim):
    def config(self):
188
        self.enable_cinn = True
189
        self.input = np.random.random([3, 4, 5, 6]).astype("float64")
190 191 192 193 194 195 196 197
        self.starts = [-1]
        self.ends = [1000000]
        self.axes = [3]
        self.decrease_axis = [3]
        self.infer_flags = [1, 1, 1]
        self.out = self.input[:, :, :, -1]


X
xiaoguoguo626807 已提交
198
# test_6 with test_2 with test_3
199 200
class TestSliceOp_decs_dim_6(TestSliceOp_decs_dim):
    def config(self):
201
        self.enable_cinn = True
202
        self.input = np.random.random([3, 4, 5, 6]).astype("float64")
203 204 205 206 207 208 209 210 211 212 213
        self.starts = [0, 1, 2, 3]
        self.ends = [1, 2, 3, 4]
        self.axes = [0, 1, 2, 3]
        self.decrease_axis = [0, 1, 2, 3]
        self.infer_flags = [1, 1, 1]
        self.out = self.input[0, 1, 2, 3:4]


# Situation 2: starts(list, have tensor), ends(list, no tensor)
# without attr(decrease)
class TestSliceOp_starts_ListTensor(OpTest):
H
Hongyu Liu 已提交
214 215
    def setUp(self):
        self.op_type = "slice"
X
xiaoguoguo626807 已提交
216 217 218
        self.prim_op_type = "prim"
        self.python_api = paddle.slice
        # self.enable_cinn = False
H
Hongyu Liu 已提交
219
        self.config()
220 221 222

        starts_tensor = []
        for index, ele in enumerate(self.starts):
223 224 225
            starts_tensor.append(
                ("x" + str(index), np.ones((1)).astype('int64') * ele)
            )
226 227

        self.inputs = {'Input': self.input, 'StartsTensorList': starts_tensor}
H
Hongyu Liu 已提交
228 229 230
        self.outputs = {'Out': self.out}
        self.attrs = {
            'axes': self.axes,
231
            'starts': self.starts_infer,
H
Hongyu Liu 已提交
232
            'ends': self.ends,
233
            'infer_flags': self.infer_flags,
H
Hongyu Liu 已提交
234 235 236
        }

    def config(self):
237
        self.input = np.random.random([3, 4, 5, 6]).astype("float64")
H
Hongyu Liu 已提交
238
        self.starts = [1, 0, 2]
239
        self.ends = [3, 3, 4]
H
Hongyu Liu 已提交
240
        self.axes = [0, 1, 2]
241 242 243 244
        self.infer_flags = [-1, 1, -1]
        self.out = self.input[1:3, 0:3, 2:4, :]

        self.starts_infer = [-1, 0, -1]
H
Hongyu Liu 已提交
245 246

    def test_check_output(self):
X
xiaoguoguo626807 已提交
247
        self.check_output(check_prim=True)
H
Hongyu Liu 已提交
248 249

    def test_check_grad_normal(self):
X
xiaoguoguo626807 已提交
250 251 252
        self.check_grad(
            ['Input'], 'Out', max_relative_error=0.006, check_prim=True
        )
H
Hongyu Liu 已提交
253 254


255 256 257
# Situation 2: starts(list, have tensor), ends(list, no tensor)
#  with attr(decrease)
class TestSliceOp_decs_dim_starts_ListTensor(OpTest):
H
Hongyu Liu 已提交
258 259
    def setUp(self):
        self.op_type = "slice"
X
xiaoguoguo626807 已提交
260 261
        self.prim_op_type = "prim"
        self.python_api = paddle.slice
H
Hongyu Liu 已提交
262
        self.config()
263 264 265

        starts_tensor = []
        for index, ele in enumerate(self.starts):
266 267 268
            starts_tensor.append(
                ("x" + str(index), np.ones((1)).astype('int32') * ele)
            )
269 270 271

        self.inputs = {'Input': self.input, 'StartsTensorList': starts_tensor}

H
Hongyu Liu 已提交
272 273 274
        self.outputs = {'Out': self.out}
        self.attrs = {
            'axes': self.axes,
275
            'starts': self.starts_infer,
H
Hongyu Liu 已提交
276
            'ends': self.ends,
277
            'infer_flags': self.infer_flags,
H
Hongyu Liu 已提交
278 279 280 281
            'decrease_axis': self.decrease_axis,
        }

    def config(self):
282
        self.input = np.random.random([3, 4, 5, 6]).astype("float64")
283 284
        self.starts = [1, 0, 2]
        self.ends = [2, 3, 4]
H
Hongyu Liu 已提交
285
        self.axes = [0, 1, 2]
286 287 288 289 290
        self.decrease_axis = [0]
        self.infer_flags = [1, -1, 1]
        self.out = self.input[1, 0:3, 2:4, :]

        self.starts_infer = [1, -1, 2]
H
Hongyu Liu 已提交
291 292

    def test_check_output(self):
X
xiaoguoguo626807 已提交
293
        self.check_output(check_prim=True)
H
Hongyu Liu 已提交
294 295

    def test_check_grad_normal(self):
X
xiaoguoguo626807 已提交
296 297 298
        self.check_grad(
            ['Input'], 'Out', max_relative_error=0.006, check_prim=True
        )
H
Hongyu Liu 已提交
299 300


301
class TestSliceOp_decs_dim_5_starts_ListTensor(
302 303
    TestSliceOp_decs_dim_starts_ListTensor
):
304
    def config(self):
305
        self.input = np.random.random([3, 4, 5, 6]).astype("float64")
306 307 308 309 310 311 312 313 314 315 316 317 318
        self.starts = [-1]
        self.ends = [1000000]
        self.axes = [3]
        self.decrease_axis = [3]
        self.infer_flags = [-1]
        self.out = self.input[:, :, :, -1]

        self.starts_infer = [-1]


# Situation 3: starts(tensor), ends(list, no tensor)
# with attr(decrease)
class TestSliceOp_decs_dim_starts_OneTensor(OpTest):
H
Hongyu Liu 已提交
319 320
    def setUp(self):
        self.op_type = "slice"
X
xiaoguoguo626807 已提交
321 322
        self.prim_op_type = "prim"
        self.python_api = paddle.slice
H
Hongyu Liu 已提交
323
        self.config()
324 325
        self.inputs = {
            'Input': self.input,
326
            "StartsTensor": np.array(self.starts, dtype="int32"),
327
        }
H
Hongyu Liu 已提交
328 329 330
        self.outputs = {'Out': self.out}
        self.attrs = {
            'axes': self.axes,
331
            # 'starts': self.starts,
H
Hongyu Liu 已提交
332
            'ends': self.ends,
333
            'infer_flags': self.infer_flags,
H
Hongyu Liu 已提交
334 335 336 337
            'decrease_axis': self.decrease_axis,
        }

    def config(self):
338
        self.input = np.random.random([3, 4, 5, 6]).astype("float64")
339 340 341 342 343 344
        self.starts = [1, 0, 2]
        self.ends = [2, 3, 4]
        self.axes = [0, 1, 2]
        self.decrease_axis = [0]
        self.infer_flags = [-1, -1, -1]
        self.out = self.input[1, 0:3, 2:4, :]
H
Hongyu Liu 已提交
345 346

    def test_check_output(self):
X
xiaoguoguo626807 已提交
347
        self.check_output(check_prim=True)
H
Hongyu Liu 已提交
348 349

    def test_check_grad_normal(self):
X
xiaoguoguo626807 已提交
350 351 352
        self.check_grad(
            ['Input'], 'Out', max_relative_error=0.006, check_prim=True
        )
H
Hongyu Liu 已提交
353 354


355 356 357
# Situation 4: starts(tensor), ends(tensor)
#  without attr(decrease)
class TestSliceOp_starts_OneTensor_ends_OneTensor(OpTest):
H
Hongyu Liu 已提交
358 359
    def setUp(self):
        self.op_type = "slice"
X
xiaoguoguo626807 已提交
360 361
        self.prim_op_type = "prim"
        self.python_api = paddle.slice
H
Hongyu Liu 已提交
362
        self.config()
363 364 365

        self.inputs = {
            'Input': self.input,
366
            "StartsTensor": np.array(self.starts, dtype="int64"),
367
            "EndsTensor": np.array(self.ends, dtype="int32"),
368
        }
H
Hongyu Liu 已提交
369 370 371
        self.outputs = {'Out': self.out}
        self.attrs = {
            'axes': self.axes,
372 373
            # 'starts': self.starts,
            # 'ends': self.ends_infer,
374
            'infer_flags': self.infer_flags,
H
Hongyu Liu 已提交
375 376 377
        }

    def config(self):
378
        self.input = np.random.random([3, 4, 5, 6]).astype("float64")
379 380 381 382 383
        self.starts = [1, 0, 2]
        self.ends = [3, 3, 4]
        self.axes = [0, 1, 2]
        self.infer_flags = [-1, -1, -1]
        self.out = self.input[1:3, 0:3, 2:4, :]
H
Hongyu Liu 已提交
384 385

    def test_check_output(self):
X
xiaoguoguo626807 已提交
386
        self.check_output(check_prim=True)
H
Hongyu Liu 已提交
387 388

    def test_check_grad_normal(self):
X
xiaoguoguo626807 已提交
389 390 391
        self.check_grad(
            ['Input'], 'Out', max_relative_error=0.006, check_prim=True
        )
H
Hongyu Liu 已提交
392 393


394 395 396 397 398
# Situation 5: starts(tensor), ends(tensor)
#  with attr(decrease)
class TestSliceOp_decs_dim_starts_and_ends_OneTensor(OpTest):
    def setUp(self):
        self.op_type = "slice"
X
xiaoguoguo626807 已提交
399 400
        self.prim_op_type = "prim"
        self.python_api = paddle.slice
401 402 403
        self.config()
        self.inputs = {
            'Input': self.input,
404
            "StartsTensor": np.array(self.starts, dtype="int32"),
405
            "EndsTensor": np.array(self.ends, dtype="int32"),
406 407 408 409
        }
        self.outputs = {'Out': self.out}
        self.attrs = {
            'axes': self.axes,
410 411
            # 'starts': self.starts,
            # 'ends': self.ends,
412 413 414 415
            'infer_flags': self.infer_flags,
            'decrease_axis': self.decrease_axis,
        }

W
whs 已提交
416
    def config(self):
417
        self.input = np.random.random([3, 4, 5, 6]).astype("float64")
418 419
        self.starts = [1, 0, 2]
        self.ends = [2, 1, 4]
W
whs 已提交
420
        self.axes = [0, 1, 2]
421 422 423 424 425
        self.decrease_axis = [0, 1]
        self.infer_flags = [-1, -1, -1]
        self.out = self.input[1, 0, 2:4, :]

    def test_check_output(self):
X
xiaoguoguo626807 已提交
426
        self.check_output(check_prim=True)
427 428

    def test_check_grad_normal(self):
X
xiaoguoguo626807 已提交
429 430 431
        self.check_grad(
            ['Input'], 'Out', max_relative_error=0.006, check_prim=True
        )
W
whs 已提交
432 433


434 435 436 437 438
# Situation 6: starts(tensor), ends(list, have tensor)
# without attr(decrease)
class TestSliceOp_starts_OneTensor_ends_ListTensor(OpTest):
    def setUp(self):
        self.op_type = "slice"
X
xiaoguoguo626807 已提交
439 440
        self.prim_op_type = "prim"
        self.python_api = paddle.slice
441 442 443 444
        self.config()

        ends_tensor = []
        for index, ele in enumerate(self.ends):
445 446 447
            ends_tensor.append(
                ("y" + str(index), np.ones((1)).astype('int32') * ele)
            )
448 449 450

        self.inputs = {
            'Input': self.input,
451
            "StartsTensor": np.array(self.starts, dtype="int32"),
452
            'EndsTensorList': ends_tensor,
453 454 455 456
        }
        self.outputs = {'Out': self.out}
        self.attrs = {
            'axes': self.axes,
457
            # 'starts': self.starts,
458
            'ends': self.ends_infer,
459
            'infer_flags': self.infer_flags,
460 461
        }

W
whs 已提交
462
    def config(self):
463
        self.input = np.random.random([3, 4, 5, 6]).astype("float64")
464 465 466 467 468 469 470 471 472
        self.starts = [1, 0, 2]
        self.ends = [3, 3, 4]
        self.axes = [0, 1, 2]
        self.infer_flags = [-1, -1, -1]
        self.out = self.input[1:3, 0:3, 2:4, :]

        self.ends_infer = [-1, 3, 4]

    def test_check_output(self):
X
xiaoguoguo626807 已提交
473
        self.check_output(check_prim=True)
474 475

    def test_check_grad_normal(self):
X
xiaoguoguo626807 已提交
476 477 478
        self.check_grad(
            ['Input'], 'Out', max_relative_error=0.006, check_prim=True
        )
W
whs 已提交
479 480


481
# Test CUDA float16
482 483 484
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
485 486
class TestFP16(OpTest):
    def setUp(self):
487
        self.enable_cinn = True
488
        self.op_type = "slice"
X
xiaoguoguo626807 已提交
489 490
        self.prim_op_type = "prim"
        self.python_api = paddle.slice
491 492 493 494 495 496 497
        self.config()
        self.inputs = {'Input': self.input}
        self.outputs = {'Out': self.out}
        self.attrs = {
            'axes': self.axes,
            'starts': self.starts,
            'ends': self.ends,
498
            'infer_flags': self.infer_flags,
499 500
        }

501 502 503 504 505 506 507
    def config(self):
        self.dtype = "float16"
        self.input = np.random.random([3, 4, 5, 6]).astype(self.dtype)
        self.starts = [-3, 0, 2]
        self.ends = [3, 100, -1]
        self.axes = [0, 1, 3]
        self.out = self.input[-3:3, 0:100, :, 2:-1]
508
        self.infer_flags = [1, 1, 1]
509 510 511 512

    def test_check_output(self):
        place = core.CUDAPlace(0)
        if core.is_float16_supported(place):
X
xiaoguoguo626807 已提交
513
            self.check_output_with_place(place, atol=1e-5, check_prim=True)
514 515 516

    def test_check_grad_normal(self):
        place = core.CUDAPlace(0)
X
xiaoguoguo626807 已提交
517
        print("core:", core.is_float16_supported(place))
518
        if core.is_float16_supported(place):
519
            self.check_grad_with_place(
X
xiaoguoguo626807 已提交
520 521 522 523 524
                place,
                ['Input'],
                'Out',
                max_relative_error=0.006,
                check_prim=True,
525
            )
526 527


528 529 530
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
531 532 533
class TestFP16_2(OpTest):
    def setUp(self):
        self.op_type = "slice"
X
xiaoguoguo626807 已提交
534 535
        self.prim_op_type = "prim"
        self.python_api = paddle.slice
536 537 538 539 540 541 542
        self.config()
        self.inputs = {'Input': self.input}
        self.outputs = {'Out': self.out}
        self.attrs = {
            'axes': self.axes,
            'starts': self.starts,
            'ends': self.ends,
543
            'infer_flags': self.infer_flags,
544 545
        }

546 547
    def config(self):
        self.dtype = "float16"
Z
zhupengyang 已提交
548
        self.input = np.random.random([3, 4, 10]).astype(self.dtype)
549 550 551 552
        self.starts = [0]
        self.ends = [1]
        self.axes = [1]
        self.out = self.input[:, 0:1, :]
553
        self.infer_flags = [1]
554 555 556 557

    def test_check_output(self):
        place = core.CUDAPlace(0)
        if core.is_float16_supported(place):
X
xiaoguoguo626807 已提交
558
            self.check_output_with_place(place, atol=1e-5, check_prim=True)
559 560 561 562

    def test_check_grad_normal(self):
        place = core.CUDAPlace(0)
        if core.is_float16_supported(place):
563 564 565 566 567 568
            self.check_grad_with_place(
                place,
                ['Input'],
                'Out',
                max_relative_error=0.006,
                numeric_grad_delta=0.5,
X
xiaoguoguo626807 已提交
569
                check_prim=True,
570
            )
571 572


573 574 575
class TestBF16(OpTest):
    def setUp(self):
        self.op_type = "slice"
X
xiaoguoguo626807 已提交
576 577
        self.prim_op_type = "prim"
        self.python_api = paddle.slice
578 579 580 581 582 583 584
        self.config()
        self.inputs = {'Input': convert_float_to_uint16(self.input)}
        self.outputs = {'Out': convert_float_to_uint16(self.out)}
        self.attrs = {
            'axes': self.axes,
            'starts': self.starts,
            'ends': self.ends,
585
            'infer_flags': self.infer_flags,
586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
        }

    def config(self):
        self.dtype = np.uint16
        self.input = np.random.random([3, 4, 5, 6]).astype(np.float32)
        self.starts = [-3, 0, 2]
        self.ends = [3, 100, -1]
        self.axes = [0, 1, 3]
        self.out = self.input[-3:3, 0:100, :, 2:-1]
        self.infer_flags = [1, 1, 1]

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
        self.check_grad(['Input'], 'Out')


604
# Test python API
605
class TestSliceAPI(unittest.TestCase):
606
    def test_1(self):
607
        input = np.random.random([3, 4, 5, 6]).astype("float64")
608
        minus_1 = fluid.layers.fill_constant([1], "int32", -1)
609
        minus_3 = fluid.layers.fill_constant([1], "int64", -3)
G
GGBond8488 已提交
610 611
        starts = paddle.static.data(
            name='starts', shape=[1, 3], dtype="float32"
612
        )
G
GGBond8488 已提交
613 614 615 616
        starts.desc.set_need_check_feed(False)
        ends = paddle.static.data(name='ends', shape=[3], dtype="float32")
        ends.desc.set_need_check_feed(False)
        x = paddle.static.data(
617 618 619 620
            name="x",
            shape=[3, 4, 5, 6],
            dtype="float64",
        )
621

622 623 624
        # value_int64 is greater than 2147483647 which is the max of int32
        value_int64 = fluid.layers.fill_constant([1], "int64", 2147483648)

625 626 627 628 629 630 631 632 633
        out_1 = paddle.slice(
            x, axes=[0, 1, 2], starts=[-3, 0, 2], ends=[value_int64, 100, -1]
        )
        out_2 = paddle.slice(
            x, axes=[0, 1, 3], starts=[minus_3, 0, 2], ends=[3, 100, -1]
        )
        out_3 = paddle.slice(
            x, axes=[0, 1, 3], starts=[minus_3, 0, 2], ends=[3, 100, minus_1]
        )
634
        out_4 = paddle.slice(x, axes=[0, 1, 2], starts=starts, ends=ends)
635 636 637 638 639 640 641 642 643 644 645

        out_5 = x[-3:3, 0:100, 2:-1]
        out_6 = x[minus_3:3, 0:100, :, 2:-1]
        out_7 = x[minus_1, 0:100, :, 2:minus_1]

        exe = fluid.Executor(place=fluid.CPUPlace())
        res_1, res_2, res_3, res_4, res_5, res_6, res_7 = exe.run(
            fluid.default_main_program(),
            feed={
                "x": input,
                'starts': np.array([-3, 0, 2]).astype("int32"),
646
                'ends': np.array([3, 100, -1]).astype("int32"),
647
            },
648 649
            fetch_list=[out_1, out_2, out_3, out_4, out_5, out_6, out_7],
        )
650 651 652 653 654 655 656 657 658 659

        assert np.array_equal(res_1, input[-3:3, 0:100, 2:-1, :])
        assert np.array_equal(res_2, input[-3:3, 0:100, :, 2:-1])
        assert np.array_equal(res_3, input[-3:3, 0:100, :, 2:-1])
        assert np.array_equal(res_4, input[-3:3, 0:100, 2:-1, :])
        assert np.array_equal(res_5, input[-3:3, 0:100, 2:-1, :])
        assert np.array_equal(res_6, input[-3:3, 0:100, :, 2:-1])
        assert np.array_equal(res_7, input[-1, 0:100, :, 2:-1])


660 661 662 663 664 665 666
class TestSliceApiWithTensor(unittest.TestCase):
    def test_starts_ends_is_tensor(self):
        with paddle.fluid.dygraph.guard():
            a = paddle.rand(shape=[4, 5, 6], dtype='float32')
            axes = [0, 1, 2]
            starts = [-3, 0, 2]
            ends = [3, 2, 4]
667 668 669 670 671 672
            a_1 = paddle.slice(
                a,
                axes=axes,
                starts=paddle.to_tensor(starts, dtype='int32'),
                ends=paddle.to_tensor(ends, dtype='int32'),
            )
673 674
            a_2 = paddle.slice(a, axes=axes, starts=starts, ends=ends)

675
            np.testing.assert_array_equal(a_1.numpy(), a_2.numpy())
676

W
WeiXin 已提交
677 678 679 680 681 682 683 684 685 686 687 688 689 690
    def test_bool_tensor(self):
        with paddle.fluid.dygraph.guard():
            array = (np.arange(60).reshape([3, 4, 5]) % 3).astype('bool')
            tt = paddle.to_tensor(array)
            tt.stop_gradient = False

            starts = [0, 1, 2]
            ends = [3, 5, 4]
            axes = [0, 1, 2]

            y_paddle = paddle.slice(tt, axes, starts, ends)
            y_np = tt[0:3, 1:5, 2:4]

            self.assertTrue(paddle.bool == y_paddle.dtype)
691
            np.testing.assert_array_equal(y_paddle.numpy(), y_np)
W
WeiXin 已提交
692

693

H
hong 已提交
694 695 696
class TestSliceApiEager(unittest.TestCase):
    def test_slice_api(self):
        with paddle.fluid.dygraph.guard():
W
Weilong Wu 已提交
697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718
            a = paddle.rand(shape=[4, 5, 6], dtype='float32')
            a.stop_gradient = False
            axes = [0, 1, 2]
            starts = [-3, 0, 2]
            ends = [3, 2, 4]
            a_1 = paddle.slice(a, axes=axes, starts=starts, ends=ends)

            a_2 = paddle.slice(
                a,
                axes=axes,
                starts=paddle.to_tensor(starts),
                ends=paddle.to_tensor(ends),
            )
            np.testing.assert_array_equal(a_1.numpy(), a_2.numpy())
            a_1.backward()
            grad_truth = paddle.zeros_like(a)
            grad_truth[-3:3, 0:2, 2:4] = 1
            np.testing.assert_array_equal(grad_truth, a.gradient())

            np.testing.assert_allclose(
                a_1.numpy(), a[-3:3, 0:2, 2:4], rtol=1e-05
            )
H
hong 已提交
719 720


721 722 723 724 725 726 727 728 729
class TestSliceApiWithLoDTensorArray(unittest.TestCase):
    def setUp(self):
        self.shape = (3, 4)
        self.data = np.random.random(size=self.shape).astype('float32')
        self.idx = 0
        self.start = 0
        self.end = 2
        self.axis = 1

730 731 732 733 734
        self.place = (
            fluid.CUDAPlace(0)
            if fluid.is_compiled_with_cuda()
            else fluid.CPUPlace()
        )
735 736 737 738 739
        self.exe = fluid.Executor(self.place)

    def set_program_and_run(self, main_program, case_num):
        with fluid.program_guard(main_program):
            x = [
740 741
                fluid.data(name='x0', shape=self.shape, dtype="float32"),
                fluid.data(name='x1', shape=self.shape, dtype="float32"),
742
                fluid.data(name='x2', shape=self.shape, dtype="float32"),
743 744 745 746 747
            ]

            for each_x in x:
                each_x.stop_gradient = False

748
            arr = paddle.tensor.create_array(dtype="float32")
749
            for i in range(3):
750
                idx = paddle.tensor.array_length(arr)
751
                arr = paddle.tensor.array_write(x=x[i], i=idx, array=arr)
752 753 754 755 756

            if case_num == 1:
                self.sliced_arr = output = arr[0]

            elif case_num == 2:
757
                end = (
758
                    paddle.tensor.array_length(arr) - 1
759 760
                )  # dtype of end is int64
                self.sliced_arr = slice_arr = arr[self.start : end]
761
                output, _ = tensor_array_to_tensor(
762 763
                    slice_arr, axis=self.axis, use_stack=True
                )
764
            elif case_num == 3:
765 766 767 768
                value_int64 = fluid.layers.fill_constant(
                    [1], "int64", 2147483648
                )
                self.sliced_arr = slice_arr = arr[self.start : value_int64]
769
                output, _ = tensor_array_to_tensor(
770 771
                    slice_arr, axis=self.axis, use_stack=True
                )
772

773
            loss = paddle.sum(output)
774 775
            fluid.backward.append_backward(loss)
            g_vars = list(
776 777 778 779 780 781 782 783 784 785
                map(
                    main_program.global_block().var,
                    [each_x.name + "@GRAD" for each_x in x],
                )
            )
            self.out, self.g_x0, self.g_x1, self.g_x2 = self.exe.run(
                main_program,
                feed={'x0': self.data, 'x1': self.data, 'x2': self.data},
                fetch_list=[output] + g_vars,
            )
786 787 788 789 790 791 792

    def test_case_1(self):
        main_program = fluid.Program()
        self.set_program_and_run(main_program, 1)

        self.assertTrue(self.sliced_arr.type == core.VarDesc.VarType.LOD_TENSOR)
        self.assertEqual(self.sliced_arr.shape, self.shape)
793 794 795 796
        np.testing.assert_array_equal(self.out, self.data)
        np.testing.assert_array_equal(self.g_x0, np.ones_like(self.data))
        np.testing.assert_array_equal(self.g_x1, np.zeros_like(self.data))
        np.testing.assert_array_equal(self.g_x2, np.zeros_like(self.data))
797 798 799 800 801 802

    def test_case_2(self):
        main_program = fluid.Program()
        self.set_program_and_run(main_program, 2)

        self.assertTrue(
803 804
            self.sliced_arr.type == core.VarDesc.VarType.LOD_TENSOR_ARRAY
        )
805
        self.assertEqual(self.sliced_arr.shape, self.shape)
806
        np.testing.assert_array_equal(
807 808
            self.out, np.stack([self.data, self.data], axis=self.axis)
        )
809 810 811
        np.testing.assert_array_equal(self.g_x0, np.ones_like(self.data))
        np.testing.assert_array_equal(self.g_x1, np.ones_like(self.data))
        np.testing.assert_array_equal(self.g_x2, np.zeros_like(self.data))
812

813 814 815 816 817
    def test_case_3(self):
        main_program = fluid.Program()
        self.set_program_and_run(main_program, 3)

        self.assertTrue(
818 819
            self.sliced_arr.type == core.VarDesc.VarType.LOD_TENSOR_ARRAY
        )
820
        self.assertEqual(self.sliced_arr.shape, self.shape)
821
        np.testing.assert_array_equal(
822 823 824
            self.out,
            np.stack([self.data, self.data, self.data], axis=self.axis),
        )
825 826 827
        np.testing.assert_array_equal(self.g_x0, np.ones_like(self.data))
        np.testing.assert_array_equal(self.g_x1, np.ones_like(self.data))
        np.testing.assert_array_equal(self.g_x2, np.ones_like(self.data))
828

829

830 831 832 833 834
class TestImperativeVarBaseGetItem(unittest.TestCase):
    def test_getitem_with_long(self):
        with fluid.dygraph.guard():
            data = np.random.random((2, 80, 16128)).astype('float32')
            var = fluid.dygraph.to_variable(data)
835
            sliced = var[:, 10:, : var.shape[1]]  # var.shape[1] is 80L here
836 837
            self.assertEqual(sliced.shape, [2, 70, 80])

838
            sliced = var[:, var.shape[0] :, var.shape[0] : var.shape[1]]
839 840 841 842 843 844 845
            self.assertEqual(sliced.shape, [2, 78, 78])

    def test_getitem_with_float(self):
        def test_float_in_slice_item():
            with fluid.dygraph.guard():
                data = np.random.random((2, 80, 16128)).astype('float32')
                var = fluid.dygraph.to_variable(data)
846
                sliced = var[:, 1.1:, : var.shape[1]]
847 848 849 850 851 852 853 854 855 856 857 858

        self.assertRaises(Exception, test_float_in_slice_item)

        def test_float_in_index():
            with fluid.dygraph.guard():
                data = np.random.random((2, 80, 16128)).astype('float32')
                var = fluid.dygraph.to_variable(data)
                sliced = var[1.1]

        self.assertRaises(Exception, test_float_in_index)


859 860 861 862 863 864 865
class TestInferShape(unittest.TestCase):
    def test(self):
        x = paddle.ones(shape=[3, 4, 5])
        x.desc.set_shape([3, -1, 5])
        self.assertEqual(x.shape, (3, -1, 5))

        out0 = paddle.slice(x, axes=[1], starts=[0], ends=[3])
866
        self.assertEqual(out0.shape, (3, -1, 5))
867

868 869 870 871 872 873
    def test_axis_less_than_zero(self):
        # Using paddle.disable_static will make other unittests fail.
        with fluid.dygraph.guard():
            x_arr = np.arange(0, 24, dtype=np.float32).reshape([2, 3, 4])
            x = paddle.to_tensor(x_arr)

874 875 876 877 878 879 880 881
            pp_slice = paddle.slice(
                x,
                [
                    100,
                ],
                [0],
                [1],
            )
882
            np_slice = x_arr[:, :, 0:1]
883
            np.testing.assert_array_equal(pp_slice, np_slice)
884

885
            pp_slice = paddle.slice(x, (-100,), [0], [1])
886
            np_slice = x_arr[0:1]
887
            np.testing.assert_array_equal(pp_slice, np_slice)
888 889 890 891 892

            x_arr = np.array([], dtype=np.float32)
            x = paddle.to_tensor(np.reshape(x_arr, (0, 0, 0)))

            starts = paddle.to_tensor(
893 894
                np.reshape(np.array([], dtype=np.int32), (0,))
            )
895
            ends = paddle.to_tensor(
896 897
                np.reshape(np.array([], dtype=np.int32), (0,))
            )
898 899 900 901 902 903 904 905 906 907 908 909 910

            with self.assertRaises(ValueError):
                paddle.slice(x, [-1000000], starts, ends)

            with self.assertRaises(ValueError):
                paddle.slice(x, [1000000], starts, ends)

            with self.assertRaises(ValueError):
                paddle.slice(x, [], starts, ends)

            with self.assertRaises(ValueError):
                paddle.slice(x, 0, starts, ends)

911

912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932
class TestSliceOpError(unittest.TestCase):
    def test_dismatch_shape(self):
        with fluid.dygraph.guard():
            with self.assertRaises(ValueError):
                array = np.array([], dtype=np.float32)
                x = paddle.to_tensor(np.reshape(array, [0]), dtype='float32')
                paddle.slice(x, axes=[0], starts=[], ends=[])

            with self.assertRaises(ValueError):
                array = np.array([], dtype=np.float32)
                x = paddle.to_tensor(np.reshape(array, [0]), dtype='float32')
                paddle.slice(x, axes=[0], starts=[0], ends=[])

            # if shape match, pass
            array = np.array([], dtype=np.float32)
            x = paddle.to_tensor(np.reshape(array, [0]), dtype='float32')
            out = paddle.slice(x, axes=[0], starts=[0], ends=[0])
            self.assertEqual(out.numel(), 0)
            # self.assertEqual(out.shape)


933 934 935
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
936 937 938 939
class TestImperativeCUDAPinnedInput(unittest.TestCase):
    def test_input_cuda_pinned_var(self):
        with fluid.dygraph.guard():
            data = np.random.random((2, 80, 16128)).astype('float32')
W
Weilong Wu 已提交
940
            var = core.eager.Tensor(
941 942 943 944 945 946 947
                value=data,
                name='',
                persistable=False,
                place=fluid.CUDAPinnedPlace(),
                zero_copy=False,
            )
            sliced = var[:, 10:, : var.shape[1]]
948 949 950
            self.assertEqual(sliced.shape, [2, 70, 80])


951 952
class TestSliceDoubleGradCheck(unittest.TestCase):
    def slice_wrapper(self, x):
953 954 955
        return paddle.slice(
            x[0], axes=[0, 1, 2], starts=[-3, 0, 2], ends=[3, 2, 4]
        )
956 957 958 959 960 961 962

    @prog_scope()
    def func(self, place):
        # the shape of input variable should be clearly specified, not inlcude -1.
        eps = 0.005
        dtype = np.float32

G
GGBond8488 已提交
963
        data = paddle.static.data('data', [4, 5, 6], dtype)
964
        data.persistable = True
965 966 967
        out = paddle.slice(
            data, axes=[0, 1, 2], starts=[-3, 0, 2], ends=[3, 2, 4]
        )
968 969
        data_arr = np.random.uniform(-1, 1, data.shape).astype(dtype)

970 971 972 973 974 975
        gradient_checker.double_grad_check(
            [data], out, x_init=[data_arr], place=place, eps=eps
        )
        gradient_checker.double_grad_check_for_dygraph(
            self.slice_wrapper, [data], out, x_init=[data_arr], place=place
        )
976 977 978 979 980 981 982 983 984 985 986 987

    def test_grad(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestSliceTripleGradCheck(unittest.TestCase):
    def slice_wrapper(self, x):
988 989 990
        return paddle.slice(
            x[0], axes=[0, 1, 2], starts=[-3, 0, 2], ends=[3, 2, 4]
        )
991 992 993 994 995 996 997

    @prog_scope()
    def func(self, place):
        # the shape of input variable should be clearly specified, not inlcude -1.
        eps = 0.005
        dtype = np.float32

G
GGBond8488 已提交
998
        data = paddle.static.data('data', [4, 5, 6], dtype)
999
        data.persistable = True
1000 1001 1002
        out = paddle.slice(
            data, axes=[0, 1, 2], starts=[-3, 0, 2], ends=[3, 2, 4]
        )
1003 1004
        data_arr = np.random.uniform(-1, 1, data.shape).astype(dtype)

1005 1006 1007 1008 1009 1010
        gradient_checker.triple_grad_check(
            [data], out, x_init=[data_arr], place=place, eps=eps
        )
        gradient_checker.triple_grad_check_for_dygraph(
            self.slice_wrapper, [data], out, x_init=[data_arr], place=place
        )
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020

    def test_grad(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


W
whs 已提交
1021
if __name__ == '__main__':
H
hong 已提交
1022
    paddle.enable_static()
W
whs 已提交
1023
    unittest.main()