attention_lstm_op.cc 20.4 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/attention_lstm_op.h"
16

T
tensor-tang 已提交
17
#include <string>
18

19
#include "paddle/phi/backends/cpu/cpu_info.h"
20
#include "paddle/phi/kernels/funcs/blas/blas.h"
F
Feiyu Chan 已提交
21
#include "paddle/phi/kernels/funcs/cpu_vec.h"
22
#include "paddle/phi/kernels/funcs/fc_functor.h"
23

T
tensor-tang 已提交
24 25 26
namespace paddle {
namespace operators {

27
void AttentionLSTMOp::InferShape(framework::InferShapeContext* ctx) const {
28 29
  OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "AttentionLstm");
  OP_INOUT_CHECK(ctx->HasInput("C0"), "Input", "C0", "AttentionLstm");
30 31 32 33 34 35 36
  OP_INOUT_CHECK(
      ctx->HasInput("LSTMWeight"), "Input", "LSTMWeight", "AttentionLstm");
  OP_INOUT_CHECK(
      ctx->HasInput("LSTMBias"), "Input", "LSTMBias", "AttentionLstm");
  OP_INOUT_CHECK(ctx->HasInput("AttentionWeight"),
                 "Input",
                 "AttentionWeight",
37
                 "AttentionLstm");
T
tensor-tang 已提交
38

39 40
  OP_INOUT_CHECK(ctx->HasOutput("Hidden"), "Output", "Hidden", "AttentionLstm");
  OP_INOUT_CHECK(ctx->HasOutput("Cell"), "Output", "Cell", "AttentionLstm");
41 42 43
  OP_INOUT_CHECK(ctx->HasOutput("AttentionedX"),
                 "Output",
                 "AttentionedX",
44
                 "AttentionLstm");
45 46 47
  OP_INOUT_CHECK(ctx->HasOutput("AttentionFCOut"),
                 "Output",
                 "AttentionFCOut",
48 49
                 "AttentionLstm");
  OP_INOUT_CHECK(ctx->HasOutput("LSTMX"), "Output", "LSTMX", "AttentionLstm");
50 51
  OP_INOUT_CHECK(
      ctx->HasOutput("LSTMOUT"), "Output", "LSTMOUT", "AttentionLstm");
T
tensor-tang 已提交
52 53

  auto x_dims = ctx->GetInputDim("X");
T
tensor-tang 已提交
54
  const int M = x_dims[1];
55 56
  PADDLE_ENFORCE_EQ(x_dims.size(),
                    2,
57 58 59
                    platform::errors::InvalidArgument(
                        "Expected input(X)'s dimension is 2. But received %d.",
                        x_dims.size()));
T
tensor-tang 已提交
60

T
tensor-tang 已提交
61 62
  auto w_dims = ctx->GetInputDim("LSTMWeight");
  const int D = w_dims[1] / 4;
63
  PADDLE_ENFORCE_EQ(
64 65
      w_dims.size(),
      2,
66 67 68
      platform::errors::InvalidArgument(
          "Expected input(LSTMWeight)'s dimension is 2.But received %d.",
          w_dims.size()));
69
  PADDLE_ENFORCE_EQ(
70 71
      w_dims[0],
      D + M,
72 73
      platform::errors::InvalidArgument(
          "LSTMWeight dims should be (%d + %d) * %d.", D, M, 4 * D));
T
tensor-tang 已提交
74 75

  auto b_dims = ctx->GetInputDim("LSTMBias");
76
  PADDLE_ENFORCE_EQ(
77 78
      b_dims.size(),
      2,
79
      platform::errors::InvalidArgument("Input(LSTMBias)'s rank must be 2."));
80 81
  PADDLE_ENFORCE_EQ(b_dims[0],
                    1,
82 83
                    platform::errors::InvalidArgument(
                        "LSTMBias dims should be 1 x %d.", 4 * D));
84 85
  PADDLE_ENFORCE_EQ(b_dims[1],
                    4 * D,
86 87
                    platform::errors::InvalidArgument(
                        "LSTMBias dims should be 1 x %d.", 4 * D));
T
tensor-tang 已提交
88 89

  auto c_dims = ctx->GetInputDim("C0");
90
  PADDLE_ENFORCE_EQ(
91 92
      c_dims.size(),
      2,
93
      platform::errors::InvalidArgument("Input(C0)'s rank must be 2."));
T
tensor-tang 已提交
94
  if (ctx->IsRuntime()) {
95
    PADDLE_ENFORCE_EQ(
96 97
        c_dims[1],
        D,
98
        platform::errors::InvalidArgument("C0 dims should be N x %d.", D));
T
tensor-tang 已提交
99 100
  }

101
  if (ctx->HasInput("H0")) {
T
tensor-tang 已提交
102
    auto h_dims = ctx->GetInputDim("H0");
103
    PADDLE_ENFORCE_EQ(
104 105
        h_dims.size(),
        2UL,
106 107 108
        platform::errors::InvalidArgument(
            "Expected input(H0)'s dimension is 2. But received %d.",
            h_dims.size()));
T
update  
tensor-tang 已提交
109
    if (ctx->IsRuntime() ||
110
        (phi::product(c_dims) > 0 && phi::product(h_dims) > 0)) {
111 112
      PADDLE_ENFORCE_EQ(h_dims,
                        c_dims,
113 114 115
                        platform::errors::InvalidArgument(
                            "The dimension of Input(H0) and Input(C0) "
                            "should be the same."));
T
update  
tensor-tang 已提交
116
    }
T
tensor-tang 已提交
117 118
  }

T
tensor-tang 已提交
119
  auto atten_w_dims = ctx->GetInputDim("AttentionWeight");
120 121
  PADDLE_ENFORCE_EQ(atten_w_dims.size(),
                    2,
122 123
                    platform::errors::InvalidArgument(
                        "Input(AttentionWeight)'s rank must be 2."));
124 125
  PADDLE_ENFORCE_EQ(atten_w_dims[0],
                    M + D,
126
                    platform::errors::InvalidArgument(
127 128
                        "Expected `AttentionWeight` shape is [(%d + %d), 1]. "
                        "But received shape = [%d, 1], shape[0] is not %d.",
129 130 131 132 133 134
                        M,
                        D,
                        atten_w_dims[0],
                        M + D));
  PADDLE_ENFORCE_EQ(atten_w_dims[1],
                    1,
135 136
                    platform::errors::InvalidArgument(
                        "AttentionWeight shapes must be (%d + %d) * 1.", M, D));
T
tensor-tang 已提交
137

138
  if (ctx->HasInput("AttentionBias")) {
T
tensor-tang 已提交
139
    auto atten_b_dims = ctx->GetInputDim("AttentionBias");
140 141
    PADDLE_ENFORCE_EQ(atten_b_dims.size(),
                      2,
142 143
                      platform::errors::InvalidArgument(
                          "Input(AttentionBias)'s rank must be 2."));
144 145
    PADDLE_ENFORCE_EQ(atten_b_dims[0],
                      1,
146 147
                      platform::errors::InvalidArgument(
                          "AttentionBias shapes must be 1 * 1."));
148 149
    PADDLE_ENFORCE_EQ(atten_b_dims[1],
                      1,
150 151
                      platform::errors::InvalidArgument(
                          "AttentionBias shapes must be 1 * 1."));
T
tensor-tang 已提交
152 153
  }

154
  if (ctx->HasInput("AttentionScalar")) {
T
tensor-tang 已提交
155
    auto dims = ctx->GetInputDim("AttentionScalar");
156 157
    PADDLE_ENFORCE_EQ(dims.size(),
                      2,
158 159
                      platform::errors::InvalidArgument(
                          "Input(AttentionScalar)'s rank must be 2."));
160 161
    PADDLE_ENFORCE_EQ(dims[0],
                      1,
162 163
                      platform::errors::InvalidArgument(
                          "AttentionScalar shapes must be 1 * 1."));
164 165
    PADDLE_ENFORCE_EQ(dims[1],
                      1,
166 167
                      platform::errors::InvalidArgument(
                          "AttentionScalar shapes must be 1 * 1."));
T
tensor-tang 已提交
168 169
  }

170
  if (ctx->HasInput("AttentionScalarBias")) {
T
tensor-tang 已提交
171
    auto dims = ctx->GetInputDim("AttentionScalarBias");
172 173 174
    OP_INOUT_CHECK(ctx->HasInput("AttentionScalar"),
                   "Input",
                   "AttentionScalar",
175
                   "AttentionLstm");
176 177
    PADDLE_ENFORCE_EQ(dims.size(),
                      2,
178 179
                      platform::errors::InvalidArgument(
                          "Input(AttentionScalarBias)'s rank must be 2."));
180 181
    PADDLE_ENFORCE_EQ(dims[0],
                      1,
182 183
                      platform::errors::InvalidArgument(
                          "AttentionScalarBias shapes must be 1 * 1."));
184 185
    PADDLE_ENFORCE_EQ(dims[1],
                      1,
186 187
                      platform::errors::InvalidArgument(
                          "AttentionScalarBias shapes must be 1 * 1."));
T
tensor-tang 已提交
188 189 190
  }

  framework::DDim out_dims({x_dims[0], D});
T
tensor-tang 已提交
191 192
  ctx->SetOutputDim("Hidden", out_dims);
  ctx->SetOutputDim("Cell", out_dims);
T
tensor-tang 已提交
193 194 195 196
  ctx->SetOutputDim("AttentionedX", {x_dims[0], 1});
  ctx->SetOutputDim("LSTMX", {1, M});
  ctx->SetOutputDim("LSTMOUT", {1, 4 * D});
  // AttentionFCOut should be reshape as (maxseqlen,1) in runtime
T
tensor-tang 已提交
197 198 199 200
  ctx->ShareLoD("X", "Hidden");
  ctx->ShareLoD("X", "Cell");
}

201
phi::KernelKey AttentionLSTMOp::GetExpectedKernelType(
T
tensor-tang 已提交
202
    const framework::ExecutionContext& ctx) const {
203 204
  return phi::KernelKey(OperatorWithKernel::IndicateVarDataType(ctx, "X"),
                        ctx.device_context().GetPlace());
T
tensor-tang 已提交
205 206
}

207
void AttentionLSTMOpMaker::Make() {
208 209 210 211 212 213
  AddInput(
      "X",
      "(phi::DenseTensor) the input is a LodTensor, which support "
      "variable-time length input sequence. The underlying tensor in "
      "this phi::DenseTensor is a matrix with shape (T X M), where T is the "
      "total time steps in this mini-batch, M is the dim size of x.");
214
  AddInput("C0",
215
           "(phi::DenseTensor) LSTM C0"
216 217 218
           "This is a tensor with shape (N x D), where N is the batch size, D "
           "is the gate size."
           "C0 is necessary because of attention.");
T
tensor-tang 已提交
219
  AddInput("H0",
220
           "(phi::DenseTensor, optional) LSTM H0"
221 222
           "This is a tensor with shape (N x D), where N is the "
           "batch size and D is the gate size.")
T
tensor-tang 已提交
223
      .AsDispensable();
224
  AddInput("AttentionWeight",
225 226
           "(phi::DenseTensor) the weights of attention fc. Always relu the fc "
           "result."
227 228
           "The shape is ((M+D) x 1), where M is the dim size of x, D is the "
           "gate size of LSTM.");
T
tensor-tang 已提交
229
  AddInput("AttentionBias",
230
           "(phi::DenseTensor, optional) the bias of attention fc."
231 232 233
           "The shape is (1 x 1)")
      .AsDispensable();
  AddInput("AttentionScalar",
234 235
           "(phi::DenseTensor, optional) the scalar on the result of "
           "attentioned fc. "
236 237 238 239
           "Always relu the Scalar."
           "The shape is (1 x 1)")
      .AsDispensable();
  AddInput("AttentionScalarBias",
240
           "(phi::DenseTensor, optional) the scalar bias of attention fc."
241
           "The shape is (1 x 1)")
T
tensor-tang 已提交
242
      .AsDispensable();
243
  AddInput("LSTMWeight",
244
           "(phi::DenseTensor) the combined weight of LSTM"
245 246 247 248
           " - The shape is ((D+M) x 4D), where D is the hidden gate size, M "
           "is the dim size of x"
           " - Weight = {W_forget, W_input, W_output, W_cell}");
  AddInput("LSTMBias",
249
           "(phi::DenseTensor) the combined bias of LSTM, shape (1x4D)."
250 251 252
           "Note: we should add the bias of hidden and context accorindg to "
           "the same gate: "
           "{B_forget, B_input, B_output, B_cell}");
253 254 255 256 257 258 259 260
  AddOutput(
      "Hidden",
      "(phi::DenseTensor) (same as LSTMOp) the hidden state of LSTM operator. "
      "The shape is (T x D), and lod is the same with the `Input`.");
  AddOutput(
      "Cell",
      "(phi::DenseTensor) (same as LSTMOp) the cell state of LSTM operator. "
      "The shape is (T x D), and lod is the same with the `Input`.");
T
tensor-tang 已提交
261
  AddOutput("AttentionedX",
262 263
            "(phi::DenseTensor) shape is (T x 1), the result after X * "
            "AttentionWeight,"
T
tensor-tang 已提交
264 265
            " where T is the total time steps in this mini-batch,"
            " D is the hidden size.")
T
tensor-tang 已提交
266
      .AsIntermediate();
267
  AddOutput("AttentionFCOut",
268
            "(phi::DenseTensor) (max_seq_len, 1), compute at each step.")
T
tensor-tang 已提交
269
      .AsIntermediate();
270
  AddOutput("LSTMX",
271
            "(phi::DenseTensor) the input X of LSTM for each step."
272 273
            "Shape is (1 x M), where M is the x frame size")
      .AsIntermediate();
274 275 276 277
  AddOutput("LSTMOUT",
            "(phi::DenseTensor) the output of LSTM X(1*(D+M))* "
            "weight((D+M)*4D) for each step."
            "Shape is (1 x 4D), where M is the x frame size")
278
      .AsIntermediate();
T
tensor-tang 已提交
279 280 281 282 283
  AddAttr<std::string>("gate_activation",
                       "(string, default: sigmoid)"
                       "The activation for input gate, forget gate and output "
                       "gate, `sigmoid` by default.")
      .SetDefault("sigmoid")
284
      .InEnum({"sigmoid", "tanh", "relu", "identity"});
T
tensor-tang 已提交
285 286
  AddAttr<std::string>("cell_activation",
                       "(string, default: tanh)"
翟飞跃 已提交
287
                       "The activation for cell output, `tanh` by default.")
T
tensor-tang 已提交
288
      .SetDefault("tanh")
289
      .InEnum({"sigmoid", "tanh", "relu", "identity"});
T
tensor-tang 已提交
290 291 292 293 294
  AddAttr<std::string>("candidate_activation",
                       "(string, default: tanh)"
                       "The activation for candidate hidden state, "
                       "`tanh` by default.")
      .SetDefault("tanh")
295
      .InEnum({"sigmoid", "tanh", "relu", "identity"});
T
tensor-tang 已提交
296
  AddComment(R"DOC(
297 298 299 300 301 302 303 304 305
Attention Long-Short Term Memory (LSTM) Operator.

Attention part:
concat( x(seqlen * M), expand( cell_t-1(1,D) ) ) => tmp(seqlen*(M+D))

tmp(seqlen*(M+D)) * fc((M+D)*1) => fcout(seqlen*1) with bias, relu

fcout(seqlen*1) * scalar => fcout(seqlen*1) with bias, relu

306
dotmul and sum pool ( fcout(seqlen*1), x(seqlen * M) ) => lstm_x_t(1, M)
307 308 309 310

LSTM part:
use lstm_x_t as input and compute as standard LSTM.

T
tensor-tang 已提交
311 312 313
)DOC");
}

314 315 316 317
// y[i] = (x[i] + bias[0]) > 0 ? (x[i] + bias[0]) : 0;
template <typename T>
inline void bias_relu(const int n, const T* x, const T* bias, T* y) {
  if (bias) {
318 319
    phi::funcs::vec_add_bias<T, phi::backends::cpu::avx>(n, *bias, x, y);
    phi::funcs::vec_relu<T, phi::backends::cpu::avx>(n, y, y);
320
  } else {
321
    phi::funcs::vec_relu<T, phi::backends::cpu::avx>(n, x, y);
322 323 324
  }
}

T
tensor-tang 已提交
325 326
template <typename T>
inline void vec_softmax(const int n, const T* x, T* y) {
327 328 329 330 331
  T scalar = x[0];
  // max
  for (int i = 1; i < n; ++i) {
    scalar = scalar < x[i] ? x[i] : scalar;
  }
332 333 334
  phi::funcs::vec_add_bias<T, phi::backends::cpu::avx>(
      n, -scalar, x, y);            // sub
  phi::funcs::vec_exp<T>(n, y, y);  // exp
335 336 337 338 339
  // sum
  scalar = T(0);
  for (int i = 0; i < n; ++i) {
    scalar += y[i];
  }
F
Feiyu Chan 已提交
340
  phi::funcs::vec_scal<T>(n, static_cast<T>(1) / scalar, y);  // scale
341 342
}

T
tensor-tang 已提交
343
template <typename T>
344
class AttentionLSTMKernel : public framework::OpKernel<T> {
T
tensor-tang 已提交
345 346
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
L
Leo Chen 已提交
347
    using DeviceContext = phi::CPUContext;
348

349
    auto* x = ctx.Input<phi::DenseTensor>("X");
350 351 352 353 354 355 356 357 358
    auto* h0 = ctx.Input<phi::DenseTensor>("H0");
    auto* c0 = ctx.Input<phi::DenseTensor>("C0");
    auto* atten_w = ctx.Input<phi::DenseTensor>("AttentionWeight");
    auto* atten_b = ctx.Input<phi::DenseTensor>("AttentionBias");
    auto* atten_scalar = ctx.Input<phi::DenseTensor>("AttentionScalar");
    auto* atten_scalar_bias =
        ctx.Input<phi::DenseTensor>("AttentionScalarBias");
    auto* lstm_w = ctx.Input<phi::DenseTensor>("LSTMWeight");
    auto* lstm_b = ctx.Input<phi::DenseTensor>("LSTMBias");
359

360 361
    auto* hidden_out = ctx.Output<phi::DenseTensor>("Hidden");
    auto* cell_out = ctx.Output<phi::DenseTensor>("Cell");
362 363 364 365
    auto* atted_x = ctx.Output<phi::DenseTensor>("AttentionedX");
    auto* fc_out = ctx.Output<phi::DenseTensor>("AttentionFCOut");
    auto* lstm_x = ctx.Output<phi::DenseTensor>("LSTMX");
    auto* lstm_out = ctx.Output<phi::DenseTensor>("LSTMOUT");
T
tensor-tang 已提交
366 367 368 369 370

    // some shape should be reshape here since infershape can not get lod info
    auto x_lod = x->lod();
    const int N = x_lod[0].size() - 1;  // batch size
    auto x_dims = x->dims();            // T x M
T
tensor-tang 已提交
371 372 373 374
    auto w_dims = lstm_w->dims();       // (D+M) x 4D
    const int total_T = x_dims[0];
    const int M = x_dims[1];      // x frame size
    const int D = w_dims[1] / 4;  // gate frame size
T
tensor-tang 已提交
375 376 377 378 379 380 381 382
    const int D2 = D * 2;
    const int D3 = D * 3;
    const int D4 = w_dims[1];
    int max_seq_len = x_lod[0][1];
    for (int i = 1; i < N; ++i) {
      int len = x_lod[0][i + 1] - x_lod[0][i];
      max_seq_len = max_seq_len < len ? len : max_seq_len;
    }
383
    PADDLE_ENFORCE_EQ(
384 385
        x_lod.size(),
        1UL,
386
        platform::errors::InvalidArgument("Input(X)'s lod size must be 1."));
387
    PADDLE_ENFORCE_EQ(
388 389
        c0->dims()[0],
        N,
390
        platform::errors::InvalidArgument("C0 dims should be %d x %d.", N, D));
T
tensor-tang 已提交
391
    fc_out->Resize({max_seq_len, 1});
T
tensor-tang 已提交
392

393
    std::function<void(const int, const T*, T*)> act_gate, act_cell, act_cand;
T
tensor-tang 已提交
394 395 396
    auto& act_gate_str = ctx.Attr<std::string>("gate_activation");
    auto& act_cell_str = ctx.Attr<std::string>("cell_activation");
    auto& act_cand_str = ctx.Attr<std::string>("candidate_activation");
397 398
    if (phi::backends::cpu::MayIUse(phi::backends::cpu::avx)) {
      phi::funcs::VecActivations<T, phi::backends::cpu::avx> act_functor;
T
tensor-tang 已提交
399 400 401 402
      act_gate = act_functor(act_gate_str);
      act_cell = act_functor(act_cell_str);
      act_cand = act_functor(act_cand_str);
    } else {
403
      phi::funcs::VecActivations<T, phi::backends::cpu::isa_any> act_functor;
T
tensor-tang 已提交
404 405 406 407
      act_gate = act_functor(act_gate_str);
      act_cell = act_functor(act_cell_str);
      act_cand = act_functor(act_cand_str);
    }
T
tensor-tang 已提交
408

T
tensor-tang 已提交
409
    const T* x_data = x->data<T>();
T
tensor-tang 已提交
410
    const T* h0_data = h0 ? h0->data<T>() : NULL;
411 412 413 414 415 416 417 418 419
    const T* c0_data = c0->data<T>();
    const T* lstm_w_data = lstm_w->data<T>();
    const T* lstm_b_data = lstm_b->data<T>();
    const T* atten_w_data = atten_w->data<T>();
    const T* atten_b_data = atten_b ? atten_b->data<T>() : NULL;
    const T* atten_scalar_data = atten_scalar ? atten_scalar->data<T>() : NULL;
    const T* atten_scalar_bias_data =
        atten_scalar_bias ? atten_scalar_bias->data<T>() : NULL;

T
tensor-tang 已提交
420 421 422 423 424 425
    T* hidden_out_data = hidden_out->mutable_data<T>(ctx.GetPlace());
    T* cell_out_data = cell_out->mutable_data<T>(ctx.GetPlace());
    T* atted_x_data = atted_x->mutable_data<T>(ctx.GetPlace());
    T* fc_out_data = fc_out->mutable_data<T>(ctx.GetPlace());
    T* lstm_x_data = lstm_x->mutable_data<T>(ctx.GetPlace());
    T* lstm_out_data = lstm_out->mutable_data<T>(ctx.GetPlace());
426 427

    // x(TxM) * fc (Mx1) part of atten_wgt(M+D)x1
L
Leo Chen 已提交
428
    auto& dev_ctx = ctx.template device_context<phi::CPUContext>();
429 430
    auto blas = phi::funcs::GetBlas<phi::CPUContext, T>(dev_ctx);

431
    phi::funcs::FCFunctor<DeviceContext, T> fc;
432 433 434 435 436 437 438
    fc(dev_ctx,
       total_T,
       1,
       M,
       x_data,
       atten_w_data,
       atted_x_data,
439
       atten_b_data);
440

T
tensor-tang 已提交
441
    const T* cur_atten_x_data = atted_x_data;
442 443 444 445 446
    const T* cur_x_data = x_data;
    const T* prev_cell_data = NULL;
    const T* prev_hidden_data = NULL;
    T* cur_cell_out_data = cell_out_data;
    T* cur_hidden_out_data = hidden_out_data;
T
tensor-tang 已提交
447
    for (int i = 0; i < N; ++i) {
T
tensor-tang 已提交
448
      int seq_len = x_lod[0][i + 1] - x_lod[0][i];
449
      prev_cell_data = c0_data + i * D;
T
tensor-tang 已提交
450
      prev_hidden_data = h0_data ? h0_data + i * D : NULL;
451
      for (int step = 0; step < seq_len; ++step) {
T
tensor-tang 已提交
452 453
        /// 1. compute attention vector
        // 1a. prev_cell(1xD) * fc(D) rest part of atten_wgt
T
tensor-tang 已提交
454
        T prev_cell_bias = blas.DOT(D, prev_cell_data, atten_w_data + M);
T
tensor-tang 已提交
455 456 457
        // 1b. add cell bias and relu
        bias_relu<T>(seq_len, cur_atten_x_data, &prev_cell_bias, fc_out_data);
        // 1c. fc scalar
458
        if (atten_scalar_data) {
T
tensor-tang 已提交
459
          blas.SCAL(seq_len, *atten_scalar_data, fc_out_data);
460 461
          bias_relu<T>(
              seq_len, fc_out_data, atten_scalar_bias_data, fc_out_data);
462
        }
T
tensor-tang 已提交
463
        // 1d. softmax
T
tensor-tang 已提交
464
        vec_softmax<T>(seq_len, fc_out_data, fc_out_data);
465
        // mul x(seq_len*M) and sum pool
466
        fc(dev_ctx, 1, M, seq_len, fc_out_data, cur_x_data, lstm_x_data);
467

T
tensor-tang 已提交
468
        /// 2. compute LSTM step
469 470 471 472 473
        // lstm weight : concat[forget , input , output , tilde]
        // shape : (D + M) x (4 * D)
        // fc inputX(1xM) * weightX(M*(4D))  => 1 x 4D
        blas.MatMul(1, D4, M, lstm_x_data, lstm_w_data + D * D4, lstm_out_data);
        if (prev_hidden_data) {
474 475 476 477 478 479 480 481 482 483 484 485 486
          blas.GEMM(CblasNoTrans,
                    CblasNoTrans,
                    1,
                    D4,
                    D,
                    static_cast<T>(1),
                    prev_hidden_data,
                    D,
                    lstm_w_data,
                    D4,
                    static_cast<T>(1),
                    lstm_out_data,
                    D4);
487 488 489 490 491
        }
        // since input is 1xM, so can use add bias
        blas.VADD(D4, lstm_b_data, lstm_out_data, lstm_out_data);

        // gate act: sigmoid
492
        act_gate(D3, lstm_out_data, lstm_out_data);
493
        // candicate act: tanh
494
        act_cand(D, lstm_out_data + D3, lstm_out_data + D3);
495 496 497 498 499

        // a = forget * prev_cell
        blas.VMUL(D, lstm_out_data, prev_cell_data, lstm_out_data);

        // b = input * tilde
T
tensor-tang 已提交
500
        blas.VMUL(D, lstm_out_data + D, lstm_out_data + D3, lstm_out_data + D);
501 502 503 504 505

        // cell_out = a + b
        blas.VADD(D, lstm_out_data, lstm_out_data + D, cur_cell_out_data);

        // state act tanh(cell_out) * output_gate
506
        act_cell(D, cur_cell_out_data, lstm_out_data);
T
tensor-tang 已提交
507
        blas.VMUL(D, lstm_out_data, lstm_out_data + D2, cur_hidden_out_data);
508

T
tensor-tang 已提交
509
        prev_hidden_data = cur_hidden_out_data;
510 511 512
        prev_cell_data = cur_cell_out_data;
        cur_cell_out_data = cur_cell_out_data + D;
        cur_hidden_out_data = cur_hidden_out_data + D;
T
tensor-tang 已提交
513
      }
514
      cur_x_data = cur_x_data + seq_len * M;
T
tensor-tang 已提交
515
      cur_atten_x_data = cur_atten_x_data + seq_len;
T
tensor-tang 已提交
516 517 518 519 520 521 522 523
    }
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
524 525
REGISTER_OPERATOR(attention_lstm,
                  ops::AttentionLSTMOp,
526
                  ops::AttentionLSTMOpMaker);
T
tensor-tang 已提交
527

528 529
REGISTER_OP_CPU_KERNEL(attention_lstm,
                       ops::AttentionLSTMKernel<float>,
T
tensor-tang 已提交
530
                       ops::AttentionLSTMKernel<double>);