You need to sign in or sign up before continuing.
backward.cc 6.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/phi/infermeta/backward.h"
16

17
namespace phi {
18

19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
void BilinearTensorProductGradInferMeta(const MetaTensor& x,
                                        const MetaTensor& y,
                                        const MetaTensor& weight,
                                        const MetaTensor& dout,
                                        MetaTensor* dx,
                                        MetaTensor* dy,
                                        MetaTensor* dweight,
                                        MetaTensor* dbias) {
  auto x_dims = x.dims();
  auto y_dims = y.dims();
  auto weight_dims = weight.dims();
  auto out_dims = dout.dims();

  PADDLE_ENFORCE_EQ(
      out_dims.size(),
      2UL,
      errors::InvalidArgument("The input(Out@GRAD) must be a 2D Tensor."));
  PADDLE_ENFORCE_EQ(
      x_dims[0],
      out_dims[0],
      errors::InvalidArgument(
          "The first dimension(batch_size) of input(Out@GRAD) must be "
          "equal to the first dimension of the Input(X)."));
  PADDLE_ENFORCE_EQ(
      weight_dims[0],
      out_dims[1],
      errors::InvalidArgument(
          "The second dimension of input(Out@GRAD) must be equal to "
          "the third dimension of the Input(Weight)."));

  if (dx) {
    dx->set_dims(x_dims);
    dx->set_dtype(x.dtype());
  }
  if (dy) {
    dy->set_dims(y_dims);
    dy->set_dtype(y.dtype());
  }
  if (dweight) {
    dweight->set_dims(weight_dims);
    dweight->set_dtype(weight.dtype());
  }
  if (dbias) {
    dbias->set_dims({1, out_dims[1]});
    dbias->set_dtype(dout.dtype());
  }
}

67 68 69 70 71 72 73 74
void GatherNdGradInferMeta(const MetaTensor& x,
                           const MetaTensor& index,
                           const MetaTensor& out_grad,
                           MetaTensor* x_grad) {
  const auto& dtype = out_grad.dtype();
  x_grad->set_dims(x.dims());
  x_grad->share_lod(x);
  x_grad->set_dtype(dtype);
75 76
}

77 78 79 80
void GeneralBinaryGradInferMeta(const MetaTensor& x,
                                const MetaTensor& y,
                                MetaTensor* dx,
                                MetaTensor* dy) {
81 82 83 84 85 86
  if (dx) {
    dx->share_meta(x);
  }
  if (dy) {
    dy->share_meta(y);
  }
87 88
}

89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
void GeneralTernaryGradInferMeta(const MetaTensor& x,
                                 const MetaTensor& y,
                                 const MetaTensor& z,
                                 MetaTensor* dx,
                                 MetaTensor* dy,
                                 MetaTensor* dz) {
  if (dx) {
    dx->share_meta(x);
  }
  if (dy) {
    dy->share_meta(y);
  }
  if (dz) {
    dz->share_meta(z);
  }
}

106 107 108 109 110 111
void GeneralUnaryGradInferMeta(const MetaTensor& x, MetaTensor* dx) {
  if (dx) {
    dx->share_meta(x);
  }
}

F
From00 已提交
112 113 114 115 116 117 118 119 120 121
void GumbelSoftmaxGradInferMeta(const MetaTensor& out,
                                const MetaTensor& dout,
                                int axis,
                                MetaTensor* dx) {
  PADDLE_ENFORCE_EQ(
      out.dims(),
      dout.dims(),
      errors::InvalidArgument(
          "Input(Out) and its gradients should have the same shape."));

122
  dx->share_meta(dout);
123 124
}

F
From00 已提交
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
void MaxPoolWithIndexGradInferMeta(const MetaTensor& x,
                                   const MetaTensor& mask,
                                   const MetaTensor& dout,
                                   const std::vector<int>& kernel_size,
                                   const std::vector<int>& strides,
                                   const std::vector<int>& paddings,
                                   bool global_pooling,
                                   bool adaptive,
                                   MetaTensor* dx) {
  dx->share_meta(x);
}

void PoolGradInferMeta(const MetaTensor& x,
                       const MetaTensor& out,
                       const MetaTensor& dout,
                       const std::vector<int>& kernel_size,
                       const std::vector<int>& strides,
                       const std::vector<int>& paddings,
                       bool ceil_mode,
                       bool exclusive,
                       const std::string& data_format,
                       const std::string& pooling_type,
                       bool global_pooling,
                       bool adaptive,
                       const std::string& padding_algorithm,
                       MetaTensor* dx) {
  dx->share_meta(x);
}

F
From00 已提交
154 155 156 157 158 159 160 161 162 163 164 165
void PsroiPoolGradInferMeta(const MetaTensor& x,
                            const MetaTensor& rois,
                            paddle::optional<const MetaTensor&> rois_num,
                            const MetaTensor& dout,
                            int pooled_height,
                            int pooled_width,
                            int output_channels,
                            float spatial_scale,
                            MetaTensor* dx) {
  dx->share_meta(x);
}

166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
void ScatterGradInferMeta(const MetaTensor& index,
                          const MetaTensor& updates,
                          const MetaTensor& out_grad,
                          bool overwrite,
                          MetaTensor* x_grad,
                          MetaTensor* updates_grad) {
  const auto& dtype = out_grad.dtype();
  if (updates_grad) {
    updates_grad->set_dims(updates.dims());
    updates_grad->set_dtype(dtype);
  }

  if (x_grad) {
    x_grad->set_dims(out_grad.dims());
    x_grad->set_dtype(dtype);
  }
}

void ScatterNdAddGradInferMeta(const MetaTensor& index,
                               const MetaTensor& updates,
                               const MetaTensor& out_grad,
                               MetaTensor* x_grad,
                               MetaTensor* updates_grad) {
  const auto& dtype = out_grad.dtype();
  if (updates_grad) {
    updates_grad->set_dims(updates.dims());
    updates_grad->set_dtype(dtype);
  }

  if (x_grad) {
    x_grad->set_dims(out_grad.dims());
    x_grad->set_dtype(dtype);
  }
}

201
}  // namespace phi