test_while_loop_op.py 14.9 KB
Newer Older
G
guofei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function

import numpy as np
import unittest

import paddle.fluid as fluid
import paddle.fluid.core as core
import paddle.fluid.layers as layers
import paddle.fluid.framework as framework
from paddle.fluid.executor import Executor
from paddle.fluid.framework import Program, program_guard
25
from paddle.fluid.backward import append_backward
G
guofei 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43


class TestApiWhileLoop(unittest.TestCase):
    def test_var_tuple(self):
        def cond(i):
            return layers.less_than(i, ten)

        def body(i):
            return layers.elementwise_add(x=i, y=one)

        main_program = Program()
        startup_program = Program()
        with program_guard(main_program, startup_program):
            i = layers.fill_constant(shape=[1], dtype='int64', value=0)
            one = layers.fill_constant(shape=[1], dtype='int64', value=1)
            ten = layers.fill_constant(shape=[1], dtype='int64', value=10)
            out = layers.while_loop(cond, body, (i, ))

44 45
        place = fluid.CUDAPlace(0) if core.is_compiled_with_cuda(
        ) else fluid.CPUPlace()
G
guofei 已提交
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
        exe = fluid.Executor(place)
        res = exe.run(main_program, fetch_list=out)
        self.assertTrue(
            np.allclose(np.asarray(res[0]), np.full((1), 10, np.int64)))

    def test_var_list(self):
        def cond(i, mem):
            return layers.less_than(i, ten)

        def body(i, mem):
            mem = layers.elementwise_add(x=mem, y=one)
            i = layers.increment(i)
            return [i, mem]

        main_program = Program()
        startup_program = Program()
        with program_guard(main_program, startup_program):
            i = layers.zeros(shape=[1], dtype='int64')
            ten = layers.fill_constant(shape=[1], dtype='int64', value=10)
65
            mem = fluid.data(name='mem', shape=[10], dtype='float32')
G
guofei 已提交
66 67 68 69 70 71
            one = layers.fill_constant(shape=[10], dtype='float32', value=1)
            out = layers.while_loop(cond, body, [i, mem])

            data = np.random.rand(10).astype('float32')
            data_one = np.ones(10).astype('float32')

72 73
        place = fluid.CUDAPlace(0) if core.is_compiled_with_cuda(
        ) else fluid.CPUPlace()
G
guofei 已提交
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
        exe = fluid.Executor(place)
        res = exe.run(main_program, feed={'mem': data}, fetch_list=out)
        for i in range(10):
            data = np.add(data, data_one)
        self.assertTrue(np.allclose(np.asarray(res[1]), data))


class TestApiWhileLoop_Nested(unittest.TestCase):
    def test_nested_net(self):
        def external_cond(i, j, init, sums):
            return layers.less_than(i, loop_len1)

        def external_body(i, j, init, sums):
            def internal_cond(j, init, sums):
                return layers.less_than(j, loop_len2)

            def internal_body(j, init, sums):
                init = layers.elementwise_add(x=init, y=ones)
                sums = layers.elementwise_add(x=init, y=sums)
                j = layers.increment(j)
                return [j, init, sums]

            result = layers.while_loop(internal_cond, internal_body,
                                       [j, init, sums])
            j = result[0]
            init = result[1]
            sums = result[2]
            sums = layers.elementwise_add(x=init, y=sums)
            i = layers.increment(i)
            return [i, j, init, sums]

        main_program = Program()
        startup_program = Program()
        with program_guard(main_program, startup_program):
            i = layers.zeros(shape=[1], dtype='int64')
            j = layers.zeros(shape=[1], dtype='int64')
110 111
            init = fluid.data(name='init', shape=[3, 3], dtype='float32')
            sums = fluid.data(name='sums', shape=[3, 3], dtype='float32')
G
guofei 已提交
112 113 114 115
            loop_len1 = layers.fill_constant(shape=[1], dtype='int64', value=2)
            loop_len2 = layers.fill_constant(shape=[1], dtype='int64', value=3)
            ones = layers.fill_constant(shape=[3, 3], dtype='float32', value=1)

116
            out = layers.while_loop(external_cond, external_body,
G
guofei 已提交
117 118 119 120 121
                                    [i, j, init, sums])

            data = np.random.rand(3, 3).astype('float32')
            data_sums = np.zeros([3, 3]).astype('float32')

122 123
        place = fluid.CUDAPlace(0) if core.is_compiled_with_cuda(
        ) else fluid.CPUPlace()
G
guofei 已提交
124
        exe = fluid.Executor(place)
125
        res = exe.run(main_program,
G
guofei 已提交
126 127
                      feed={'init': data,
                            'sums': data_sums},
128
                      fetch_list=out)
G
guofei 已提交
129 130 131 132 133
        for i in range(3):
            data = np.add(data, 1)
            data_sums = np.add(data, data_sums)
        for j in range(2):
            data_sums = np.add(data, data_sums)
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
        self.assertTrue(np.allclose(np.asarray(res[3]), data_sums))


class TestApiWhileLoop_Backward(unittest.TestCase):
    def test_while_loop_backward(self):
        def cond(i, x):
            return layers.less_than(i, eleven)

        def body(i, x):
            x = layers.elementwise_mul(x=i, y=i)
            i = layers.increment(i)
            return [i, x]

        main_program = Program()
        startup_program = Program()
        with fluid.program_guard(main_program, startup_program):
150
            i = fluid.data(name='i', shape=[1], dtype='float32')
151 152 153
            i.stop_gradient = False
            eleven = layers.fill_constant(shape=[1], dtype='float32', value=11)
            one = layers.fill_constant(shape=[1], dtype='float32', value=1)
154
            x = fluid.data(name='x', shape=[1], dtype='float32')
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
            x.stop_gradient = False

            out = layers.while_loop(cond, body, [i, x])
            mean = layers.mean(out[1])
            append_backward(mean)

        place = fluid.CUDAPlace(0) if core.is_compiled_with_cuda(
        ) else fluid.CPUPlace()
        exe = fluid.Executor(place)

        feed_i = np.ones(1).astype('float32')
        feed_x = np.ones(1).astype('float32')
        data = np.asarray([100]).astype('float32')
        i_grad = np.asarray([110]).astype('float32')

        res = exe.run(main_program,
                      feed={'i': feed_i,
                            'x': feed_x},
                      fetch_list=[mean.name, i.grad_name])
        self.assertTrue(np.allclose(np.asarray(res[0]), data))
        self.assertTrue(np.allclose(np.asarray(res[1]), i_grad))


178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
class TestApiWhileLoop_NestedWithBackwardAndLoDTensorArray(unittest.TestCase):
    def test_nested_net_with_backward_and_lodtensor(self):
        def external_cond(i, j, x, mem_array):
            return layers.less_than(i, array_len)

        def external_body(i, j, x, mem_array):
            def internal_cond(j, x, mem_array):
                return layers.less_than(j, array_len2)

            def internal_body(j, x, mem_array):
                inner_data = layers.array_read(array=data_array, i=j)
                inner_prev = layers.array_read(array=mem_array, i=j)
                inner_sum_0 = layers.elementwise_add(x=inner_data, y=inner_prev)
                inner_sum_1 = layers.elementwise_add(x=x, y=inner_sum_0)
                j = layers.increment(x=j, in_place=True)
                layers.array_write(inner_sum_1, i=j, array=mem_array)
                return [j, x, mem_array]

            outer_data = layers.array_read(array=data_array, i=i)
            outer_prev = layers.array_read(array=mem_array, i=i)
            outer_sum_0 = layers.elementwise_add(x=outer_data, y=outer_prev)
            outer_sum_1 = layers.elementwise_add(x=x, y=outer_sum_0)
            i = layers.increment(x=i, in_place=True)
            layers.array_write(outer_sum_1, i=i, array=mem_array)
            j, x, mem_array = layers.while_loop(internal_cond, internal_body,
                                                [j, x, mem_array])
            return [i, j, x, mem_array]
205 206 207 208

        main_program = Program()
        startup_program = Program()
        with fluid.program_guard(main_program, startup_program):
209 210 211 212
            d0 = fluid.data(name='d0', shape=[10], dtype='float32')
            d1 = fluid.data(name='d1', shape=[10], dtype='float32')
            d2 = fluid.data(name='d2', shape=[10], dtype='float32')
            x = fluid.data(name='x', shape=[10], dtype='float32')
213
            x.stop_gradient = False
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
            i = layers.zeros(shape=[1], dtype='int64')
            i.stop_gradient = True
            init = layers.zeros(shape=[10], dtype='float32')
            mem_array = layers.array_write(x=init, i=i)
            data_array = layers.array_write(x=d0, i=i)
            i = layers.increment(i)
            layers.array_write(d1, i, array=data_array)
            i = layers.increment(i)
            layers.array_write(d2, i, array=data_array)
            i = layers.zeros(shape=[1], dtype='int64')
            i.stop_gradient = True
            array_len = layers.fill_constant(shape=[1], dtype='int64', value=1)
            j = layers.fill_constant(shape=[1], dtype='int64', value=1)
            j.stop_gradient = True
            array_len2 = layers.fill_constant(shape=[1], dtype='int64', value=3)
229

230 231
            out = layers.while_loop(external_cond, external_body,
                                    [i, j, x, mem_array])
232

233 234 235
            sum_result = layers.array_read(array=mem_array, i=j)
            mean = layers.mean(sum_result)
            append_backward(mean)
236

237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
            place = fluid.CUDAPlace(0) if core.is_compiled_with_cuda(
            ) else fluid.CPUPlace()
            exe = fluid.Executor(place)

            d = []
            for i in range(3):
                d.append(np.random.random(size=[10]).astype('float32'))
            feed_x = np.ones(10).astype('float32')
            data_sum = d[0] + d[1] + d[2] + 3 * feed_x
            x_grad = [0.3] * 10
            res = exe.run(
                main_program,
                feed={'d0': d[0],
                      'd1': d[1],
                      'd2': d[2],
                      'x': feed_x},
                fetch_list=[sum_result.name, x.grad_name])
            self.assertTrue(np.allclose(res[0], data_sum))
            self.assertTrue(np.allclose(res[1], x_grad))
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297


class TestApiWhileLoopWithSwitchCase(unittest.TestCase):
    def test_with_switch_case(self):
        def cond(i):
            return layers.less_than(i, ten)

        def body(i):
            def fn_add_three():
                data_add_three = layers.elementwise_add(x=i, y=three)
                return data_add_three

            def fn_square():
                data_mul_data = layers.elementwise_mul(x=i, y=i)
                return data_mul_data

            def fn_add_one():
                data_add_one = layers.elementwise_add(x=i, y=one)
                return data_add_one

            return layers.switch_case(
                branch_index=i,
                branch_fns={2: fn_add_three,
                            5: fn_square},
                default=fn_add_one)

        main_program = Program()
        startup_program = Program()
        with fluid.program_guard(main_program, startup_program):
            i = layers.fill_constant(shape=[1], dtype='int64', value=1)
            ten = layers.fill_constant(shape=[1], dtype='int64', value=10)
            three = layers.fill_constant(shape=[1], dtype='int64', value=3)
            one = layers.fill_constant(shape=[1], dtype='int64', value=1)
            out = layers.while_loop(cond, body, [i])

        place = fluid.CUDAPlace(0) if core.is_compiled_with_cuda(
        ) else fluid.CPUPlace()
        exe = fluid.Executor(place)
        res = exe.run(main_program, fetch_list=out)

        data = np.asarray([25]).astype('int64')
        self.assertTrue(np.allclose(np.asarray(res[0]), data))
G
guofei 已提交
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372


class TestApiWhileLoop_Error(unittest.TestCase):
    def test_error(self):
        def cond_returns_constant(i):
            return 1

        def cond_returns_not_bool_tensor(i):
            return layers.increment(i)

        def cond_returns_bool_tensor(i):
            return layers.less_than(i, ten)

        def cond_returns_2d_tensor(i):
            return layers.less_than(i, ten_2d)

        def body(i):
            return layers.increment(i)

        main_program = Program()
        startup_program = Program()
        with program_guard(main_program, startup_program):
            data = layers.fill_constant(shape=[1], dtype='int64', value=1)
            data_1d = layers.fill_constant(shape=[1], dtype='int64', value=1)
            data_2d = layers.fill_constant(shape=[2, 2], dtype='int64', value=1)
            ten = layers.fill_constant(shape=[1], dtype='int64', value=10)
            ten_2d = layers.fill_constant(shape=[2, 2], dtype='int64', value=10)

            # The type of `cond` in Op(while_loop) must be callable 
            def type_error_cond():
                out = layers.while_loop(data, body, [data_1d])

            self.assertRaises(TypeError, type_error_cond)

            # The type of `body` in Op(while_loop) must be callable
            def type_error_body():
                out = layers.while_loop(cond_returns_bool_tensor, data,
                                        [data_1d])

            self.assertRaises(TypeError, type_error_body)

            # The type of `loop_vars` in Op(while_loop) must be list or tuple
            def type_error_loop_vars():
                out = layers.while_loop(cond_returns_bool_tensor, body, data_1d)

            self.assertRaises(TypeError, type_error_loop_vars)

            # The value of `loop_vars` is empty
            def value_error_loop_vars():
                out = layers.while_loop(cond_returns_bool_tensor, body, [])

            self.assertRaises(ValueError, value_error_loop_vars)

            # The type of `cond` returns in Op(while_loop) must be Variable
            def type_error_cond_returns_not_variable():
                out = layers.while_loop(cond_returns_constant, body, [data_1d])

            self.assertRaises(TypeError, type_error_cond_returns_not_variable)

            # The type of `cond` returns in Op(while_loop) must be a bollean variable
            def type_error_cond_returns_not_boolean():
                out = layers.while_loop(cond_returns_not_bool_tensor, body,
                                        [data_1d])

            self.assertRaises(TypeError, type_error_cond_returns_not_boolean)

            # The shape of `cond` returns in Op(while_loop) must be 1
            def type_error_shape_cond_returns_2d():
                out = layers.while_loop(cond_returns_2d_tensor, body, [data_2d])

            self.assertRaises(TypeError, type_error_shape_cond_returns_2d)


if __name__ == '__main__':
    unittest.main()