test_while_loop_op.py 22.3 KB
Newer Older
G
guofei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest

17 18
import numpy as np

19
import paddle
G
guofei 已提交
20 21 22
import paddle.fluid as fluid
import paddle.fluid.core as core
import paddle.fluid.layers as layers
23
from paddle.fluid.backward import append_backward
24
from paddle.fluid.framework import Program, program_guard
G
guofei 已提交
25

26 27
paddle.enable_static()

G
guofei 已提交
28 29 30 31

class TestApiWhileLoop(unittest.TestCase):
    def test_var_tuple(self):
        def cond(i):
L
LiYuRio 已提交
32
            return paddle.less_than(i, ten)
G
guofei 已提交
33 34

        def body(i):
35
            return paddle.add(x=i, y=one)
G
guofei 已提交
36 37 38 39 40 41 42

        main_program = Program()
        startup_program = Program()
        with program_guard(main_program, startup_program):
            i = layers.fill_constant(shape=[1], dtype='int64', value=0)
            one = layers.fill_constant(shape=[1], dtype='int64', value=1)
            ten = layers.fill_constant(shape=[1], dtype='int64', value=10)
43
            out = layers.while_loop(cond, body, (i,))
G
guofei 已提交
44

45 46 47 48 49
        place = (
            fluid.CUDAPlace(0)
            if core.is_compiled_with_cuda()
            else fluid.CPUPlace()
        )
G
guofei 已提交
50 51
        exe = fluid.Executor(place)
        res = exe.run(main_program, fetch_list=out)
52 53 54
        np.testing.assert_allclose(
            np.asarray(res[0]), np.full(1, 10, np.int64), rtol=1e-05
        )
G
guofei 已提交
55 56 57

    def test_var_list(self):
        def cond(i, mem):
L
LiYuRio 已提交
58
            return paddle.less_than(i, ten)
G
guofei 已提交
59 60

        def body(i, mem):
61
            mem = paddle.add(x=mem, y=one)
G
guofei 已提交
62 63 64 65 66 67 68 69
            i = layers.increment(i)
            return [i, mem]

        main_program = Program()
        startup_program = Program()
        with program_guard(main_program, startup_program):
            i = layers.zeros(shape=[1], dtype='int64')
            ten = layers.fill_constant(shape=[1], dtype='int64', value=10)
70
            mem = fluid.data(name='mem', shape=[10], dtype='float32')
G
guofei 已提交
71 72 73 74 75 76
            one = layers.fill_constant(shape=[10], dtype='float32', value=1)
            out = layers.while_loop(cond, body, [i, mem])

            data = np.random.rand(10).astype('float32')
            data_one = np.ones(10).astype('float32')

77 78 79 80 81
        place = (
            fluid.CUDAPlace(0)
            if core.is_compiled_with_cuda()
            else fluid.CPUPlace()
        )
G
guofei 已提交
82 83 84 85
        exe = fluid.Executor(place)
        res = exe.run(main_program, feed={'mem': data}, fetch_list=out)
        for i in range(10):
            data = np.add(data, data_one)
86
        np.testing.assert_allclose(np.asarray(res[1]), data, rtol=1e-05)
G
guofei 已提交
87

88
    def test_var_dict(self):
89
        def cond(i, ten, test_dict, test_list, test_list_dict):
L
LiYuRio 已提交
90
            return paddle.less_than(i, ten)
91

92 93 94 95
        def body(i, ten, test_dict, test_list, test_list_dict):
            test_dict["test_key"] = i
            test_dict["test_key"] += 1

96
            test_list[0] = paddle.reshape(test_list[0], [2, -1]) + 1
97 98

            test_list_dict[0]["test_key"] += 1
99
            test_list_dict[0]["test_key"] = fluid.layers.relu(
100 101
                test_list_dict[0]["test_key"]
            )
102

103
            i = layers.increment(i)
104
            return [i, ten, test_dict, test_list, test_list_dict]
105 106 107 108 109 110 111

        main_program = Program()
        startup_program = Program()
        with program_guard(main_program, startup_program):
            i = layers.zeros(shape=[1], dtype='int64')
            ten = layers.fill_constant(shape=[1], dtype='int64', value=10)
            test_data = layers.fill_constant(shape=[1], dtype='int64', value=0)
112

113
            test_dict = {"test_key": test_data}
114
            test_list = [
115
                layers.fill_constant(shape=[1, 2], dtype='int64', value=0)
116
            ]
117 118 119 120 121 122 123
            test_list_dict = [
                {
                    "test_key": layers.fill_constant(
                        shape=[1], dtype='float32', value=0
                    )
                }
            ]
124 125

            i, ten, test_dict, test_list, test_list_dict = layers.while_loop(
126 127 128 129 130 131 132
                cond, body, [i, ten, test_dict, test_list, test_list_dict]
            )
        place = (
            fluid.CUDAPlace(0)
            if core.is_compiled_with_cuda()
            else fluid.CPUPlace()
        )
133
        exe = fluid.Executor(place)
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
        res = exe.run(
            main_program,
            fetch_list=[
                test_dict["test_key"],
                test_list[0],
                test_list_dict[0]["test_key"],
            ],
        )
        np.testing.assert_allclose(
            np.asarray(res[0]),
            np.full(shape=1, fill_value=10, dtype=np.int64),
            rtol=1e-05,
        )
        np.testing.assert_allclose(
            np.asarray(res[1]),
            np.full(shape=(2, 1), fill_value=10, dtype=np.int64),
            rtol=1e-05,
        )
        np.testing.assert_allclose(
            np.asarray(res[2]),
            np.full(shape=1, fill_value=10, dtype=np.float32),
            rtol=1e-05,
        )
157

G
guofei 已提交
158 159 160 161

class TestApiWhileLoop_Nested(unittest.TestCase):
    def test_nested_net(self):
        def external_cond(i, j, init, sums):
L
LiYuRio 已提交
162
            return paddle.less_than(i, loop_len1)
G
guofei 已提交
163 164 165

        def external_body(i, j, init, sums):
            def internal_cond(j, init, sums):
L
LiYuRio 已提交
166
                return paddle.less_than(j, loop_len2)
G
guofei 已提交
167 168

            def internal_body(j, init, sums):
169 170
                init = paddle.add(x=init, y=ones)
                sums = paddle.add(x=init, y=sums)
G
guofei 已提交
171 172 173
                j = layers.increment(j)
                return [j, init, sums]

174 175 176
            result = layers.while_loop(
                internal_cond, internal_body, [j, init, sums]
            )
G
guofei 已提交
177 178 179
            j = result[0]
            init = result[1]
            sums = result[2]
180
            sums = paddle.add(x=init, y=sums)
G
guofei 已提交
181 182 183 184 185 186 187 188
            i = layers.increment(i)
            return [i, j, init, sums]

        main_program = Program()
        startup_program = Program()
        with program_guard(main_program, startup_program):
            i = layers.zeros(shape=[1], dtype='int64')
            j = layers.zeros(shape=[1], dtype='int64')
189 190
            init = fluid.data(name='init', shape=[3, 3], dtype='float32')
            sums = fluid.data(name='sums', shape=[3, 3], dtype='float32')
G
guofei 已提交
191 192 193 194
            loop_len1 = layers.fill_constant(shape=[1], dtype='int64', value=2)
            loop_len2 = layers.fill_constant(shape=[1], dtype='int64', value=3)
            ones = layers.fill_constant(shape=[3, 3], dtype='float32', value=1)

195 196 197
            out = layers.while_loop(
                external_cond, external_body, [i, j, init, sums]
            )
G
guofei 已提交
198 199 200 201

            data = np.random.rand(3, 3).astype('float32')
            data_sums = np.zeros([3, 3]).astype('float32')

202 203 204 205 206
        place = (
            fluid.CUDAPlace(0)
            if core.is_compiled_with_cuda()
            else fluid.CPUPlace()
        )
G
guofei 已提交
207
        exe = fluid.Executor(place)
208 209 210
        res = exe.run(
            main_program, feed={'init': data, 'sums': data_sums}, fetch_list=out
        )
G
guofei 已提交
211 212 213 214 215
        for i in range(3):
            data = np.add(data, 1)
            data_sums = np.add(data, data_sums)
        for j in range(2):
            data_sums = np.add(data, data_sums)
216
        np.testing.assert_allclose(np.asarray(res[3]), data_sums, rtol=1e-05)
217 218 219 220 221


class TestApiWhileLoop_Backward(unittest.TestCase):
    def test_while_loop_backward(self):
        def cond(i, x):
L
LiYuRio 已提交
222
            return paddle.less_than(i, eleven)
223

224
        def body(i, x):
225
            x = paddle.multiply(x=i, y=i)
226 227
            i = layers.increment(i)
            return [i, x]
228 229 230 231

        main_program = Program()
        startup_program = Program()
        with fluid.program_guard(main_program, startup_program):
232
            i = fluid.data(name='i', shape=[1], dtype='float32')
233 234 235
            i.stop_gradient = False
            eleven = layers.fill_constant(shape=[1], dtype='float32', value=11)
            one = layers.fill_constant(shape=[1], dtype='float32', value=1)
236
            x = fluid.data(name='x', shape=[1], dtype='float32')
237 238 239
            x.stop_gradient = False

            out = layers.while_loop(cond, body, [i, x])
240
            mean = paddle.mean(out[1])
241 242
            append_backward(mean)

243 244 245 246 247
        place = (
            fluid.CUDAPlace(0)
            if core.is_compiled_with_cuda()
            else fluid.CPUPlace()
        )
248 249 250 251 252 253 254
        exe = fluid.Executor(place)

        feed_i = np.ones(1).astype('float32')
        feed_x = np.ones(1).astype('float32')
        data = np.asarray([100]).astype('float32')
        i_grad = np.asarray([110]).astype('float32')

255 256 257 258 259
        res = exe.run(
            main_program,
            feed={'i': feed_i, 'x': feed_x},
            fetch_list=[mean.name, i.grad_name],
        )
260 261
        np.testing.assert_allclose(np.asarray(res[0]), data, rtol=1e-05)
        np.testing.assert_allclose(np.asarray(res[1]), i_grad, rtol=1e-05)
262 263 264

    def test_while_loop_backward2(self):
        def cond(i, x):
265
            return i < 3
266 267

        def body(i, x):
268
            x = x * i
269 270 271 272 273 274 275 276 277 278 279 280
            i = i + 1
            return [i, x]

        main_program = Program()
        startup_program = Program()
        with fluid.program_guard(main_program, startup_program):
            i = fluid.data(name='i', shape=[1], dtype='float32')
            i.stop_gradient = False
            x = fluid.data(name='x', shape=[1], dtype='float32')
            x.stop_gradient = False

            out = layers.while_loop(cond, body, [i, x])
281
            mean = paddle.mean(out[1])
282 283
            append_backward(mean)

284 285 286 287 288
        place = (
            fluid.CUDAPlace(0)
            if core.is_compiled_with_cuda()
            else fluid.CPUPlace()
        )
289 290 291 292
        exe = fluid.Executor(place)

        feed_i = np.ones(1).astype('float32')
        feed_x = np.ones(1).astype('float32')
293 294 295
        data = np.asarray([2]).astype('float32')
        i_grad = np.asarray([3]).astype('float32')
        x_grad = np.asarray([2]).astype('float32')
296

297 298 299 300 301
        res = exe.run(
            main_program,
            feed={'i': feed_i, 'x': feed_x},
            fetch_list=[mean.name, i.grad_name, x.grad_name],
        )
302 303 304
        np.testing.assert_allclose(np.asarray(res[0]), data, rtol=1e-05)
        np.testing.assert_allclose(np.asarray(res[1]), i_grad, rtol=1e-05)
        np.testing.assert_allclose(np.asarray(res[2]), x_grad, rtol=1e-05)
305 306


307 308 309
class TestApiWhileLoop_NestedWithBackwardAndLoDTensorArray(unittest.TestCase):
    def test_nested_net_with_backward_and_lodtensor(self):
        def external_cond(i, j, x, mem_array):
L
LiYuRio 已提交
310
            return paddle.less_than(i, array_len)
311 312 313

        def external_body(i, j, x, mem_array):
            def internal_cond(j, x, mem_array):
L
LiYuRio 已提交
314
                return paddle.less_than(j, array_len2)
315 316 317 318

            def internal_body(j, x, mem_array):
                inner_data = layers.array_read(array=data_array, i=j)
                inner_prev = layers.array_read(array=mem_array, i=j)
319 320
                inner_sum_0 = paddle.add(x=inner_data, y=inner_prev)
                inner_sum_1 = paddle.add(x=x, y=inner_sum_0)
321 322 323 324 325 326
                j = layers.increment(x=j, in_place=True)
                layers.array_write(inner_sum_1, i=j, array=mem_array)
                return [j, x, mem_array]

            outer_data = layers.array_read(array=data_array, i=i)
            outer_prev = layers.array_read(array=mem_array, i=i)
327 328
            outer_sum_0 = paddle.add(x=outer_data, y=outer_prev)
            outer_sum_1 = paddle.add(x=x, y=outer_sum_0)
329 330
            i = layers.increment(x=i, in_place=True)
            layers.array_write(outer_sum_1, i=i, array=mem_array)
331 332 333
            j, x, mem_array = layers.while_loop(
                internal_cond, internal_body, [j, x, mem_array]
            )
334
            return [i, j, x, mem_array]
335 336 337 338

        main_program = Program()
        startup_program = Program()
        with fluid.program_guard(main_program, startup_program):
339 340 341 342
            d0 = fluid.data(name='d0', shape=[10], dtype='float32')
            d1 = fluid.data(name='d1', shape=[10], dtype='float32')
            d2 = fluid.data(name='d2', shape=[10], dtype='float32')
            x = fluid.data(name='x', shape=[10], dtype='float32')
343
            x.stop_gradient = False
344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
            i = layers.zeros(shape=[1], dtype='int64')
            i.stop_gradient = True
            init = layers.zeros(shape=[10], dtype='float32')
            mem_array = layers.array_write(x=init, i=i)
            data_array = layers.array_write(x=d0, i=i)
            i = layers.increment(i)
            layers.array_write(d1, i, array=data_array)
            i = layers.increment(i)
            layers.array_write(d2, i, array=data_array)
            i = layers.zeros(shape=[1], dtype='int64')
            i.stop_gradient = True
            array_len = layers.fill_constant(shape=[1], dtype='int64', value=1)
            j = layers.fill_constant(shape=[1], dtype='int64', value=1)
            j.stop_gradient = True
            array_len2 = layers.fill_constant(shape=[1], dtype='int64', value=3)
359

360 361 362
            out = layers.while_loop(
                external_cond, external_body, [i, j, x, mem_array]
            )
363

364
            sum_result = layers.array_read(array=mem_array, i=j)
365
            mean = paddle.mean(sum_result)
366
            append_backward(mean)
367

368 369 370 371 372
            place = (
                fluid.CUDAPlace(0)
                if core.is_compiled_with_cuda()
                else fluid.CPUPlace()
            )
373 374 375 376 377 378 379 380
            exe = fluid.Executor(place)

            d = []
            for i in range(3):
                d.append(np.random.random(size=[10]).astype('float32'))
            feed_x = np.ones(10).astype('float32')
            data_sum = d[0] + d[1] + d[2] + 3 * feed_x
            x_grad = [0.3] * 10
381 382 383 384 385
            res = exe.run(
                main_program,
                feed={'d0': d[0], 'd1': d[1], 'd2': d[2], 'x': feed_x},
                fetch_list=[sum_result.name, x.grad_name],
            )
386 387
            np.testing.assert_allclose(res[0], data_sum, rtol=1e-05)
            np.testing.assert_allclose(res[1], x_grad, rtol=1e-05)
388 389 390 391 392


class TestApiWhileLoopWithSwitchCase(unittest.TestCase):
    def test_with_switch_case(self):
        def cond(i):
L
LiYuRio 已提交
393
            return paddle.less_than(i, ten)
394 395 396

        def body(i):
            def fn_add_three():
397
                data_add_three = paddle.add(x=i, y=three)
398 399 400
                return data_add_three

            def fn_square():
401
                data_mul_data = paddle.multiply(x=i, y=i)
402 403 404
                return data_mul_data

            def fn_add_one():
405
                data_add_one = paddle.add(x=i, y=one)
406 407
                return data_add_one

408 409 410 411 412
            return layers.switch_case(
                branch_index=i,
                branch_fns={2: fn_add_three, 5: fn_square},
                default=fn_add_one,
            )
413 414 415 416 417 418 419 420 421 422

        main_program = Program()
        startup_program = Program()
        with fluid.program_guard(main_program, startup_program):
            i = layers.fill_constant(shape=[1], dtype='int64', value=1)
            ten = layers.fill_constant(shape=[1], dtype='int64', value=10)
            three = layers.fill_constant(shape=[1], dtype='int64', value=3)
            one = layers.fill_constant(shape=[1], dtype='int64', value=1)
            out = layers.while_loop(cond, body, [i])

423 424 425 426 427
        place = (
            fluid.CUDAPlace(0)
            if core.is_compiled_with_cuda()
            else fluid.CPUPlace()
        )
428 429 430 431
        exe = fluid.Executor(place)
        res = exe.run(main_program, fetch_list=out)

        data = np.asarray([25]).astype('int64')
432
        np.testing.assert_allclose(np.asarray(res[0]), data, rtol=1e-05)
G
guofei 已提交
433 434 435 436 437 438 439 440 441 442 443


class TestApiWhileLoop_Error(unittest.TestCase):
    def test_error(self):
        def cond_returns_constant(i):
            return 1

        def cond_returns_not_bool_tensor(i):
            return layers.increment(i)

        def cond_returns_bool_tensor(i):
L
LiYuRio 已提交
444
            return paddle.less_than(i, ten)
G
guofei 已提交
445 446

        def cond_returns_2d_tensor(i):
L
LiYuRio 已提交
447
            return paddle.less_than(i, ten_2d)
G
guofei 已提交
448

449
        def cond_receives_two_args(i, ten):
L
LiYuRio 已提交
450
            return paddle.less_than(i, ten)
451

G
guofei 已提交
452 453 454
        def body(i):
            return layers.increment(i)

455 456 457 458 459 460 461
        def body_returns_error_length(i):
            i = layers.increment(i)
            return [i, i]

        def body_returns_error_type(i, ten):
            return layers.increment(i)

462 463 464 465
        def cond_returns_with_mutable_dict(i, test_dict):
            return i > 0

        def body_returns_with_mutable_dict(i, test_dict):
466 467 468
            test_dict['new_key'] = layers.fill_constant(
                shape=[1], dtype='int64', value=1
            )
469 470 471 472 473 474 475
            return layers.increment(i), test_dict

        def cond_returns_with_mutable_list(i, test_list):
            return i > 0

        def body_returns_with_mutable_list(i, test_list):
            test_list.append(
476 477
                layers.fill_constant(shape=[1], dtype='int64', value=1)
            )
478 479
            return layers.increment(i), test_list

G
guofei 已提交
480 481 482 483 484 485 486 487 488
        main_program = Program()
        startup_program = Program()
        with program_guard(main_program, startup_program):
            data = layers.fill_constant(shape=[1], dtype='int64', value=1)
            data_1d = layers.fill_constant(shape=[1], dtype='int64', value=1)
            data_2d = layers.fill_constant(shape=[2, 2], dtype='int64', value=1)
            ten = layers.fill_constant(shape=[1], dtype='int64', value=10)
            ten_2d = layers.fill_constant(shape=[2, 2], dtype='int64', value=10)

489
            # The type of `cond` in Op(while_loop) must be callable
G
guofei 已提交
490 491 492 493 494 495 496
            def type_error_cond():
                out = layers.while_loop(data, body, [data_1d])

            self.assertRaises(TypeError, type_error_cond)

            # The type of `body` in Op(while_loop) must be callable
            def type_error_body():
497 498 499
                out = layers.while_loop(
                    cond_returns_bool_tensor, data, [data_1d]
                )
G
guofei 已提交
500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522

            self.assertRaises(TypeError, type_error_body)

            # The type of `loop_vars` in Op(while_loop) must be list or tuple
            def type_error_loop_vars():
                out = layers.while_loop(cond_returns_bool_tensor, body, data_1d)

            self.assertRaises(TypeError, type_error_loop_vars)

            # The value of `loop_vars` is empty
            def value_error_loop_vars():
                out = layers.while_loop(cond_returns_bool_tensor, body, [])

            self.assertRaises(ValueError, value_error_loop_vars)

            # The type of `cond` returns in Op(while_loop) must be Variable
            def type_error_cond_returns_not_variable():
                out = layers.while_loop(cond_returns_constant, body, [data_1d])

            self.assertRaises(TypeError, type_error_cond_returns_not_variable)

            # The type of `cond` returns in Op(while_loop) must be a bollean variable
            def type_error_cond_returns_not_boolean():
523 524 525
                out = layers.while_loop(
                    cond_returns_not_bool_tensor, body, [data_1d]
                )
G
guofei 已提交
526 527 528 529 530 531 532 533 534

            self.assertRaises(TypeError, type_error_cond_returns_not_boolean)

            # The shape of `cond` returns in Op(while_loop) must be 1
            def type_error_shape_cond_returns_2d():
                out = layers.while_loop(cond_returns_2d_tensor, body, [data_2d])

            self.assertRaises(TypeError, type_error_shape_cond_returns_2d)

535 536
            # The length of `body` returns in Op(while_loop) must be same as `loop_vars`
            def value_error_body_returns_error_length():
537 538 539
                out = layers.while_loop(
                    cond_returns_bool_tensor, body_returns_error_length, [data]
                )
540 541 542 543 544

            self.assertRaises(ValueError, value_error_body_returns_error_length)

            # The type of `body` returns in Op(while_loop) must be same as `loop_vars`
            def value_error_body_returns_error_type():
545 546 547
                out = layers.while_loop(
                    cond_receives_two_args, body_returns_error_type, [data, ten]
                )
548 549 550

            self.assertRaises(ValueError, value_error_body_returns_error_type)

551 552 553
            # The length of `output_vars` with mutable value should keep same with `loop_vars`
            def value_error_body_returns_with_mutable_dict():
                test_dict = {
554 555 556
                    "int_constant": layers.fill_constant(
                        shape=[2, 2], dtype='int64', value=1
                    )
557
                }
558 559 560 561 562
                out = layers.while_loop(
                    cond_returns_with_mutable_dict,
                    body_returns_with_mutable_dict,
                    [data, test_dict],
                )
563

564 565 566
            self.assertRaises(
                ValueError, value_error_body_returns_with_mutable_dict
            )
567 568 569

            def value_error_body_returns_with_mutable_list():
                test_list = [
570
                    layers.fill_constant(shape=[2, 2], dtype='int64', value=1)
571
                ]
572 573 574 575 576
                out = layers.while_loop(
                    cond_returns_with_mutable_list,
                    body_returns_with_mutable_list,
                    [data, test_list],
                )
577

578 579 580
            self.assertRaises(
                ValueError, value_error_body_returns_with_mutable_list
            )
581

G
guofei 已提交
582

583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
class TestApiWhileLoopSliceInBody(unittest.TestCase):
    def test_var_slice(self):
        def cond(z, i):
            return i + 1 <= x_shape[0]

        def body(z, i):
            z = z + x[i]
            i += 1
            return z, i

        main_program = Program()
        startup_program = Program()
        with program_guard(main_program, startup_program):
            x = fluid.layers.data(name='x', shape=[5], dtype='int32')
            z = fluid.layers.fill_constant([1], 'int32', 0)
2
201716010711 已提交
598
            x_shape = paddle.shape(x)
599 600 601
            i = fluid.layers.fill_constant([1], 'int32', 0)
            z, _ = fluid.layers.while_loop(cond, body, [z, i])

602 603 604 605 606
        place = (
            fluid.CUDAPlace(0)
            if core.is_compiled_with_cuda()
            else fluid.CPUPlace()
        )
607 608 609 610
        exe = fluid.Executor(place)

        np_x = np.array([1, 2, 3, 4, 5], dtype='int32')
        res = exe.run(main_program, feed={'x': np_x}, fetch_list=[z])
611
        np.testing.assert_array_equal(res[0], [np.sum(np_x)])
612 613


G
guofei 已提交
614 615
if __name__ == '__main__':
    unittest.main()