Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
5ca0bb9a
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
5ca0bb9a
编写于
8月 23, 2018
作者:
T
tensor-tang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
support more activation type and remove some comments
上级
dd938d0b
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
63 addition
and
29 deletion
+63
-29
paddle/fluid/operators/attention_lstm_op.cc
paddle/fluid/operators/attention_lstm_op.cc
+29
-28
paddle/fluid/operators/math/cpu_vec.h
paddle/fluid/operators/math/cpu_vec.h
+25
-1
python/paddle/fluid/tests/unittests/test_attention_lstm_op.py
...on/paddle/fluid/tests/unittests/test_attention_lstm_op.py
+9
-0
未找到文件。
paddle/fluid/operators/attention_lstm_op.cc
浏览文件 @
5ca0bb9a
...
...
@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/attention_lstm_op.h"
#include <sys/time.h>
#include <string>
#include "paddle/fluid/operators/math/blas.h"
#include "paddle/fluid/operators/math/cpu_vec.h"
...
...
@@ -192,24 +193,23 @@ void AttentionLSTMOpMaker::Make() {
"(Tensor) the output of LSTM X(1*(D+M))* weight((D+M)*4D) for each step."
"Shape is (1 x 4D), where M is the x frame size"
)
.
AsIntermediate
();
// TODO(TJ): InEnum({"sigmoid", "tanh", "relu", "identity"});
AddAttr
<
std
::
string
>
(
"gate_activation"
,
"(string, default: sigmoid)"
"The activation for input gate, forget gate and output "
"gate, `sigmoid` by default."
)
.
SetDefault
(
"sigmoid"
)
.
InEnum
({
"sigmoid"
});
.
InEnum
({
"sigmoid"
,
"tanh"
,
"relu"
,
"identity"
});
AddAttr
<
std
::
string
>
(
"cell_activation"
,
"(string, default: tanh)"
"The activation for cell output, `tanh` by defalut."
)
.
SetDefault
(
"tanh"
)
.
InEnum
({
"
tanh
"
});
.
InEnum
({
"
sigmoid"
,
"tanh"
,
"relu"
,
"identity
"
});
AddAttr
<
std
::
string
>
(
"candidate_activation"
,
"(string, default: tanh)"
"The activation for candidate hidden state, "
"`tanh` by default."
)
.
SetDefault
(
"tanh"
)
.
InEnum
({
"
tanh
"
});
.
InEnum
({
"
sigmoid"
,
"tanh"
,
"relu"
,
"identity
"
});
AddComment
(
R"DOC(
Attention Long-Short Term Memory (LSTM) Operator.
...
...
@@ -273,22 +273,23 @@ class AttentionLSTMKernel : public framework::OpKernel<T> {
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
using
DeviceContext
=
paddle
::
platform
::
CPUDeviceContext
;
auto
*
x
=
ctx
.
Input
<
LoDTensor
>
(
"X"
);
// T x M
auto
*
h0
=
ctx
.
Input
<
Tensor
>
(
"H0"
);
// N x D
auto
*
c0
=
ctx
.
Input
<
Tensor
>
(
"C0"
);
// N x D
auto
*
atten_w
=
ctx
.
Input
<
Tensor
>
(
"AttentionWeight"
);
// (M+D) x 1
auto
*
atten_b
=
ctx
.
Input
<
Tensor
>
(
"AttentionBias"
);
// 1x1
auto
*
atten_scalar
=
ctx
.
Input
<
Tensor
>
(
"AttentionScalar"
);
// 1x1
auto
*
atten_scalar_bias
=
ctx
.
Input
<
Tensor
>
(
"AttentionScalarBias"
);
// 1x1
auto
*
lstm_w
=
ctx
.
Input
<
Tensor
>
(
"LSTMWeight"
);
// (D+M) x D*4
auto
*
lstm_b
=
ctx
.
Input
<
Tensor
>
(
"LSTMBias"
);
// 1 x D*4
auto
*
hidden_out
=
ctx
.
Output
<
LoDTensor
>
(
"Hidden"
);
// TxD
auto
*
cell_out
=
ctx
.
Output
<
LoDTensor
>
(
"Cell"
);
// TxD
auto
*
atted_x
=
ctx
.
Output
<
Tensor
>
(
"AttentionedX"
);
// T x 1
auto
*
fc_out
=
ctx
.
Output
<
Tensor
>
(
"AttentionFCOut"
);
// max_seq_len x 1
auto
*
lstm_x
=
ctx
.
Output
<
Tensor
>
(
"LSTMX"
);
// 1 x M
auto
*
lstm_out
=
ctx
.
Output
<
Tensor
>
(
"LSTMOUT"
);
// 1 x 4D
auto
*
x
=
ctx
.
Input
<
LoDTensor
>
(
"X"
);
auto
*
h0
=
ctx
.
Input
<
Tensor
>
(
"H0"
);
auto
*
c0
=
ctx
.
Input
<
Tensor
>
(
"C0"
);
auto
*
atten_w
=
ctx
.
Input
<
Tensor
>
(
"AttentionWeight"
);
auto
*
atten_b
=
ctx
.
Input
<
Tensor
>
(
"AttentionBias"
);
auto
*
atten_scalar
=
ctx
.
Input
<
Tensor
>
(
"AttentionScalar"
);
auto
*
atten_scalar_bias
=
ctx
.
Input
<
Tensor
>
(
"AttentionScalarBias"
);
auto
*
lstm_w
=
ctx
.
Input
<
Tensor
>
(
"LSTMWeight"
);
auto
*
lstm_b
=
ctx
.
Input
<
Tensor
>
(
"LSTMBias"
);
auto
*
hidden_out
=
ctx
.
Output
<
LoDTensor
>
(
"Hidden"
);
auto
*
cell_out
=
ctx
.
Output
<
LoDTensor
>
(
"Cell"
);
auto
*
atted_x
=
ctx
.
Output
<
Tensor
>
(
"AttentionedX"
);
auto
*
fc_out
=
ctx
.
Output
<
Tensor
>
(
"AttentionFCOut"
);
auto
*
lstm_x
=
ctx
.
Output
<
Tensor
>
(
"LSTMX"
);
auto
*
lstm_out
=
ctx
.
Output
<
Tensor
>
(
"LSTMOUT"
);
// some shape should be reshape here since infershape can not get lod info
auto
x_lod
=
x
->
lod
();
...
...
@@ -310,11 +311,11 @@ class AttentionLSTMKernel : public framework::OpKernel<T> {
PADDLE_ENFORCE_EQ
(
c0
->
dims
()[
0
],
N
,
"C0 dims should be %d x %d."
,
N
,
D
);
fc_out
->
Resize
({
max_seq_len
,
1
});
// TODO(TJ): act functor init here
// if (platform::jit::MayIUse(platform::jit::avx2)) {
// } else if (platform::jit::MayIUse(platform::jit::avx)) {
// } else {
// }
math
::
VecActivations
<
T
>
act_functor
;
std
::
function
<
void
(
const
int
,
const
T
*
,
T
*
)
>
act_gate
,
act_cell
,
act_cand
;
act_gate
=
act_functor
(
ctx
.
Attr
<
std
::
string
>
(
"gate_activation"
));
act_cell
=
act_functor
(
ctx
.
Attr
<
std
::
string
>
(
"cell_activation"
));
act_cand
=
act_functor
(
ctx
.
Attr
<
std
::
string
>
(
"candidate_activation"
));
const
T
*
x_data
=
x
->
data
<
T
>
();
const
T
*
h0_data
=
h0
?
h0
->
data
<
T
>
()
:
NULL
;
...
...
@@ -381,9 +382,9 @@ class AttentionLSTMKernel : public framework::OpKernel<T> {
blas
.
VADD
(
D4
,
lstm_b_data
,
lstm_out_data
,
lstm_out_data
);
// gate act: sigmoid
math
::
vec_sigmoid
(
D3
,
lstm_out_data
,
lstm_out_data
);
act_gate
(
D3
,
lstm_out_data
,
lstm_out_data
);
// candicate act: tanh
math
::
vec_tanh
(
D
,
lstm_out_data
+
D3
,
lstm_out_data
+
D3
);
act_cand
(
D
,
lstm_out_data
+
D3
,
lstm_out_data
+
D3
);
// a = forget * prev_cell
blas
.
VMUL
(
D
,
lstm_out_data
,
prev_cell_data
,
lstm_out_data
);
...
...
@@ -395,7 +396,7 @@ class AttentionLSTMKernel : public framework::OpKernel<T> {
blas
.
VADD
(
D
,
lstm_out_data
,
lstm_out_data
+
D
,
cur_cell_out_data
);
// state act tanh(cell_out) * output_gate
math
::
vec_tanh
(
D
,
cur_cell_out_data
,
lstm_out_data
);
act_cell
(
D
,
cur_cell_out_data
,
lstm_out_data
);
blas
.
VMUL
(
D
,
lstm_out_data
,
lstm_out_data
+
D2
,
cur_hidden_out_data
);
prev_hidden_data
=
cur_hidden_out_data
;
...
...
paddle/fluid/operators/math/cpu_vec.h
浏览文件 @
5ca0bb9a
...
...
@@ -13,7 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <string>
#include "paddle/fluid/platform/cpu_info.h"
namespace
paddle
{
...
...
@@ -34,6 +34,12 @@ inline T tanh(T x) {
return
2.
*
sigmoid
(
2.
*
x
)
-
1.
;
}
template
<
typename
T
,
platform
::
jit
::
cpu_isa_t
isa
=
platform
::
jit
::
isa_any
>
inline
void
vec_identity
(
const
int
n
,
const
T
*
x
,
T
*
y
)
{
// do nothing
return
;
}
template
<
typename
T
,
platform
::
jit
::
cpu_isa_t
isa
=
platform
::
jit
::
isa_any
>
inline
void
vec_sigmoid
(
const
int
n
,
const
T
*
x
,
T
*
y
)
{
const
T
min
=
SIGMOID_THRESHOLD_MIN
;
...
...
@@ -76,6 +82,24 @@ inline void vec_relu<float, platform::jit::avx>(const int n, const float* x,
}
}
template
<
typename
T
,
platform
::
jit
::
cpu_isa_t
isa
=
platform
::
jit
::
isa_any
>
class
VecActivations
{
public:
std
::
function
<
void
(
const
int
,
const
T
*
,
T
*
)
>
operator
()(
const
std
::
string
&
type
)
{
if
(
type
==
"sigmoid"
)
{
return
vec_sigmoid
<
T
,
isa
>
;
}
else
if
(
type
==
"relu"
)
{
return
vec_relu
<
T
,
isa
>
;
}
else
if
(
type
==
"tanh"
)
{
return
vec_tanh
<
T
,
isa
>
;
}
else
if
(
type
==
"identity"
||
type
==
""
)
{
return
vec_identity
<
T
,
isa
>
;
}
PADDLE_THROW
(
"Not support type %s."
,
type
);
}
};
}
// namespace math
}
// namespace operators
}
// namespace paddle
python/paddle/fluid/tests/unittests/test_attention_lstm_op.py
浏览文件 @
5ca0bb9a
...
...
@@ -160,6 +160,15 @@ class TestAttentionOpNonInit(TestAttentionLSTMOp):
self
.
has_initial_hidden
=
False
class
TestAttentionOpAct
(
TestAttentionLSTMOp
):
def
set_conf
(
self
):
self
.
M
=
3
self
.
D
=
2
self
.
act_gate
=
'relu'
self
.
act_cell
=
'tanh'
self
.
act_cand
=
'sigmoid'
class
TestAttentionOpMD1
(
TestAttentionLSTMOp
):
def
set_conf
(
self
):
self
.
M
=
36
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录