attention_lstm_op.cc 20.1 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/attention_lstm_op.h"
16

T
tensor-tang 已提交
17
#include <string>
18

T
tensor-tang 已提交
19
#include "paddle/fluid/platform/cpu_info.h"
20
#include "paddle/phi/kernels/funcs/blas/blas.h"
F
Feiyu Chan 已提交
21
#include "paddle/phi/kernels/funcs/cpu_vec.h"
22
#include "paddle/phi/kernels/funcs/fc_functor.h"
23

T
tensor-tang 已提交
24 25 26
namespace paddle {
namespace operators {

27
void AttentionLSTMOp::InferShape(framework::InferShapeContext* ctx) const {
28 29
  OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "AttentionLstm");
  OP_INOUT_CHECK(ctx->HasInput("C0"), "Input", "C0", "AttentionLstm");
30 31 32 33 34 35 36
  OP_INOUT_CHECK(
      ctx->HasInput("LSTMWeight"), "Input", "LSTMWeight", "AttentionLstm");
  OP_INOUT_CHECK(
      ctx->HasInput("LSTMBias"), "Input", "LSTMBias", "AttentionLstm");
  OP_INOUT_CHECK(ctx->HasInput("AttentionWeight"),
                 "Input",
                 "AttentionWeight",
37
                 "AttentionLstm");
T
tensor-tang 已提交
38

39 40
  OP_INOUT_CHECK(ctx->HasOutput("Hidden"), "Output", "Hidden", "AttentionLstm");
  OP_INOUT_CHECK(ctx->HasOutput("Cell"), "Output", "Cell", "AttentionLstm");
41 42 43
  OP_INOUT_CHECK(ctx->HasOutput("AttentionedX"),
                 "Output",
                 "AttentionedX",
44
                 "AttentionLstm");
45 46 47
  OP_INOUT_CHECK(ctx->HasOutput("AttentionFCOut"),
                 "Output",
                 "AttentionFCOut",
48 49
                 "AttentionLstm");
  OP_INOUT_CHECK(ctx->HasOutput("LSTMX"), "Output", "LSTMX", "AttentionLstm");
50 51
  OP_INOUT_CHECK(
      ctx->HasOutput("LSTMOUT"), "Output", "LSTMOUT", "AttentionLstm");
T
tensor-tang 已提交
52 53

  auto x_dims = ctx->GetInputDim("X");
T
tensor-tang 已提交
54
  const int M = x_dims[1];
55 56
  PADDLE_ENFORCE_EQ(x_dims.size(),
                    2,
57 58 59
                    platform::errors::InvalidArgument(
                        "Expected input(X)'s dimension is 2. But received %d.",
                        x_dims.size()));
T
tensor-tang 已提交
60

T
tensor-tang 已提交
61 62
  auto w_dims = ctx->GetInputDim("LSTMWeight");
  const int D = w_dims[1] / 4;
63
  PADDLE_ENFORCE_EQ(
64 65
      w_dims.size(),
      2,
66 67 68
      platform::errors::InvalidArgument(
          "Expected input(LSTMWeight)'s dimension is 2.But received %d.",
          w_dims.size()));
69
  PADDLE_ENFORCE_EQ(
70 71
      w_dims[0],
      D + M,
72 73
      platform::errors::InvalidArgument(
          "LSTMWeight dims should be (%d + %d) * %d.", D, M, 4 * D));
T
tensor-tang 已提交
74 75

  auto b_dims = ctx->GetInputDim("LSTMBias");
76
  PADDLE_ENFORCE_EQ(
77 78
      b_dims.size(),
      2,
79
      platform::errors::InvalidArgument("Input(LSTMBias)'s rank must be 2."));
80 81
  PADDLE_ENFORCE_EQ(b_dims[0],
                    1,
82 83
                    platform::errors::InvalidArgument(
                        "LSTMBias dims should be 1 x %d.", 4 * D));
84 85
  PADDLE_ENFORCE_EQ(b_dims[1],
                    4 * D,
86 87
                    platform::errors::InvalidArgument(
                        "LSTMBias dims should be 1 x %d.", 4 * D));
T
tensor-tang 已提交
88 89

  auto c_dims = ctx->GetInputDim("C0");
90
  PADDLE_ENFORCE_EQ(
91 92
      c_dims.size(),
      2,
93
      platform::errors::InvalidArgument("Input(C0)'s rank must be 2."));
T
tensor-tang 已提交
94
  if (ctx->IsRuntime()) {
95
    PADDLE_ENFORCE_EQ(
96 97
        c_dims[1],
        D,
98
        platform::errors::InvalidArgument("C0 dims should be N x %d.", D));
T
tensor-tang 已提交
99 100
  }

101
  if (ctx->HasInput("H0")) {
T
tensor-tang 已提交
102
    auto h_dims = ctx->GetInputDim("H0");
103
    PADDLE_ENFORCE_EQ(
104 105
        h_dims.size(),
        2UL,
106 107 108
        platform::errors::InvalidArgument(
            "Expected input(H0)'s dimension is 2. But received %d.",
            h_dims.size()));
T
update  
tensor-tang 已提交
109
    if (ctx->IsRuntime() ||
110
        (phi::product(c_dims) > 0 && phi::product(h_dims) > 0)) {
111 112
      PADDLE_ENFORCE_EQ(h_dims,
                        c_dims,
113 114 115
                        platform::errors::InvalidArgument(
                            "The dimension of Input(H0) and Input(C0) "
                            "should be the same."));
T
update  
tensor-tang 已提交
116
    }
T
tensor-tang 已提交
117 118
  }

T
tensor-tang 已提交
119
  auto atten_w_dims = ctx->GetInputDim("AttentionWeight");
120 121
  PADDLE_ENFORCE_EQ(atten_w_dims.size(),
                    2,
122 123
                    platform::errors::InvalidArgument(
                        "Input(AttentionWeight)'s rank must be 2."));
124 125
  PADDLE_ENFORCE_EQ(atten_w_dims[0],
                    M + D,
126
                    platform::errors::InvalidArgument(
127 128
                        "Expected `AttentionWeight` shape is [(%d + %d), 1]. "
                        "But received shape = [%d, 1], shape[0] is not %d.",
129 130 131 132 133 134
                        M,
                        D,
                        atten_w_dims[0],
                        M + D));
  PADDLE_ENFORCE_EQ(atten_w_dims[1],
                    1,
135 136
                    platform::errors::InvalidArgument(
                        "AttentionWeight shapes must be (%d + %d) * 1.", M, D));
T
tensor-tang 已提交
137

138
  if (ctx->HasInput("AttentionBias")) {
T
tensor-tang 已提交
139
    auto atten_b_dims = ctx->GetInputDim("AttentionBias");
140 141
    PADDLE_ENFORCE_EQ(atten_b_dims.size(),
                      2,
142 143
                      platform::errors::InvalidArgument(
                          "Input(AttentionBias)'s rank must be 2."));
144 145
    PADDLE_ENFORCE_EQ(atten_b_dims[0],
                      1,
146 147
                      platform::errors::InvalidArgument(
                          "AttentionBias shapes must be 1 * 1."));
148 149
    PADDLE_ENFORCE_EQ(atten_b_dims[1],
                      1,
150 151
                      platform::errors::InvalidArgument(
                          "AttentionBias shapes must be 1 * 1."));
T
tensor-tang 已提交
152 153
  }

154
  if (ctx->HasInput("AttentionScalar")) {
T
tensor-tang 已提交
155
    auto dims = ctx->GetInputDim("AttentionScalar");
156 157
    PADDLE_ENFORCE_EQ(dims.size(),
                      2,
158 159
                      platform::errors::InvalidArgument(
                          "Input(AttentionScalar)'s rank must be 2."));
160 161
    PADDLE_ENFORCE_EQ(dims[0],
                      1,
162 163
                      platform::errors::InvalidArgument(
                          "AttentionScalar shapes must be 1 * 1."));
164 165
    PADDLE_ENFORCE_EQ(dims[1],
                      1,
166 167
                      platform::errors::InvalidArgument(
                          "AttentionScalar shapes must be 1 * 1."));
T
tensor-tang 已提交
168 169
  }

170
  if (ctx->HasInput("AttentionScalarBias")) {
T
tensor-tang 已提交
171
    auto dims = ctx->GetInputDim("AttentionScalarBias");
172 173 174
    OP_INOUT_CHECK(ctx->HasInput("AttentionScalar"),
                   "Input",
                   "AttentionScalar",
175
                   "AttentionLstm");
176 177
    PADDLE_ENFORCE_EQ(dims.size(),
                      2,
178 179
                      platform::errors::InvalidArgument(
                          "Input(AttentionScalarBias)'s rank must be 2."));
180 181
    PADDLE_ENFORCE_EQ(dims[0],
                      1,
182 183
                      platform::errors::InvalidArgument(
                          "AttentionScalarBias shapes must be 1 * 1."));
184 185
    PADDLE_ENFORCE_EQ(dims[1],
                      1,
186 187
                      platform::errors::InvalidArgument(
                          "AttentionScalarBias shapes must be 1 * 1."));
T
tensor-tang 已提交
188 189 190
  }

  framework::DDim out_dims({x_dims[0], D});
T
tensor-tang 已提交
191 192
  ctx->SetOutputDim("Hidden", out_dims);
  ctx->SetOutputDim("Cell", out_dims);
T
tensor-tang 已提交
193 194 195 196
  ctx->SetOutputDim("AttentionedX", {x_dims[0], 1});
  ctx->SetOutputDim("LSTMX", {1, M});
  ctx->SetOutputDim("LSTMOUT", {1, 4 * D});
  // AttentionFCOut should be reshape as (maxseqlen,1) in runtime
T
tensor-tang 已提交
197 198 199 200
  ctx->ShareLoD("X", "Hidden");
  ctx->ShareLoD("X", "Cell");
}

201
framework::OpKernelType AttentionLSTMOp::GetExpectedKernelType(
T
tensor-tang 已提交
202
    const framework::ExecutionContext& ctx) const {
203 204
  return framework::OpKernelType(
      OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.device_context());
T
tensor-tang 已提交
205 206
}

207
void AttentionLSTMOpMaker::Make() {
208 209 210 211 212 213
  AddInput(
      "X",
      "(phi::DenseTensor) the input is a LodTensor, which support "
      "variable-time length input sequence. The underlying tensor in "
      "this phi::DenseTensor is a matrix with shape (T X M), where T is the "
      "total time steps in this mini-batch, M is the dim size of x.");
214 215 216 217 218
  AddInput("C0",
           "(Tensor) LSTM C0"
           "This is a tensor with shape (N x D), where N is the batch size, D "
           "is the gate size."
           "C0 is necessary because of attention.");
T
tensor-tang 已提交
219
  AddInput("H0",
220 221 222
           "(Tensor, optional) LSTM H0"
           "This is a tensor with shape (N x D), where N is the "
           "batch size and D is the gate size.")
T
tensor-tang 已提交
223
      .AsDispensable();
224 225 226 227
  AddInput("AttentionWeight",
           "(Tensor) the weights of attention fc. Always relu the fc result."
           "The shape is ((M+D) x 1), where M is the dim size of x, D is the "
           "gate size of LSTM.");
T
tensor-tang 已提交
228 229
  AddInput("AttentionBias",
           "(Tensor, optional) the bias of attention fc."
230 231 232 233 234 235 236 237 238 239
           "The shape is (1 x 1)")
      .AsDispensable();
  AddInput("AttentionScalar",
           "(Tensor, optional) the scalar on the result of attentioned fc. "
           "Always relu the Scalar."
           "The shape is (1 x 1)")
      .AsDispensable();
  AddInput("AttentionScalarBias",
           "(Tensor, optional) the scalar bias of attention fc."
           "The shape is (1 x 1)")
T
tensor-tang 已提交
240
      .AsDispensable();
241 242 243 244 245 246 247 248 249 250
  AddInput("LSTMWeight",
           "(Tensor) the combined weight of LSTM"
           " - The shape is ((D+M) x 4D), where D is the hidden gate size, M "
           "is the dim size of x"
           " - Weight = {W_forget, W_input, W_output, W_cell}");
  AddInput("LSTMBias",
           "(Tensor) the combined bias of LSTM, shape (1x4D)."
           "Note: we should add the bias of hidden and context accorindg to "
           "the same gate: "
           "{B_forget, B_input, B_output, B_cell}");
251 252 253 254 255 256 257 258
  AddOutput(
      "Hidden",
      "(phi::DenseTensor) (same as LSTMOp) the hidden state of LSTM operator. "
      "The shape is (T x D), and lod is the same with the `Input`.");
  AddOutput(
      "Cell",
      "(phi::DenseTensor) (same as LSTMOp) the cell state of LSTM operator. "
      "The shape is (T x D), and lod is the same with the `Input`.");
T
tensor-tang 已提交
259 260 261 262
  AddOutput("AttentionedX",
            "(Tensor) shape is (T x 1), the result after X * AttentionWeight,"
            " where T is the total time steps in this mini-batch,"
            " D is the hidden size.")
T
tensor-tang 已提交
263
      .AsIntermediate();
264 265
  AddOutput("AttentionFCOut",
            "(Tensor) (max_seq_len, 1), compute at each step.")
T
tensor-tang 已提交
266
      .AsIntermediate();
267 268 269 270 271 272 273 274 275
  AddOutput("LSTMX",
            "(Tensor) the input X of LSTM for each step."
            "Shape is (1 x M), where M is the x frame size")
      .AsIntermediate();
  AddOutput(
      "LSTMOUT",
      "(Tensor) the output of LSTM X(1*(D+M))* weight((D+M)*4D) for each step."
      "Shape is (1 x 4D), where M is the x frame size")
      .AsIntermediate();
T
tensor-tang 已提交
276 277 278 279 280
  AddAttr<std::string>("gate_activation",
                       "(string, default: sigmoid)"
                       "The activation for input gate, forget gate and output "
                       "gate, `sigmoid` by default.")
      .SetDefault("sigmoid")
281
      .InEnum({"sigmoid", "tanh", "relu", "identity"});
T
tensor-tang 已提交
282 283
  AddAttr<std::string>("cell_activation",
                       "(string, default: tanh)"
翟飞跃 已提交
284
                       "The activation for cell output, `tanh` by default.")
T
tensor-tang 已提交
285
      .SetDefault("tanh")
286
      .InEnum({"sigmoid", "tanh", "relu", "identity"});
T
tensor-tang 已提交
287 288 289 290 291
  AddAttr<std::string>("candidate_activation",
                       "(string, default: tanh)"
                       "The activation for candidate hidden state, "
                       "`tanh` by default.")
      .SetDefault("tanh")
292
      .InEnum({"sigmoid", "tanh", "relu", "identity"});
T
tensor-tang 已提交
293
  AddComment(R"DOC(
294 295 296 297 298 299 300 301 302
Attention Long-Short Term Memory (LSTM) Operator.

Attention part:
concat( x(seqlen * M), expand( cell_t-1(1,D) ) ) => tmp(seqlen*(M+D))

tmp(seqlen*(M+D)) * fc((M+D)*1) => fcout(seqlen*1) with bias, relu

fcout(seqlen*1) * scalar => fcout(seqlen*1) with bias, relu

303
dotmul and sum pool ( fcout(seqlen*1), x(seqlen * M) ) => lstm_x_t(1, M)
304 305 306 307

LSTM part:
use lstm_x_t as input and compute as standard LSTM.

T
tensor-tang 已提交
308 309 310
)DOC");
}

311 312 313 314
// y[i] = (x[i] + bias[0]) > 0 ? (x[i] + bias[0]) : 0;
template <typename T>
inline void bias_relu(const int n, const T* x, const T* bias, T* y) {
  if (bias) {
F
Feiyu Chan 已提交
315 316
    phi::funcs::vec_add_bias<T, platform::avx>(n, *bias, x, y);
    phi::funcs::vec_relu<T, platform::avx>(n, y, y);
317
  } else {
F
Feiyu Chan 已提交
318
    phi::funcs::vec_relu<T, platform::avx>(n, x, y);
319 320 321
  }
}

T
tensor-tang 已提交
322 323
template <typename T>
inline void vec_softmax(const int n, const T* x, T* y) {
324 325 326 327 328
  T scalar = x[0];
  // max
  for (int i = 1; i < n; ++i) {
    scalar = scalar < x[i] ? x[i] : scalar;
  }
F
Feiyu Chan 已提交
329 330
  phi::funcs::vec_add_bias<T, platform::avx>(n, -scalar, x, y);  // sub
  phi::funcs::vec_exp<T>(n, y, y);                               // exp
331 332 333 334 335
  // sum
  scalar = T(0);
  for (int i = 0; i < n; ++i) {
    scalar += y[i];
  }
F
Feiyu Chan 已提交
336
  phi::funcs::vec_scal<T>(n, static_cast<T>(1) / scalar, y);  // scale
337 338
}

T
tensor-tang 已提交
339
template <typename T>
340
class AttentionLSTMKernel : public framework::OpKernel<T> {
T
tensor-tang 已提交
341 342
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
L
Leo Chen 已提交
343
    using DeviceContext = phi::CPUContext;
344

345
    auto* x = ctx.Input<phi::DenseTensor>("X");
346 347 348 349 350 351 352 353 354
    auto* h0 = ctx.Input<phi::DenseTensor>("H0");
    auto* c0 = ctx.Input<phi::DenseTensor>("C0");
    auto* atten_w = ctx.Input<phi::DenseTensor>("AttentionWeight");
    auto* atten_b = ctx.Input<phi::DenseTensor>("AttentionBias");
    auto* atten_scalar = ctx.Input<phi::DenseTensor>("AttentionScalar");
    auto* atten_scalar_bias =
        ctx.Input<phi::DenseTensor>("AttentionScalarBias");
    auto* lstm_w = ctx.Input<phi::DenseTensor>("LSTMWeight");
    auto* lstm_b = ctx.Input<phi::DenseTensor>("LSTMBias");
355

356 357
    auto* hidden_out = ctx.Output<phi::DenseTensor>("Hidden");
    auto* cell_out = ctx.Output<phi::DenseTensor>("Cell");
358 359 360 361
    auto* atted_x = ctx.Output<phi::DenseTensor>("AttentionedX");
    auto* fc_out = ctx.Output<phi::DenseTensor>("AttentionFCOut");
    auto* lstm_x = ctx.Output<phi::DenseTensor>("LSTMX");
    auto* lstm_out = ctx.Output<phi::DenseTensor>("LSTMOUT");
T
tensor-tang 已提交
362 363 364 365 366

    // some shape should be reshape here since infershape can not get lod info
    auto x_lod = x->lod();
    const int N = x_lod[0].size() - 1;  // batch size
    auto x_dims = x->dims();            // T x M
T
tensor-tang 已提交
367 368 369 370
    auto w_dims = lstm_w->dims();       // (D+M) x 4D
    const int total_T = x_dims[0];
    const int M = x_dims[1];      // x frame size
    const int D = w_dims[1] / 4;  // gate frame size
T
tensor-tang 已提交
371 372 373 374 375 376 377 378
    const int D2 = D * 2;
    const int D3 = D * 3;
    const int D4 = w_dims[1];
    int max_seq_len = x_lod[0][1];
    for (int i = 1; i < N; ++i) {
      int len = x_lod[0][i + 1] - x_lod[0][i];
      max_seq_len = max_seq_len < len ? len : max_seq_len;
    }
379
    PADDLE_ENFORCE_EQ(
380 381
        x_lod.size(),
        1UL,
382
        platform::errors::InvalidArgument("Input(X)'s lod size must be 1."));
383
    PADDLE_ENFORCE_EQ(
384 385
        c0->dims()[0],
        N,
386
        platform::errors::InvalidArgument("C0 dims should be %d x %d.", N, D));
T
tensor-tang 已提交
387
    fc_out->Resize({max_seq_len, 1});
T
tensor-tang 已提交
388

389
    std::function<void(const int, const T*, T*)> act_gate, act_cell, act_cand;
T
tensor-tang 已提交
390 391 392
    auto& act_gate_str = ctx.Attr<std::string>("gate_activation");
    auto& act_cell_str = ctx.Attr<std::string>("cell_activation");
    auto& act_cand_str = ctx.Attr<std::string>("candidate_activation");
T
tensor-tang 已提交
393
    if (platform::MayIUse(platform::avx)) {
F
Feiyu Chan 已提交
394
      phi::funcs::VecActivations<T, platform::avx> act_functor;
T
tensor-tang 已提交
395 396 397 398
      act_gate = act_functor(act_gate_str);
      act_cell = act_functor(act_cell_str);
      act_cand = act_functor(act_cand_str);
    } else {
F
Feiyu Chan 已提交
399
      phi::funcs::VecActivations<T, platform::isa_any> act_functor;
T
tensor-tang 已提交
400 401 402 403
      act_gate = act_functor(act_gate_str);
      act_cell = act_functor(act_cell_str);
      act_cand = act_functor(act_cand_str);
    }
T
tensor-tang 已提交
404

T
tensor-tang 已提交
405
    const T* x_data = x->data<T>();
T
tensor-tang 已提交
406
    const T* h0_data = h0 ? h0->data<T>() : NULL;
407 408 409 410 411 412 413 414 415
    const T* c0_data = c0->data<T>();
    const T* lstm_w_data = lstm_w->data<T>();
    const T* lstm_b_data = lstm_b->data<T>();
    const T* atten_w_data = atten_w->data<T>();
    const T* atten_b_data = atten_b ? atten_b->data<T>() : NULL;
    const T* atten_scalar_data = atten_scalar ? atten_scalar->data<T>() : NULL;
    const T* atten_scalar_bias_data =
        atten_scalar_bias ? atten_scalar_bias->data<T>() : NULL;

T
tensor-tang 已提交
416 417 418 419 420 421
    T* hidden_out_data = hidden_out->mutable_data<T>(ctx.GetPlace());
    T* cell_out_data = cell_out->mutable_data<T>(ctx.GetPlace());
    T* atted_x_data = atted_x->mutable_data<T>(ctx.GetPlace());
    T* fc_out_data = fc_out->mutable_data<T>(ctx.GetPlace());
    T* lstm_x_data = lstm_x->mutable_data<T>(ctx.GetPlace());
    T* lstm_out_data = lstm_out->mutable_data<T>(ctx.GetPlace());
422

L
Leo Chen 已提交
423
    auto blas = phi::funcs::GetBlas<phi::CPUContext, T>(ctx);
424

425
    // x(TxM) * fc (Mx1) part of atten_wgt(M+D)x1
L
Leo Chen 已提交
426
    auto& dev_ctx = ctx.template device_context<phi::CPUContext>();
427
    phi::funcs::FCFunctor<DeviceContext, T> fc;
428 429 430 431 432 433 434
    fc(dev_ctx,
       total_T,
       1,
       M,
       x_data,
       atten_w_data,
       atted_x_data,
435
       atten_b_data);
436

T
tensor-tang 已提交
437
    const T* cur_atten_x_data = atted_x_data;
438 439 440 441 442
    const T* cur_x_data = x_data;
    const T* prev_cell_data = NULL;
    const T* prev_hidden_data = NULL;
    T* cur_cell_out_data = cell_out_data;
    T* cur_hidden_out_data = hidden_out_data;
T
tensor-tang 已提交
443
    for (int i = 0; i < N; ++i) {
T
tensor-tang 已提交
444
      int seq_len = x_lod[0][i + 1] - x_lod[0][i];
445
      prev_cell_data = c0_data + i * D;
T
tensor-tang 已提交
446
      prev_hidden_data = h0_data ? h0_data + i * D : NULL;
447
      for (int step = 0; step < seq_len; ++step) {
T
tensor-tang 已提交
448 449
        /// 1. compute attention vector
        // 1a. prev_cell(1xD) * fc(D) rest part of atten_wgt
T
tensor-tang 已提交
450
        T prev_cell_bias = blas.DOT(D, prev_cell_data, atten_w_data + M);
T
tensor-tang 已提交
451 452 453
        // 1b. add cell bias and relu
        bias_relu<T>(seq_len, cur_atten_x_data, &prev_cell_bias, fc_out_data);
        // 1c. fc scalar
454
        if (atten_scalar_data) {
T
tensor-tang 已提交
455
          blas.SCAL(seq_len, *atten_scalar_data, fc_out_data);
456 457
          bias_relu<T>(
              seq_len, fc_out_data, atten_scalar_bias_data, fc_out_data);
458
        }
T
tensor-tang 已提交
459
        // 1d. softmax
T
tensor-tang 已提交
460
        vec_softmax<T>(seq_len, fc_out_data, fc_out_data);
461
        // mul x(seq_len*M) and sum pool
462
        fc(dev_ctx, 1, M, seq_len, fc_out_data, cur_x_data, lstm_x_data);
463

T
tensor-tang 已提交
464
        /// 2. compute LSTM step
465 466 467 468 469
        // lstm weight : concat[forget , input , output , tilde]
        // shape : (D + M) x (4 * D)
        // fc inputX(1xM) * weightX(M*(4D))  => 1 x 4D
        blas.MatMul(1, D4, M, lstm_x_data, lstm_w_data + D * D4, lstm_out_data);
        if (prev_hidden_data) {
470 471 472 473 474 475 476 477 478 479 480 481 482
          blas.GEMM(CblasNoTrans,
                    CblasNoTrans,
                    1,
                    D4,
                    D,
                    static_cast<T>(1),
                    prev_hidden_data,
                    D,
                    lstm_w_data,
                    D4,
                    static_cast<T>(1),
                    lstm_out_data,
                    D4);
483 484 485 486 487
        }
        // since input is 1xM, so can use add bias
        blas.VADD(D4, lstm_b_data, lstm_out_data, lstm_out_data);

        // gate act: sigmoid
488
        act_gate(D3, lstm_out_data, lstm_out_data);
489
        // candicate act: tanh
490
        act_cand(D, lstm_out_data + D3, lstm_out_data + D3);
491 492 493 494 495

        // a = forget * prev_cell
        blas.VMUL(D, lstm_out_data, prev_cell_data, lstm_out_data);

        // b = input * tilde
T
tensor-tang 已提交
496
        blas.VMUL(D, lstm_out_data + D, lstm_out_data + D3, lstm_out_data + D);
497 498 499 500 501

        // cell_out = a + b
        blas.VADD(D, lstm_out_data, lstm_out_data + D, cur_cell_out_data);

        // state act tanh(cell_out) * output_gate
502
        act_cell(D, cur_cell_out_data, lstm_out_data);
T
tensor-tang 已提交
503
        blas.VMUL(D, lstm_out_data, lstm_out_data + D2, cur_hidden_out_data);
504

T
tensor-tang 已提交
505
        prev_hidden_data = cur_hidden_out_data;
506 507 508
        prev_cell_data = cur_cell_out_data;
        cur_cell_out_data = cur_cell_out_data + D;
        cur_hidden_out_data = cur_hidden_out_data + D;
T
tensor-tang 已提交
509
      }
510
      cur_x_data = cur_x_data + seq_len * M;
T
tensor-tang 已提交
511
      cur_atten_x_data = cur_atten_x_data + seq_len;
T
tensor-tang 已提交
512 513 514 515 516 517 518 519
    }
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
520 521
REGISTER_OPERATOR(attention_lstm,
                  ops::AttentionLSTMOp,
522
                  ops::AttentionLSTMOpMaker);
T
tensor-tang 已提交
523

524 525
REGISTER_OP_CPU_KERNEL(attention_lstm,
                       ops::AttentionLSTMKernel<float>,
T
tensor-tang 已提交
526
                       ops::AttentionLSTMKernel<double>);