backward.cc 35.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/phi/infermeta/backward.h"
Z
zyfncg 已提交
16
#include "paddle/phi/common/type_traits.h"
F
Feiyu Chan 已提交
17
#include "paddle/phi/core/utils/data_type.h"
18 19
#include "paddle/phi/kernels/funcs/axis_utils.h"

20
namespace phi {
21

22 23 24 25 26 27 28 29 30 31
void AffineGridGradInferMeta(const MetaTensor& output_grad,
                             const IntArray& outputShape,
                             bool align_corners,
                             MetaTensor* input_grad) {
  if (input_grad) {
    auto output_dims = output_grad.dims();
    input_grad->set_dims(phi::make_ddim({output_dims[0], 2, 3}));
  }
}

W
WangZhen 已提交
32 33 34 35 36 37
void AngleGradInferMeta(const MetaTensor& x,
                        const MetaTensor& out_grad,
                        MetaTensor* x_grad) {
  UnchangedInferMeta(x, x_grad);
}

38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
void BilinearTensorProductGradInferMeta(const MetaTensor& x,
                                        const MetaTensor& y,
                                        const MetaTensor& weight,
                                        const MetaTensor& dout,
                                        MetaTensor* dx,
                                        MetaTensor* dy,
                                        MetaTensor* dweight,
                                        MetaTensor* dbias) {
  auto x_dims = x.dims();
  auto y_dims = y.dims();
  auto weight_dims = weight.dims();
  auto out_dims = dout.dims();

  PADDLE_ENFORCE_EQ(
      out_dims.size(),
      2UL,
      errors::InvalidArgument("The input(Out@GRAD) must be a 2D Tensor."));
  PADDLE_ENFORCE_EQ(
      x_dims[0],
      out_dims[0],
      errors::InvalidArgument(
          "The first dimension(batch_size) of input(Out@GRAD) must be "
          "equal to the first dimension of the Input(X)."));
  PADDLE_ENFORCE_EQ(
      weight_dims[0],
      out_dims[1],
      errors::InvalidArgument(
          "The second dimension of input(Out@GRAD) must be equal to "
          "the third dimension of the Input(Weight)."));

  if (dx) {
    dx->set_dims(x_dims);
    dx->set_dtype(x.dtype());
  }
  if (dy) {
    dy->set_dims(y_dims);
    dy->set_dtype(y.dtype());
  }
  if (dweight) {
    dweight->set_dims(weight_dims);
    dweight->set_dtype(weight.dtype());
  }
  if (dbias) {
    dbias->set_dims({1, out_dims[1]});
    dbias->set_dtype(dout.dtype());
  }
}

B
BiynXu 已提交
86 87 88 89 90 91 92 93 94 95 96
void BmmGradInferMeta(const MetaTensor& x,
                      const MetaTensor& y,
                      const MetaTensor& out_grad,
                      MetaTensor* x_grad,
                      MetaTensor* y_grad) {
  x_grad->set_dims(x.dims());
  y_grad->set_dims(y.dims());
  x_grad->set_dtype(x.dtype());
  y_grad->set_dtype(y.dtype());
}

97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
void ChannelShuffleGradInferMeta(const MetaTensor& out_grad,
                                 int groups,
                                 const std::string& data_format,
                                 MetaTensor* x_grad) {
  auto do_dims = out_grad.dims();
  PADDLE_ENFORCE_EQ(do_dims.size(),
                    4,
                    phi::errors::InvalidArgument(
                        "Input should be a 4-D tensor of format [N, C, H, W] "
                        "or [N, H, W, C], but got %u.",
                        do_dims.size()));
  auto dx_dims = do_dims;
  x_grad->set_dims(dx_dims);
  x_grad->set_dtype(out_grad.dtype());
}

113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
void ComplexGradInferMeta(const MetaTensor& x,
                          const MetaTensor& y,
                          const MetaTensor& dout,
                          MetaTensor* dx,
                          MetaTensor* dy) {
  auto x_dims = x.dims();
  if (dx) {
    dx->set_dims(x_dims);
    dx->set_dtype(x.dtype());
  }
  auto y_dims = y.dims();
  if (dy) {
    dy->set_dims(y_dims);
    dy->set_dtype(y.dtype());
  }
}

F
From00 已提交
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
void ConvTransposeGradInferMeta(const MetaTensor& x,
                                const MetaTensor& filter,
                                const MetaTensor& dout,
                                const std::vector<int>& strides,
                                const std::vector<int>& paddings,
                                const std::vector<int>& output_padding,
                                const std::vector<int>& output_size,
                                const std::string& padding_algorithm,
                                int groups,
                                const std::vector<int>& dilations,
                                const std::string& data_format,
                                MetaTensor* dx,
                                MetaTensor* dfilter) {
  GeneralBinaryGradInferMeta(x, filter, dx, dfilter);
}

void Conv2dTransposeDoubleGradInferMeta(const MetaTensor& x,
                                        const MetaTensor& filter,
                                        const MetaTensor& dout,
                                        const MetaTensor& ddx,
                                        const MetaTensor& ddfilter,
                                        const std::vector<int>& strides,
                                        const std::vector<int>& paddings,
                                        const std::vector<int>& output_padding,
                                        const std::vector<int>& output_size,
                                        const std::string& padding_algorithm,
                                        int groups,
                                        const std::vector<int>& dilations,
                                        const std::string& data_format,
                                        MetaTensor* dx,
                                        MetaTensor* dfilter,
                                        MetaTensor* ddout) {
  GeneralBinaryGradInferMeta(x, filter, dx, dfilter);

  if (ddout) {
    ddout->share_meta(dout);
  }
}

169 170 171 172 173 174 175 176 177 178 179 180
void CropTensorGradInferMeta(const MetaTensor& out_grad,
                             const MetaTensor& x,
                             const IntArray& offsets,
                             MetaTensor* x_grad) {
  auto x_dims = x.dims();

  if (x_grad != nullptr) {
    x_grad->set_dims(x_dims);
    x_grad->set_dtype(x.dtype());
  }
}

181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
void CrossEntropyWithSoftmaxGradInferMeta(const MetaTensor& label,
                                          const MetaTensor& softmax,
                                          const MetaTensor& loss_grad,
                                          bool soft_label,
                                          bool use_softmax,
                                          bool numeric_stable_mode,
                                          int ignore_index,
                                          int axis,
                                          MetaTensor* logits_grad,
                                          MetaConfig config) {
  auto softmax_dims = softmax.dims();
  auto labels_dims = label.dims();
  auto softmax_rank = softmax_dims.size();
  PADDLE_ENFORCE_GE(axis,
                    -softmax_rank,
                    phi::errors::InvalidArgument(
                        "Attr(axis) value should be in range [-R, R-1], "
                        "R is the rank of Input(Logits)."));
  PADDLE_ENFORCE_LT(axis,
                    softmax_rank,
                    phi::errors::InvalidArgument(
                        "Attr(axis) value should be in range [-R, R-1], "
                        "R is the rank of Input(Logits)."));

  axis = phi::funcs::CanonicalAxis(axis, softmax_rank);
  for (int i = 0; i < softmax_rank; i++) {
    if (i != axis) {
      if (config.is_runtime || (softmax_dims[i] > 0 && labels_dims[i] > 0)) {
        PADDLE_ENFORCE_EQ(
            softmax_dims[i],
            labels_dims[i],
            phi::errors::InvalidArgument(
                "Input(Logits) and Input(Label) should in same shape in "
                "dimensions except axis."));
      }
    }
  }

  if (soft_label) {
    if (config.is_runtime ||
        (softmax_dims[axis] > 0 && labels_dims[axis] > 0)) {
      PADDLE_ENFORCE_EQ(softmax_dims[axis],
                        labels_dims[axis],
                        phi::errors::InvalidArgument(
                            "If Attr(soft_label) == true, "
                            "the axis dimension of "
                            "Input(X) and Input(Label) should be equal."));
    }
  } else {
    if (config.is_runtime || labels_dims[axis] > 0) {
      PADDLE_ENFORCE_EQ(
          labels_dims[axis],
          1UL,
          phi::errors::InvalidArgument("If Attr(soft_label) == false, "
                                       "the axis dimension of "
                                       "Input(Label) should be 1."));
    }
  }

  logits_grad->set_dims(softmax.dims());
  logits_grad->set_dtype(softmax.dtype());
}

244 245 246
void DeformableConvGradInferMeta(const MetaTensor& x,
                                 const MetaTensor& offset,
                                 const MetaTensor& filter,
247
                                 const MetaTensor& mask,
248 249 250 251 252 253 254 255 256 257 258 259 260
                                 const MetaTensor& out_grad,
                                 const std::vector<int>& strides,
                                 const std::vector<int>& paddings,
                                 const std::vector<int>& dilations,
                                 int deformable_groups,
                                 int groups,
                                 int im2col_step,
                                 MetaTensor* dx,
                                 MetaTensor* offset_grad,
                                 MetaTensor* filter_grad,
                                 MetaTensor* mask_grad) {
  GeneralTernaryGradInferMeta(x, offset, filter, dx, offset_grad, filter_grad);
  if (mask) {
261
    UnchangedInferMeta(mask, mask_grad);
262 263 264
  }
}

265 266 267 268 269 270 271 272 273 274 275 276
void EigGradInferMeta(const MetaTensor& out_w,
                      const MetaTensor& out_v,
                      const MetaTensor& dout_w,
                      const MetaTensor& dout_v,
                      MetaTensor* dx) {
  auto dims = out_v.dims();

  if (dx) {
    dx->set_dims(dims);
  }
}

277 278 279 280 281 282 283 284 285 286 287 288
void EigvalshGradInferMeta(const MetaTensor& out_v,
                           const MetaTensor& out_w_grad,
                           const std::string& uplo,
                           bool is_test,
                           MetaTensor* x_grad) {
  auto dims = out_v.dims();
  if (x_grad != nullptr) {
    x_grad->set_dims(dims);
    x_grad->set_dtype(out_v.dtype());
  }
}

F
Feiyu Chan 已提交
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
void FFTC2RGradInferMeta(const MetaTensor& x,
                         const std::vector<int64_t>& axes,
                         const std::string& normalization,
                         bool forward,
                         int64_t last_dim_size,
                         MetaTensor* out,
                         MetaConfig config) {
  PADDLE_ENFORCE_NOT_NULL(out,
                          phi::errors::InvalidArgument(
                              "Output of fft_c2r _grad should not be null."));
  const phi::DDim x_dim = x.dims();

  // only ensure that fft axes' size greater than zero at runtime
  // they might be -1 to indicate unknown size ar compile time
  if (config.is_runtime) {
    for (size_t i = 0; i < axes.size(); i++) {
      PADDLE_ENFORCE_GT(x_dim[axes[i]],
                        0,
                        phi::errors::InvalidArgument(
                            "Invalid fft n-point (%d).", x_dim[axes[i]]));
    }
  }

  out->set_layout(x.layout());
  out->set_dtype(ToComplexType(x.dtype()));

  phi::DDim out_dim = x.dims();
  const int64_t last_fft_axis = axes.back();
  if (last_dim_size > 0) {
    out_dim.at(last_fft_axis) = last_dim_size / 2 + 1;
  } else if (config.is_runtime) {
    const int64_t last_fft_dim_size = x_dim[last_fft_axis];
    out_dim.at(last_fft_axis) = last_fft_dim_size / 2 + 1;
  } else {
    const int64_t last_fft_dim_size = x_dim[last_fft_axis];
    out_dim.at(last_fft_axis) =
        last_fft_dim_size == -1 ? -1 : last_fft_dim_size / 2 + 1;
  }
  out->set_dims(out_dim);
}

Z
zhiboniu 已提交
330 331 332 333 334 335 336 337 338 339 340 341
void FillDiagonalGradInferMeta(const MetaTensor& dout,
                               float value,
                               int offset,
                               bool wrap,
                               MetaTensor* dx) {
  auto x_dims = dout.dims();
  if (dx) {
    dx->set_dims(x_dims);
    dx->set_dtype(dout.dtype());
  }
}

Z
zhiboniu 已提交
342 343 344 345 346 347 348 349 350 351 352
void FillDiagonalTensorGradInferMeta(const MetaTensor& out_grad,
                                     int64_t offset,
                                     int dim1,
                                     int dim2,
                                     MetaTensor* x_grad) {
  if (x_grad != nullptr) {
    x_grad->set_dims(out_grad.dims());
    x_grad->set_dtype(out_grad.dtype());
  }
}

353 354 355 356 357 358 359 360
void GatherNdGradInferMeta(const MetaTensor& x,
                           const MetaTensor& index,
                           const MetaTensor& out_grad,
                           MetaTensor* x_grad) {
  const auto& dtype = out_grad.dtype();
  x_grad->set_dims(x.dims());
  x_grad->share_lod(x);
  x_grad->set_dtype(dtype);
361 362
}

363 364 365 366
void GeneralBinaryGradInferMeta(const MetaTensor& x,
                                const MetaTensor& y,
                                MetaTensor* dx,
                                MetaTensor* dy) {
367 368 369 370 371 372
  if (dx) {
    dx->share_meta(x);
  }
  if (dy) {
    dy->share_meta(y);
  }
373 374
}

375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
void GeneralTernaryGradInferMeta(const MetaTensor& x,
                                 const MetaTensor& y,
                                 const MetaTensor& z,
                                 MetaTensor* dx,
                                 MetaTensor* dy,
                                 MetaTensor* dz) {
  if (dx) {
    dx->share_meta(x);
  }
  if (dy) {
    dy->share_meta(y);
  }
  if (dz) {
    dz->share_meta(z);
  }
}
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
void GeneralQuaternaryGradInferMeta(const MetaTensor& x,
                                    const MetaTensor& y,
                                    const MetaTensor& z,
                                    const MetaTensor& k,
                                    MetaTensor* dx,
                                    MetaTensor* dy,
                                    MetaTensor* dz,
                                    MetaTensor* dk) {
  if (dx) {
    dx->share_meta(x);
  }
  if (dy) {
    dy->share_meta(y);
  }
  if (dz) {
    dz->share_meta(z);
  }
  if (dk) {
    dk->share_meta(k);
  }
}

void GeneralQuinaryGradInferMeta(const MetaTensor& x,
                                 const MetaTensor& y,
                                 const MetaTensor& z,
                                 const MetaTensor& k,
                                 const MetaTensor& l,
                                 MetaTensor* dx,
                                 MetaTensor* dy,
                                 MetaTensor* dz,
                                 MetaTensor* dk,
                                 MetaTensor* dl) {
  if (dx) {
    dx->share_meta(x);
  }
  if (dy) {
    dy->share_meta(y);
  }
  if (dz) {
    dz->share_meta(z);
  }
  if (dk) {
    dk->share_meta(k);
  }
  if (dl) {
    dl->share_meta(l);
  }
}
439

440 441 442 443 444 445
void GeneralUnaryGradInferMeta(const MetaTensor& x, MetaTensor* dx) {
  if (dx) {
    dx->share_meta(x);
  }
}

F
From00 已提交
446 447 448 449 450 451 452 453 454 455
void GumbelSoftmaxGradInferMeta(const MetaTensor& out,
                                const MetaTensor& dout,
                                int axis,
                                MetaTensor* dx) {
  PADDLE_ENFORCE_EQ(
      out.dims(),
      dout.dims(),
      errors::InvalidArgument(
          "Input(Out) and its gradients should have the same shape."));

456
  dx->share_meta(dout);
457 458
}

459
void InstanceNormGradInferMeta(const MetaTensor& x,
460
                               const MetaTensor& scale,
461 462
                               const MetaTensor& saved_mean,
                               const MetaTensor& saved_variance,
463
                               const MetaTensor& y_grad,
464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
                               float epsilon,
                               MetaTensor* x_grad,
                               MetaTensor* scale_grad,
                               MetaTensor* bias_grad) {
  PADDLE_ENFORCE_NE(
      x_grad,
      nullptr,
      phi::errors::InvalidArgument(
          "The X@GRAD in InstanceNormGradInferMeta can't be nullptr."));
  const auto x_dims = x.dims();
  const int C = x_dims[1];
  x_grad->set_dims(x_dims);
  x_grad->set_dtype(x.dtype());
  x_grad->set_layout(x.layout());
  if (scale_grad) {
    scale_grad->set_dims({C});
  }
  if (bias_grad) {
    bias_grad->set_dims({C});
  }
}
485 486 487 488 489 490 491 492 493 494 495 496
void InstanceNormDoubleGradInferMeta(const MetaTensor& x,
                                     const MetaTensor& scale,
                                     const MetaTensor& saved_mean,
                                     const MetaTensor& saved_variance,
                                     const MetaTensor& dy,
                                     const MetaTensor& ddx,
                                     const MetaTensor& ddscale,
                                     const MetaTensor& ddbias,
                                     float epsilon,
                                     MetaTensor* dx,
                                     MetaTensor* dscale,
                                     MetaTensor* ddy) {
497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
  PADDLE_ENFORCE_NE(
      dx,
      nullptr,
      phi::errors::InvalidArgument(
          "The DX in InstanceNormDoubleGradInferMeta can't be nullptr."));
  const auto x_dims = x.dims();
  const int C = x_dims[1];
  dx->set_dims(x_dims);
  dx->set_dtype(x.dtype());
  dx->set_layout(x.layout());
  if (dscale) {
    dscale->set_dims({C});
  }
  if (ddy) {
    ddy->share_dims(x);
  }
}

515 516 517 518 519
void InverseGradInferMeta(const MetaTensor& out,
                          const MetaTensor& dout,
                          MetaTensor* dx) {
  if (dx) {
    dx->set_dims(dout.dims());
520
    dx->set_dtype(out.dtype());
521 522 523
  }
}

524 525 526 527 528 529 530
void KernelWithXShapeInferMeta(const MetaTensor& xshape, MetaTensor* dx) {
  auto xshape_dims = xshape.dims();
  auto x_dims = phi::slice_ddim(xshape_dims, 1, xshape_dims.size());
  dx->set_dims(x_dims);
  dx->share_lod(xshape);
}

L
Lin Manhui 已提交
531 532 533 534 535 536 537 538 539 540 541 542 543 544
void LUGradInferMeta(const MetaTensor& x,
                     const MetaTensor& out,
                     const MetaTensor& pivots,
                     const MetaTensor& out_grad,
                     bool pivot,
                     MetaTensor* x_grad) {
  auto x_dims = x.dims();

  if (x_grad) {
    x_grad->set_dims(x_dims);
    x_grad->set_dtype(x.dtype());
  }
}

545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562
void LUUnpackGradInferMeta(const MetaTensor& x,
                           const MetaTensor& pivots,
                           const MetaTensor& l,
                           const MetaTensor& u,
                           const MetaTensor& pmat,
                           const MetaTensor& l_grad,
                           const MetaTensor& u_grad,
                           bool unpack_ludata,
                           bool unpack_pivots,
                           MetaTensor* x_grad) {
  auto x_dims = x.dims();

  if (x_grad) {
    x_grad->set_dims(x_dims);
    x_grad->set_dtype(x.dtype());
  }
}

563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586
void MarginCrossEntropyGradInferMeta(const MetaTensor& logits,
                                     const MetaTensor& label,
                                     const MetaTensor& softmax,
                                     const MetaTensor& loss_grad,
                                     bool return_softmax,
                                     int ring_id,
                                     int rank,
                                     int nranks,
                                     float margin1,
                                     float margin2,
                                     float margin3,
                                     float scale,
                                     MetaTensor* logits_grad) {
  PADDLE_ENFORCE_NE(
      logits_grad,
      nullptr,
      phi::errors::InvalidArgument(
          "The Logits@GRAD in MarginCrossEntropy can't be nullptr."));
  auto softmax_dims = softmax.dims();

  logits_grad->set_dims(softmax_dims);
  logits_grad->set_dtype(softmax.dtype());
}

F
From00 已提交
587 588 589 590 591 592 593 594 595 596 597 598
void MaxPoolWithIndexGradInferMeta(const MetaTensor& x,
                                   const MetaTensor& mask,
                                   const MetaTensor& dout,
                                   const std::vector<int>& kernel_size,
                                   const std::vector<int>& strides,
                                   const std::vector<int>& paddings,
                                   bool global_pooling,
                                   bool adaptive,
                                   MetaTensor* dx) {
  dx->share_meta(x);
}

599 600
void MeshgridGradInferMeta(const std::vector<const MetaTensor*>& inputs,
                           const std::vector<const MetaTensor*>& outputs_grad,
Y
YuanRisheng 已提交
601 602 603 604 605 606 607 608 609 610 611 612
                           std::vector<MetaTensor*> inputs_grad) {
  PADDLE_ENFORCE_GT(outputs_grad.size(),
                    1,
                    errors::InvalidArgument(
                        "Number of Inputs(Out@Grad) should be larger than 1."
                        "But received Inputs(Out@Grad)' size = %d .",
                        outputs_grad.size()));
  for (size_t i = 0; i < inputs.size(); i++) {
    inputs_grad[i]->share_meta(*inputs[i]);
  }
}

613
void MultiDotGradInferMeta(const std::vector<const MetaTensor*>& x,
614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644
                           const MetaTensor& out_grad,
                           std::vector<MetaTensor*> x_grad) {
  PADDLE_ENFORCE_EQ(
      x.size(),
      x_grad.size(),
      errors::InvalidArgument(
          "Number of Inputs(X) should be equal with Outputs(X@Grad)."
          "But received Inputs(X)' size = %d , Outputs(X@Grad)' size = %d.",
          x.size(),
          x_grad.size()));
  for (size_t i = 0; i < x.size(); i++) {
    if (x_grad[i] != nullptr) {
      x_grad[i]->set_dims(x[i]->dims());
      x_grad[i]->share_lod(*x[i]);
    }
  }
}

void MultiplexGradInferMeta(const MetaTensor& ids,
                            const MetaTensor& out_grad,
                            std::vector<MetaTensor*> ins_grad) {
  PADDLE_ENFORCE_NE(
      ins_grad.empty(),
      true,
      errors::InvalidArgument("Output(X@Grad) should not be null."));
  auto dout_dim = out_grad.dims();
  for (auto in_grad : ins_grad) {
    in_grad->set_dims(dout_dim);
  }
}

645 646 647 648 649 650 651 652 653 654 655
void NanmedianGradInferMeta(const MetaTensor& x,
                            const MetaTensor& median_index,
                            const MetaTensor& out_grad,
                            const IntArray& axes,
                            bool keep_dim,
                            MetaTensor* x_grad) {
  auto x_dims = x.dims();
  x_grad->set_dims(x_dims);
  x_grad->set_dtype(x.dtype());
}

Z
zyfncg 已提交
656 657
void NllLossGradInferMeta(const MetaTensor& x,
                          const MetaTensor& label,
658
                          const MetaTensor& weight,
Z
zyfncg 已提交
659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721
                          const MetaTensor& total_weight,
                          const MetaTensor& out_grad,
                          int64_t ignore_index,
                          const std::string& reduction,
                          MetaTensor* dx,
                          MetaConfig config) {
  const auto& x_dims = x.dims();
  const auto& label_dims = label.dims();
  const auto& dout_dims = out_grad.dims();
  bool contain_unknown_dim =
      phi::contain_unknown_dim(x_dims) || phi::contain_unknown_dim(dout_dims);
  bool check = config.is_runtime || !contain_unknown_dim;

  if (check) {
    auto batch_size = x_dims[0];
    if (x_dims.size() == 2) {
      PADDLE_ENFORCE_EQ(dout_dims.size(),
                        1,
                        phi::errors::InvalidArgument(
                            "The dimensions of Input(Out@Grad) must be 1"));
      if (reduction == "none") {
        PADDLE_ENFORCE_EQ(
            dout_dims[0],
            batch_size,
            phi::errors::InvalidArgument(
                "The unreduced size ofInput(Out@Grad) must be the "
                "same as batch_size."));
      } else {
        PADDLE_ENFORCE_EQ(dout_dims[0],
                          1,
                          phi::errors::InvalidArgument(
                              "The reduced size of Input(Out@Grad) must be 1"));
      }
    } else if (x_dims.size() == 4) {
      if (reduction == "none") {
        PADDLE_ENFORCE_EQ(
            dout_dims.size(),
            3,
            phi::errors::InvalidArgument(
                "The dimensions of Input(Out@Grad) must be 3,But got [%s].",
                dout_dims.size()));
        PADDLE_ENFORCE_EQ(dout_dims[0] == label_dims[0] &&
                              dout_dims[1] == label_dims[1] &&
                              dout_dims[2] == label_dims[2],
                          true,
                          phi::errors::InvalidArgument(
                              "The dimensions of Input(Out@Grad) must be match "
                              "to Input(Label) dimensions."));
      } else {
        PADDLE_ENFORCE_EQ(dout_dims[0],
                          1,
                          phi::errors::InvalidArgument(
                              "The reduced size of Input(Out@Grad) must be 1"));
      }
    }
  }

  if (dx) {
    dx->set_dims(x_dims);
    dx->set_dtype(x.dtype());
  }
}

722 723 724 725 726 727 728 729 730 731 732 733
void OverlapAddGradInferMeta(const MetaTensor& x,
                             const MetaTensor& out_grad,
                             int hop_length,
                             int axis,
                             MetaTensor* x_grad) {
  const auto x_dims = x.dims();
  if (x_grad != nullptr) {
    x_grad->set_dims(x_dims);
    x_grad->set_dtype(x.dtype());
  }
}

734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
void PixelUnshuffleGradInferMeta(const MetaTensor& out_grad,
                                 int downscale_factor,
                                 const std::string& data_format,
                                 MetaTensor* x_grad) {
  auto do_dims = out_grad.dims();
  PADDLE_ENFORCE_EQ(do_dims.size(),
                    4,
                    phi::errors::InvalidArgument(
                        "Input should be a 4-D tensor of format [N, C, H, W] "
                        "or [N, H, W, C], but got %u.",
                        do_dims.size()));

  const bool channel_last = (data_format == "NHWC");

  auto dx_dims = do_dims;
  dx_dims[0] = do_dims[0];

  if (!channel_last) {
    dx_dims[1] = do_dims[1] / (downscale_factor * downscale_factor);
    dx_dims[2] = do_dims[2] * downscale_factor;
    dx_dims[3] = do_dims[3] * downscale_factor;
  } else {
    dx_dims[1] = do_dims[1] * downscale_factor;
    dx_dims[2] = do_dims[2] * downscale_factor;
    dx_dims[3] = do_dims[3] / (downscale_factor * downscale_factor);
  }
  x_grad->set_dims(dx_dims);
  x_grad->set_dtype(out_grad.dtype());
}

F
From00 已提交
764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780
void PoolGradInferMeta(const MetaTensor& x,
                       const MetaTensor& out,
                       const MetaTensor& dout,
                       const std::vector<int>& kernel_size,
                       const std::vector<int>& strides,
                       const std::vector<int>& paddings,
                       bool ceil_mode,
                       bool exclusive,
                       const std::string& data_format,
                       const std::string& pooling_type,
                       bool global_pooling,
                       bool adaptive,
                       const std::string& padding_algorithm,
                       MetaTensor* dx) {
  dx->share_meta(x);
}

F
From00 已提交
781 782
void PsroiPoolGradInferMeta(const MetaTensor& x,
                            const MetaTensor& rois,
783
                            const MetaTensor& rois_num,
F
From00 已提交
784 785 786 787 788 789 790 791 792
                            const MetaTensor& dout,
                            int pooled_height,
                            int pooled_width,
                            int output_channels,
                            float spatial_scale,
                            MetaTensor* dx) {
  dx->share_meta(x);
}

Z
zyfncg 已提交
793 794 795 796 797 798
void RealAndImagGradInferMeta(const MetaTensor& out_grad, MetaTensor* dx) {
  dx->set_dims(out_grad.dims());
  dx->set_dtype(dtype::ToComplex(out_grad.dtype()));
  dx->set_layout(out_grad.layout());
}

799 800 801 802 803 804 805 806
void ReshapeDoubleGradInferMeta(const MetaTensor& out_grad,
                                const MetaTensor& x_grad_grad,
                                MetaTensor* out_grad_grad) {
  if (out_grad_grad != nullptr) {
    out_grad_grad->share_dims(out_grad);
  }
}

807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841
void ScatterGradInferMeta(const MetaTensor& index,
                          const MetaTensor& updates,
                          const MetaTensor& out_grad,
                          bool overwrite,
                          MetaTensor* x_grad,
                          MetaTensor* updates_grad) {
  const auto& dtype = out_grad.dtype();
  if (updates_grad) {
    updates_grad->set_dims(updates.dims());
    updates_grad->set_dtype(dtype);
  }

  if (x_grad) {
    x_grad->set_dims(out_grad.dims());
    x_grad->set_dtype(dtype);
  }
}

void ScatterNdAddGradInferMeta(const MetaTensor& index,
                               const MetaTensor& updates,
                               const MetaTensor& out_grad,
                               MetaTensor* x_grad,
                               MetaTensor* updates_grad) {
  const auto& dtype = out_grad.dtype();
  if (updates_grad) {
    updates_grad->set_dims(updates.dims());
    updates_grad->set_dtype(dtype);
  }

  if (x_grad) {
    x_grad->set_dims(out_grad.dims());
    x_grad->set_dtype(dtype);
  }
}

842 843 844 845 846 847 848 849 850 851 852 853 854 855 856
void SpectralNormGradInferMeta(const MetaTensor& weight,
                               const MetaTensor& u,
                               const MetaTensor& v,
                               const MetaTensor& out_grad,
                               int dim,
                               int power_iters,
                               float eps,
                               MetaTensor* weight_grad) {
  auto dim_x = weight.dims();
  if (weight_grad) {
    weight_grad->set_dims(dim_x);
    weight_grad->set_dtype(out_grad.dtype());
  }
}

857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892
void StackGradInferMeta(const MetaTensor& out_grad,
                        int axis,
                        std::vector<MetaTensor*> x_grad) {
  auto dy_dim = out_grad.dims();
  int rank = dy_dim.size();
  PADDLE_ENFORCE_GE(
      axis,
      -rank,
      phi::errors::InvalidArgument(
          "Attr(axis) must be inside [-rank, rank), where rank = %d, "
          "but received axis is:%d.",
          rank,
          axis));
  PADDLE_ENFORCE_LT(
      axis,
      rank,
      phi::errors::InvalidArgument(
          "Attr(axis) must be inside [-rank, rank), where rank = %d, "
          "but received axis is:%d.",
          rank,
          axis));

  if (axis < 0) axis += rank;
  PADDLE_ENFORCE_LE(
      x_grad.size(),
      static_cast<size_t>(dy_dim[axis]),
      phi::errors::InvalidArgument(
          "Number of Outputs(X@Grad) should be less than or equal to dy dim "
          "at axis, but received outputs size is:%d, dy dims is:%d.",
          x_grad.size(),
          static_cast<size_t>(dy_dim[axis])));

  auto vec = phi::vectorize<int>(dy_dim);
  vec.erase(vec.begin() + axis);

  for (size_t i = 0; i < x_grad.size(); ++i) {
893 894 895 896
    if (x_grad[i]) {
      x_grad[i]->set_dims(phi::make_ddim(vec));
      x_grad[i]->set_dtype(out_grad.dtype());
    }
897 898 899
  }
}

900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917
void UniformRandomInplaceGradInferMeta(const MetaTensor& out_grad,
                                       float min,
                                       float max,
                                       int seed,
                                       int diag_num,
                                       int diag_step,
                                       float diag_val,
                                       MetaTensor* x_grad) {
  PADDLE_ENFORCE_NE(
      x_grad,
      nullptr,
      phi::errors::InvalidArgument(
          "The X@GRAD in UniformRandomInplaceGradInferMeta can't be nullptr."));
  auto dims = out_grad.dims();
  x_grad->set_dims(dims);
  x_grad->set_dtype(out_grad.dtype());
}

918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959
void UnStackGradInferMeta(const std::vector<const MetaTensor*>& out_grad,
                          int axis,
                          MetaTensor* x_grad) {
  std::vector<phi::DDim> input_dims(out_grad.size());
  for (size_t i = 0; i < out_grad.size(); ++i) {
    input_dims[i] = out_grad[i]->dims();
  }
  for (size_t i = 1; i < input_dims.size(); ++i) {
    PADDLE_ENFORCE_EQ(
        input_dims[i],
        input_dims[0],
        phi::errors::InvalidArgument(
            "The dimensions of all Inputs(Y@Grad) must be the same,"
            "but received Inputs(Y@Grad)'s %d-th dimension is %d, "
            "Inputs(Y@Grad)'s 0-th to %d-th dimension is %d.",
            i,
            input_dims[i],
            i - 1,
            input_dims[0]));
  }

  int rank = input_dims[0].size();
  PADDLE_ENFORCE_GE(axis,
                    -(rank + 1),
                    phi::errors::InvalidArgument(
                        "The attribute axis is out of range, it must be "
                        "inside [-(rank+1), rank+1), where rank = %d",
                        rank));
  PADDLE_ENFORCE_LT(axis,
                    rank + 1,
                    phi::errors::InvalidArgument(
                        "The attribute axis is out of range, it must be "
                        "inside [-(rank+1), rank+1), where rank = %d",
                        rank));
  if (axis < 0) axis += (rank + 1);

  auto vec = phi::vectorize<int>(input_dims[0]);
  vec.insert(vec.begin() + axis, input_dims.size());
  x_grad->set_dims(phi::make_ddim(vec));
  x_grad->set_dtype(out_grad[0]->dtype());
}

960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983
void Yolov3LossGradInferMeta(const MetaTensor& x,
                             const MetaTensor& gt_box,
                             const MetaTensor& gt_label,
                             const MetaTensor& gt_score,
                             const MetaTensor& objectness_mask,
                             const MetaTensor& gt_match_mask,
                             const MetaTensor& loss_grad,
                             const std::vector<int>& anchors,
                             const std::vector<int>& anchor_mask,
                             int class_num,
                             float ignore_thresh,
                             int downsample_ratio,
                             bool use_label_smooth,
                             float scale_x_y,
                             MetaTensor* x_grad,
                             MetaTensor* gt_box_grad,
                             MetaTensor* gt_label_grad,
                             MetaTensor* gt_score_grad) {
  if (x_grad) {
    x_grad->set_dims(x.dims());
    x_grad->set_dtype(x.dtype());
  }
}

L
Li Min 已提交
984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005
void IndexAddGradInferMeta(const MetaTensor& index,
                           const MetaTensor& add_value,
                           const MetaTensor& out_grad,
                           int axis,
                           MetaTensor* x_grad,
                           MetaTensor* add_value_grad) {
  auto do_dims = out_grad.dims();
  auto add_value_dims = add_value.dims();
  if (x_grad) {
    x_grad->set_dims(do_dims);
    x_grad->set_dtype(out_grad.dtype());
    x_grad->set_layout(out_grad.layout());
    x_grad->share_lod(out_grad);
  }
  if (add_value_grad) {
    add_value_grad->set_dims(add_value_dims);
    add_value_grad->set_dtype(add_value.dtype());
    add_value_grad->set_layout(add_value.layout());
    add_value_grad->share_lod(add_value);
  }
}

1006
}  // namespace phi