test_while_loop_op.py 23.7 KB
Newer Older
G
guofei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest

17 18
import numpy as np

19
import paddle
G
guofei 已提交
20 21 22
import paddle.fluid as fluid
import paddle.fluid.core as core
import paddle.fluid.layers as layers
23
import paddle.nn.functional as F
24
from paddle.fluid.backward import append_backward
25
from paddle.fluid.framework import Program, program_guard
G
guofei 已提交
26

27 28
paddle.enable_static()

G
guofei 已提交
29 30 31 32

class TestApiWhileLoop(unittest.TestCase):
    def test_var_tuple(self):
        def cond(i):
L
LiYuRio 已提交
33
            return paddle.less_than(i, ten)
G
guofei 已提交
34 35

        def body(i):
36
            return paddle.add(x=i, y=one)
G
guofei 已提交
37 38 39 40

        main_program = Program()
        startup_program = Program()
        with program_guard(main_program, startup_program):
41 42 43 44 45
            i = paddle.tensor.fill_constant(shape=[1], dtype='int64', value=0)
            one = paddle.tensor.fill_constant(shape=[1], dtype='int64', value=1)
            ten = paddle.tensor.fill_constant(
                shape=[1], dtype='int64', value=10
            )
46
            out = paddle.static.nn.while_loop(cond, body, (i,))
G
guofei 已提交
47

48 49 50 51 52
        place = (
            fluid.CUDAPlace(0)
            if core.is_compiled_with_cuda()
            else fluid.CPUPlace()
        )
G
guofei 已提交
53 54
        exe = fluid.Executor(place)
        res = exe.run(main_program, fetch_list=out)
55 56 57
        np.testing.assert_allclose(
            np.asarray(res[0]), np.full(1, 10, np.int64), rtol=1e-05
        )
G
guofei 已提交
58 59 60

    def test_var_list(self):
        def cond(i, mem):
L
LiYuRio 已提交
61
            return paddle.less_than(i, ten)
G
guofei 已提交
62 63

        def body(i, mem):
64
            mem = paddle.add(x=mem, y=one)
65
            i = paddle.increment(i)
G
guofei 已提交
66 67 68 69 70 71
            return [i, mem]

        main_program = Program()
        startup_program = Program()
        with program_guard(main_program, startup_program):
            i = layers.zeros(shape=[1], dtype='int64')
72 73 74
            ten = paddle.tensor.fill_constant(
                shape=[1], dtype='int64', value=10
            )
75
            mem = fluid.data(name='mem', shape=[10], dtype='float32')
76 77 78
            one = paddle.tensor.fill_constant(
                shape=[10], dtype='float32', value=1
            )
79
            out = paddle.static.nn.while_loop(cond, body, [i, mem])
G
guofei 已提交
80 81 82 83

            data = np.random.rand(10).astype('float32')
            data_one = np.ones(10).astype('float32')

84 85 86 87 88
        place = (
            fluid.CUDAPlace(0)
            if core.is_compiled_with_cuda()
            else fluid.CPUPlace()
        )
G
guofei 已提交
89 90 91 92
        exe = fluid.Executor(place)
        res = exe.run(main_program, feed={'mem': data}, fetch_list=out)
        for i in range(10):
            data = np.add(data, data_one)
93
        np.testing.assert_allclose(np.asarray(res[1]), data, rtol=1e-05)
G
guofei 已提交
94

95
    def test_var_dict(self):
96
        def cond(i, ten, test_dict, test_list, test_list_dict):
L
LiYuRio 已提交
97
            return paddle.less_than(i, ten)
98

99 100 101 102
        def body(i, ten, test_dict, test_list, test_list_dict):
            test_dict["test_key"] = i
            test_dict["test_key"] += 1

103
            test_list[0] = paddle.reshape(test_list[0], [2, -1]) + 1
104 105

            test_list_dict[0]["test_key"] += 1
106
            test_list_dict[0]["test_key"] = F.relu(
107 108
                test_list_dict[0]["test_key"]
            )
109

110
            i = paddle.increment(i)
111
            return [i, ten, test_dict, test_list, test_list_dict]
112 113 114 115 116

        main_program = Program()
        startup_program = Program()
        with program_guard(main_program, startup_program):
            i = layers.zeros(shape=[1], dtype='int64')
117 118 119 120 121 122
            ten = paddle.tensor.fill_constant(
                shape=[1], dtype='int64', value=10
            )
            test_data = paddle.tensor.fill_constant(
                shape=[1], dtype='int64', value=0
            )
123

124
            test_dict = {"test_key": test_data}
125
            test_list = [
126 127 128
                paddle.tensor.fill_constant(
                    shape=[1, 2], dtype='int64', value=0
                )
129
            ]
130 131
            test_list_dict = [
                {
132
                    "test_key": paddle.tensor.fill_constant(
133 134 135 136
                        shape=[1], dtype='float32', value=0
                    )
                }
            ]
137

138 139 140 141 142 143 144
            (
                i,
                ten,
                test_dict,
                test_list,
                test_list_dict,
            ) = paddle.static.nn.while_loop(
145 146 147 148 149 150 151
                cond, body, [i, ten, test_dict, test_list, test_list_dict]
            )
        place = (
            fluid.CUDAPlace(0)
            if core.is_compiled_with_cuda()
            else fluid.CPUPlace()
        )
152
        exe = fluid.Executor(place)
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
        res = exe.run(
            main_program,
            fetch_list=[
                test_dict["test_key"],
                test_list[0],
                test_list_dict[0]["test_key"],
            ],
        )
        np.testing.assert_allclose(
            np.asarray(res[0]),
            np.full(shape=1, fill_value=10, dtype=np.int64),
            rtol=1e-05,
        )
        np.testing.assert_allclose(
            np.asarray(res[1]),
            np.full(shape=(2, 1), fill_value=10, dtype=np.int64),
            rtol=1e-05,
        )
        np.testing.assert_allclose(
            np.asarray(res[2]),
            np.full(shape=1, fill_value=10, dtype=np.float32),
            rtol=1e-05,
        )
176

G
guofei 已提交
177 178 179 180

class TestApiWhileLoop_Nested(unittest.TestCase):
    def test_nested_net(self):
        def external_cond(i, j, init, sums):
L
LiYuRio 已提交
181
            return paddle.less_than(i, loop_len1)
G
guofei 已提交
182 183 184

        def external_body(i, j, init, sums):
            def internal_cond(j, init, sums):
L
LiYuRio 已提交
185
                return paddle.less_than(j, loop_len2)
G
guofei 已提交
186 187

            def internal_body(j, init, sums):
188 189
                init = paddle.add(x=init, y=ones)
                sums = paddle.add(x=init, y=sums)
190
                j = paddle.increment(j)
G
guofei 已提交
191 192
                return [j, init, sums]

193
            result = paddle.static.nn.while_loop(
194 195
                internal_cond, internal_body, [j, init, sums]
            )
G
guofei 已提交
196 197 198
            j = result[0]
            init = result[1]
            sums = result[2]
199
            sums = paddle.add(x=init, y=sums)
200
            i = paddle.increment(i)
G
guofei 已提交
201 202 203 204 205 206 207
            return [i, j, init, sums]

        main_program = Program()
        startup_program = Program()
        with program_guard(main_program, startup_program):
            i = layers.zeros(shape=[1], dtype='int64')
            j = layers.zeros(shape=[1], dtype='int64')
208 209
            init = fluid.data(name='init', shape=[3, 3], dtype='float32')
            sums = fluid.data(name='sums', shape=[3, 3], dtype='float32')
210 211 212 213 214 215 216 217 218
            loop_len1 = paddle.tensor.fill_constant(
                shape=[1], dtype='int64', value=2
            )
            loop_len2 = paddle.tensor.fill_constant(
                shape=[1], dtype='int64', value=3
            )
            ones = paddle.tensor.fill_constant(
                shape=[3, 3], dtype='float32', value=1
            )
G
guofei 已提交
219

220
            out = paddle.static.nn.while_loop(
221 222
                external_cond, external_body, [i, j, init, sums]
            )
G
guofei 已提交
223 224 225 226

            data = np.random.rand(3, 3).astype('float32')
            data_sums = np.zeros([3, 3]).astype('float32')

227 228 229 230 231
        place = (
            fluid.CUDAPlace(0)
            if core.is_compiled_with_cuda()
            else fluid.CPUPlace()
        )
G
guofei 已提交
232
        exe = fluid.Executor(place)
233 234 235
        res = exe.run(
            main_program, feed={'init': data, 'sums': data_sums}, fetch_list=out
        )
G
guofei 已提交
236 237 238 239 240
        for i in range(3):
            data = np.add(data, 1)
            data_sums = np.add(data, data_sums)
        for j in range(2):
            data_sums = np.add(data, data_sums)
241
        np.testing.assert_allclose(np.asarray(res[3]), data_sums, rtol=1e-05)
242 243 244 245 246


class TestApiWhileLoop_Backward(unittest.TestCase):
    def test_while_loop_backward(self):
        def cond(i, x):
L
LiYuRio 已提交
247
            return paddle.less_than(i, eleven)
248

249
        def body(i, x):
250
            x = paddle.multiply(x=i, y=i)
251
            i = paddle.increment(i)
252
            return [i, x]
253 254 255 256

        main_program = Program()
        startup_program = Program()
        with fluid.program_guard(main_program, startup_program):
257
            i = fluid.data(name='i', shape=[1], dtype='float32')
258
            i.stop_gradient = False
259 260 261 262 263 264
            eleven = paddle.tensor.fill_constant(
                shape=[1], dtype='float32', value=11
            )
            one = paddle.tensor.fill_constant(
                shape=[1], dtype='float32', value=1
            )
265
            x = fluid.data(name='x', shape=[1], dtype='float32')
266 267
            x.stop_gradient = False

268
            out = paddle.static.nn.while_loop(cond, body, [i, x])
269
            mean = paddle.mean(out[1])
270 271
            append_backward(mean)

272 273 274 275 276
        place = (
            fluid.CUDAPlace(0)
            if core.is_compiled_with_cuda()
            else fluid.CPUPlace()
        )
277 278 279 280 281 282 283
        exe = fluid.Executor(place)

        feed_i = np.ones(1).astype('float32')
        feed_x = np.ones(1).astype('float32')
        data = np.asarray([100]).astype('float32')
        i_grad = np.asarray([110]).astype('float32')

284 285 286 287 288
        res = exe.run(
            main_program,
            feed={'i': feed_i, 'x': feed_x},
            fetch_list=[mean.name, i.grad_name],
        )
289 290
        np.testing.assert_allclose(np.asarray(res[0]), data, rtol=1e-05)
        np.testing.assert_allclose(np.asarray(res[1]), i_grad, rtol=1e-05)
291 292 293

    def test_while_loop_backward2(self):
        def cond(i, x):
294
            return i < 3
295 296

        def body(i, x):
297
            x = x * i
298 299 300 301 302 303 304 305 306 307 308
            i = i + 1
            return [i, x]

        main_program = Program()
        startup_program = Program()
        with fluid.program_guard(main_program, startup_program):
            i = fluid.data(name='i', shape=[1], dtype='float32')
            i.stop_gradient = False
            x = fluid.data(name='x', shape=[1], dtype='float32')
            x.stop_gradient = False

309
            out = paddle.static.nn.while_loop(cond, body, [i, x])
310
            mean = paddle.mean(out[1])
311 312
            append_backward(mean)

313 314 315 316 317
        place = (
            fluid.CUDAPlace(0)
            if core.is_compiled_with_cuda()
            else fluid.CPUPlace()
        )
318 319 320 321
        exe = fluid.Executor(place)

        feed_i = np.ones(1).astype('float32')
        feed_x = np.ones(1).astype('float32')
322 323 324
        data = np.asarray([2]).astype('float32')
        i_grad = np.asarray([3]).astype('float32')
        x_grad = np.asarray([2]).astype('float32')
325

326 327 328 329 330
        res = exe.run(
            main_program,
            feed={'i': feed_i, 'x': feed_x},
            fetch_list=[mean.name, i.grad_name, x.grad_name],
        )
331 332 333
        np.testing.assert_allclose(np.asarray(res[0]), data, rtol=1e-05)
        np.testing.assert_allclose(np.asarray(res[1]), i_grad, rtol=1e-05)
        np.testing.assert_allclose(np.asarray(res[2]), x_grad, rtol=1e-05)
334 335


336 337 338
class TestApiWhileLoop_NestedWithBackwardAndLoDTensorArray(unittest.TestCase):
    def test_nested_net_with_backward_and_lodtensor(self):
        def external_cond(i, j, x, mem_array):
L
LiYuRio 已提交
339
            return paddle.less_than(i, array_len)
340 341 342

        def external_body(i, j, x, mem_array):
            def internal_cond(j, x, mem_array):
L
LiYuRio 已提交
343
                return paddle.less_than(j, array_len2)
344 345

            def internal_body(j, x, mem_array):
346 347
                inner_data = paddle.tensor.array_read(array=data_array, i=j)
                inner_prev = paddle.tensor.array_read(array=mem_array, i=j)
348 349
                inner_sum_0 = paddle.add(x=inner_data, y=inner_prev)
                inner_sum_1 = paddle.add(x=x, y=inner_sum_0)
350
                j = paddle.increment(x=j)
351
                paddle.tensor.array_write(inner_sum_1, i=j, array=mem_array)
352 353
                return [j, x, mem_array]

354 355
            outer_data = paddle.tensor.array_read(array=data_array, i=i)
            outer_prev = paddle.tensor.array_read(array=mem_array, i=i)
356 357
            outer_sum_0 = paddle.add(x=outer_data, y=outer_prev)
            outer_sum_1 = paddle.add(x=x, y=outer_sum_0)
358
            i = paddle.increment(x=i)
359
            paddle.tensor.array_write(outer_sum_1, i=i, array=mem_array)
360
            j, x, mem_array = paddle.static.nn.while_loop(
361 362
                internal_cond, internal_body, [j, x, mem_array]
            )
363
            return [i, j, x, mem_array]
364 365 366 367

        main_program = Program()
        startup_program = Program()
        with fluid.program_guard(main_program, startup_program):
368 369 370 371
            d0 = fluid.data(name='d0', shape=[10], dtype='float32')
            d1 = fluid.data(name='d1', shape=[10], dtype='float32')
            d2 = fluid.data(name='d2', shape=[10], dtype='float32')
            x = fluid.data(name='x', shape=[10], dtype='float32')
372
            x.stop_gradient = False
373 374 375
            i = layers.zeros(shape=[1], dtype='int64')
            i.stop_gradient = True
            init = layers.zeros(shape=[10], dtype='float32')
376 377
            mem_array = paddle.tensor.array_write(x=init, i=i)
            data_array = paddle.tensor.array_write(x=d0, i=i)
378
            mem_array.stop_gradient = False
379
            i = paddle.increment(i)
380
            paddle.tensor.array_write(d1, i, array=data_array)
381
            i = paddle.increment(i)
382
            paddle.tensor.array_write(d2, i, array=data_array)
383 384
            i = layers.zeros(shape=[1], dtype='int64')
            i.stop_gradient = True
385 386 387 388
            array_len = paddle.tensor.fill_constant(
                shape=[1], dtype='int64', value=1
            )
            j = paddle.tensor.fill_constant(shape=[1], dtype='int64', value=1)
389
            j.stop_gradient = True
390 391 392
            array_len2 = paddle.tensor.fill_constant(
                shape=[1], dtype='int64', value=3
            )
393

394
            out = paddle.static.nn.while_loop(
395 396
                external_cond, external_body, [i, j, x, mem_array]
            )
397

398
            sum_result = paddle.tensor.array_read(array=mem_array, i=j)
399
            mean = paddle.mean(sum_result)
400
            append_backward(mean)
401

402 403 404 405 406
            place = (
                fluid.CUDAPlace(0)
                if core.is_compiled_with_cuda()
                else fluid.CPUPlace()
            )
407 408 409 410 411 412 413 414
            exe = fluid.Executor(place)

            d = []
            for i in range(3):
                d.append(np.random.random(size=[10]).astype('float32'))
            feed_x = np.ones(10).astype('float32')
            data_sum = d[0] + d[1] + d[2] + 3 * feed_x
            x_grad = [0.3] * 10
415 416 417 418 419
            res = exe.run(
                main_program,
                feed={'d0': d[0], 'd1': d[1], 'd2': d[2], 'x': feed_x},
                fetch_list=[sum_result.name, x.grad_name],
            )
420 421
            np.testing.assert_allclose(res[0], data_sum, rtol=1e-05)
            np.testing.assert_allclose(res[1], x_grad, rtol=1e-05)
422 423 424 425 426


class TestApiWhileLoopWithSwitchCase(unittest.TestCase):
    def test_with_switch_case(self):
        def cond(i):
L
LiYuRio 已提交
427
            return paddle.less_than(i, ten)
428 429 430

        def body(i):
            def fn_add_three():
431
                data_add_three = paddle.add(x=i, y=three)
432 433 434
                return data_add_three

            def fn_square():
435
                data_mul_data = paddle.multiply(x=i, y=i)
436 437 438
                return data_mul_data

            def fn_add_one():
439
                data_add_one = paddle.add(x=i, y=one)
440 441
                return data_add_one

442
            return paddle.static.nn.switch_case(
443 444 445 446
                branch_index=i,
                branch_fns={2: fn_add_three, 5: fn_square},
                default=fn_add_one,
            )
447 448 449 450

        main_program = Program()
        startup_program = Program()
        with fluid.program_guard(main_program, startup_program):
451 452 453 454 455 456 457 458
            i = paddle.tensor.fill_constant(shape=[1], dtype='int64', value=1)
            ten = paddle.tensor.fill_constant(
                shape=[1], dtype='int64', value=10
            )
            three = paddle.tensor.fill_constant(
                shape=[1], dtype='int64', value=3
            )
            one = paddle.tensor.fill_constant(shape=[1], dtype='int64', value=1)
459
            out = paddle.static.nn.while_loop(cond, body, [i])
460

461 462 463 464 465
        place = (
            fluid.CUDAPlace(0)
            if core.is_compiled_with_cuda()
            else fluid.CPUPlace()
        )
466 467 468 469
        exe = fluid.Executor(place)
        res = exe.run(main_program, fetch_list=out)

        data = np.asarray([25]).astype('int64')
470
        np.testing.assert_allclose(np.asarray(res[0]), data, rtol=1e-05)
G
guofei 已提交
471 472 473 474 475 476 477 478


class TestApiWhileLoop_Error(unittest.TestCase):
    def test_error(self):
        def cond_returns_constant(i):
            return 1

        def cond_returns_not_bool_tensor(i):
479
            return paddle.increment(i)
G
guofei 已提交
480 481

        def cond_returns_bool_tensor(i):
L
LiYuRio 已提交
482
            return paddle.less_than(i, ten)
G
guofei 已提交
483 484

        def cond_returns_2d_tensor(i):
L
LiYuRio 已提交
485
            return paddle.less_than(i, ten_2d)
G
guofei 已提交
486

487
        def cond_receives_two_args(i, ten):
L
LiYuRio 已提交
488
            return paddle.less_than(i, ten)
489

G
guofei 已提交
490
        def body(i):
491
            return paddle.increment(i)
G
guofei 已提交
492

493
        def body_returns_error_length(i):
494
            i = paddle.increment(i)
495 496 497
            return [i, i]

        def body_returns_error_type(i, ten):
498
            return paddle.increment(i)
499

500 501 502 503
        def cond_returns_with_mutable_dict(i, test_dict):
            return i > 0

        def body_returns_with_mutable_dict(i, test_dict):
504
            test_dict['new_key'] = paddle.tensor.fill_constant(
505 506
                shape=[1], dtype='int64', value=1
            )
507
            return paddle.increment(i), test_dict
508 509 510 511 512 513

        def cond_returns_with_mutable_list(i, test_list):
            return i > 0

        def body_returns_with_mutable_list(i, test_list):
            test_list.append(
514
                paddle.tensor.fill_constant(shape=[1], dtype='int64', value=1)
515
            )
516
            return paddle.increment(i), test_list
517

G
guofei 已提交
518 519 520
        main_program = Program()
        startup_program = Program()
        with program_guard(main_program, startup_program):
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
            data = paddle.tensor.fill_constant(
                shape=[1], dtype='int64', value=1
            )
            data_1d = paddle.tensor.fill_constant(
                shape=[1], dtype='int64', value=1
            )
            data_2d = paddle.tensor.fill_constant(
                shape=[2, 2], dtype='int64', value=1
            )
            ten = paddle.tensor.fill_constant(
                shape=[1], dtype='int64', value=10
            )
            ten_2d = paddle.tensor.fill_constant(
                shape=[2, 2], dtype='int64', value=10
            )
G
guofei 已提交
536

537
            # The type of `cond` in Op(while_loop) must be callable
G
guofei 已提交
538
            def type_error_cond():
539
                out = paddle.static.nn.while_loop(data, body, [data_1d])
G
guofei 已提交
540 541 542 543 544

            self.assertRaises(TypeError, type_error_cond)

            # The type of `body` in Op(while_loop) must be callable
            def type_error_body():
545
                out = paddle.static.nn.while_loop(
546 547
                    cond_returns_bool_tensor, data, [data_1d]
                )
G
guofei 已提交
548 549 550 551 552

            self.assertRaises(TypeError, type_error_body)

            # The type of `loop_vars` in Op(while_loop) must be list or tuple
            def type_error_loop_vars():
553 554 555
                out = paddle.static.nn.while_loop(
                    cond_returns_bool_tensor, body, data_1d
                )
G
guofei 已提交
556 557 558 559 560

            self.assertRaises(TypeError, type_error_loop_vars)

            # The value of `loop_vars` is empty
            def value_error_loop_vars():
561 562 563
                out = paddle.static.nn.while_loop(
                    cond_returns_bool_tensor, body, []
                )
G
guofei 已提交
564 565 566 567 568

            self.assertRaises(ValueError, value_error_loop_vars)

            # The type of `cond` returns in Op(while_loop) must be Variable
            def type_error_cond_returns_not_variable():
569 570 571
                out = paddle.static.nn.while_loop(
                    cond_returns_constant, body, [data_1d]
                )
G
guofei 已提交
572 573 574 575 576

            self.assertRaises(TypeError, type_error_cond_returns_not_variable)

            # The type of `cond` returns in Op(while_loop) must be a bollean variable
            def type_error_cond_returns_not_boolean():
577
                out = paddle.static.nn.while_loop(
578 579
                    cond_returns_not_bool_tensor, body, [data_1d]
                )
G
guofei 已提交
580 581 582 583 584

            self.assertRaises(TypeError, type_error_cond_returns_not_boolean)

            # The shape of `cond` returns in Op(while_loop) must be 1
            def type_error_shape_cond_returns_2d():
585 586 587
                out = paddle.static.nn.while_loop(
                    cond_returns_2d_tensor, body, [data_2d]
                )
G
guofei 已提交
588 589 590

            self.assertRaises(TypeError, type_error_shape_cond_returns_2d)

591 592
            # The length of `body` returns in Op(while_loop) must be same as `loop_vars`
            def value_error_body_returns_error_length():
593
                out = paddle.static.nn.while_loop(
594 595
                    cond_returns_bool_tensor, body_returns_error_length, [data]
                )
596 597 598 599 600

            self.assertRaises(ValueError, value_error_body_returns_error_length)

            # The type of `body` returns in Op(while_loop) must be same as `loop_vars`
            def value_error_body_returns_error_type():
601
                out = paddle.static.nn.while_loop(
602 603
                    cond_receives_two_args, body_returns_error_type, [data, ten]
                )
604 605 606

            self.assertRaises(ValueError, value_error_body_returns_error_type)

607 608 609
            # The length of `output_vars` with mutable value should keep same with `loop_vars`
            def value_error_body_returns_with_mutable_dict():
                test_dict = {
610
                    "int_constant": paddle.tensor.fill_constant(
611 612
                        shape=[2, 2], dtype='int64', value=1
                    )
613
                }
614
                out = paddle.static.nn.while_loop(
615 616 617 618
                    cond_returns_with_mutable_dict,
                    body_returns_with_mutable_dict,
                    [data, test_dict],
                )
619

620 621 622
            self.assertRaises(
                ValueError, value_error_body_returns_with_mutable_dict
            )
623 624 625

            def value_error_body_returns_with_mutable_list():
                test_list = [
626 627 628
                    paddle.tensor.fill_constant(
                        shape=[2, 2], dtype='int64', value=1
                    )
629
                ]
630
                out = paddle.static.nn.while_loop(
631 632 633 634
                    cond_returns_with_mutable_list,
                    body_returns_with_mutable_list,
                    [data, test_list],
                )
635

636 637 638
            self.assertRaises(
                ValueError, value_error_body_returns_with_mutable_list
            )
639

G
guofei 已提交
640

641 642 643 644 645 646 647 648 649 650 651 652 653
class TestApiWhileLoopSliceInBody(unittest.TestCase):
    def test_var_slice(self):
        def cond(z, i):
            return i + 1 <= x_shape[0]

        def body(z, i):
            z = z + x[i]
            i += 1
            return z, i

        main_program = Program()
        startup_program = Program()
        with program_guard(main_program, startup_program):
G
GGBond8488 已提交
654
            x = paddle.static.data(name='x', shape=[-1, 5], dtype='int32')
655
            z = paddle.tensor.fill_constant([1], 'int32', 0)
2
201716010711 已提交
656
            x_shape = paddle.shape(x)
657
            i = paddle.tensor.fill_constant([1], 'int32', 0)
658
            z, _ = paddle.static.nn.while_loop(cond, body, [z, i])
659

660 661 662 663 664
        place = (
            fluid.CUDAPlace(0)
            if core.is_compiled_with_cuda()
            else fluid.CPUPlace()
        )
665 666 667 668
        exe = fluid.Executor(place)

        np_x = np.array([1, 2, 3, 4, 5], dtype='int32')
        res = exe.run(main_program, feed={'x': np_x}, fetch_list=[z])
669
        np.testing.assert_array_equal(res[0], [np.sum(np_x)])
670 671


G
guofei 已提交
672 673
if __name__ == '__main__':
    unittest.main()