# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import gradient_checker import numpy as np from decorator_helper import prog_scope from op_test import OpTest, convert_float_to_uint16 import paddle import paddle.fluid as fluid import paddle.fluid.core as core from paddle.tensor.manipulation import tensor_array_to_tensor paddle.enable_static() # Situation 1: starts(list, no tensor), ends(list, no tensor) # 1.1 without attr(decrease) class TestSliceOp(OpTest): def setUp(self): self.op_type = "slice" self.prim_op_type = "prim" self.python_api = paddle.slice self.enable_cinn = True self.config() self.inputs = {'Input': self.input} self.outputs = {'Out': self.out} self.attrs = { 'axes': self.axes, 'starts': self.starts, 'ends': self.ends, 'infer_flags': self.infer_flags, } def config(self): self.input = np.random.random([3, 4, 5, 6]).astype("float64") self.starts = [1, 0, 2] self.ends = [3, 3, 4] self.axes = [0, 1, 2] self.infer_flags = [1, 1, 1] self.out = self.input[1:3, 0:3, 2:4, :] def test_check_output(self): self.check_output(check_prim=True) def test_check_grad_normal(self): self.check_grad( ['Input'], 'Out', max_relative_error=0.006, check_prim=True ) class TestCase1(TestSliceOp): def config(self): self.input = np.random.random([3, 4, 5, 6]).astype("float64") self.starts = [-3, 0, 2] self.ends = [3, 100, -1] self.axes = [0, 1, 2] self.infer_flags = [1, 1, 1] self.out = self.input[-3:3, 0:100, 2:-1, :] class TestCase2(TestSliceOp): def config(self): self.enable_cinn = True self.input = np.random.random([3, 4, 5, 6]).astype("float64") self.starts = [-3, 0, 2] self.ends = [3, 100, -1] self.axes = [0, 1, 3] self.infer_flags = [1, 1, 1] self.out = self.input[-3:3, 0:100, :, 2:-1] class TestSliceZerosShapeTensor(OpTest): def setUp(self): self.op_type = "slice" self.prim_op_type = "prim" self.python_api = paddle.slice self.config() self.inputs = {'Input': self.input} self.outputs = {'Out': self.out} self.attrs = { 'axes': self.axes, 'starts': self.starts, 'ends': self.ends, 'infer_flags': self.infer_flags, 'use_mkldnn': True, } def config(self): self.input = np.random.random([0, 0, 0]).astype("float32") self.starts = [1] self.ends = [2] self.axes = [0] self.infer_flags = [] self.out = self.input[1:2] def test_check_output(self): self.check_output_with_place(paddle.CPUPlace()) # 1.2 with attr(decrease) class TestSliceOp_decs_dim(OpTest): def setUp(self): self.enable_cinn = True self.op_type = "slice" self.prim_op_type = "prim" self.python_api = paddle.slice self.config() self.inputs = {'Input': self.input} self.outputs = {'Out': self.out} self.attrs = { 'axes': self.axes, 'starts': self.starts, 'ends': self.ends, 'infer_flags': self.infer_flags, 'decrease_axis': self.decrease_axis, } def config(self): self.input = np.random.random([3, 4, 5, 6]).astype("float64") self.starts = [1, 0, 2] self.ends = [2, 3, 4] self.axes = [0, 1, 2] self.decrease_axis = [0] self.infer_flags = [1, 1, 1] self.out = self.input[1, 0:3, 2:4, :] def test_check_output(self): self.check_output(check_prim=True) def test_check_grad_normal(self): self.check_grad( ['Input'], 'Out', max_relative_error=0.006, check_prim=True ) class TestSliceOp_decs_dim_2(TestSliceOp_decs_dim): def config(self): self.enable_cinn = True self.input = np.random.random([3, 4, 5, 6]).astype("float64") self.starts = [1, 0, 2] self.ends = [2, 1, 4] self.axes = [0, 1, 2] self.decrease_axis = [0, 1] self.infer_flags = [1, 1, 1] self.out = self.input[1, 0, 2:4, :] class TestSliceOp_decs_dim_3(TestSliceOp_decs_dim): def config(self): self.enable_cinn = True self.input = np.random.random([3, 4, 5, 6]).astype("float64") self.starts = [-1, 0, 2] self.ends = [1000000, 1, 4] self.axes = [0, 1, 2] self.decrease_axis = [0, 1] self.infer_flags = [1, 1, 1] self.out = self.input[-1, 0, 2:4, :] class TestSliceOp_decs_dim_4(TestSliceOp_decs_dim): def config(self): self.enable_cinn = True self.input = np.random.random([3, 4, 5, 7]).astype("float64") self.starts = [0, 1, 2, 3] self.ends = [1, 2, 3, 4] self.axes = [0, 1, 2, 3] self.decrease_axis = [0, 1, 2, 3] self.infer_flags = [1, 1, 1] self.out = self.input[0, 1, 2, 3:4] class TestSliceOp_decs_dim_5(TestSliceOp_decs_dim): def config(self): self.enable_cinn = True self.input = np.random.random([3, 4, 5, 6]).astype("float64") self.starts = [-1] self.ends = [1000000] self.axes = [3] self.decrease_axis = [3] self.infer_flags = [1, 1, 1] self.out = self.input[:, :, :, -1] # test_6 with test_2 with test_3 class TestSliceOp_decs_dim_6(TestSliceOp_decs_dim): def config(self): self.enable_cinn = True self.input = np.random.random([3, 4, 5, 6]).astype("float64") self.starts = [0, 1, 2, 3] self.ends = [1, 2, 3, 4] self.axes = [0, 1, 2, 3] self.decrease_axis = [0, 1, 2, 3] self.infer_flags = [1, 1, 1] self.out = self.input[0, 1, 2, 3:4] # Situation 2: starts(list, have tensor), ends(list, no tensor) # without attr(decrease) class TestSliceOp_starts_ListTensor(OpTest): def setUp(self): self.op_type = "slice" self.prim_op_type = "prim" self.python_api = paddle.slice # self.enable_cinn = False self.config() starts_tensor = [] for index, ele in enumerate(self.starts): starts_tensor.append( ("x" + str(index), np.ones((1)).astype('int64') * ele) ) self.inputs = {'Input': self.input, 'StartsTensorList': starts_tensor} self.outputs = {'Out': self.out} self.attrs = { 'axes': self.axes, 'starts': self.starts_infer, 'ends': self.ends, 'infer_flags': self.infer_flags, } def config(self): self.input = np.random.random([3, 4, 5, 6]).astype("float64") self.starts = [1, 0, 2] self.ends = [3, 3, 4] self.axes = [0, 1, 2] self.infer_flags = [-1, 1, -1] self.out = self.input[1:3, 0:3, 2:4, :] self.starts_infer = [-1, 0, -1] def test_check_output(self): self.check_output(check_prim=True) def test_check_grad_normal(self): self.check_grad( ['Input'], 'Out', max_relative_error=0.006, check_prim=True ) # Situation 2: starts(list, have tensor), ends(list, no tensor) # with attr(decrease) class TestSliceOp_decs_dim_starts_ListTensor(OpTest): def setUp(self): self.op_type = "slice" self.prim_op_type = "prim" self.python_api = paddle.slice self.config() starts_tensor = [] for index, ele in enumerate(self.starts): starts_tensor.append( ("x" + str(index), np.ones((1)).astype('int32') * ele) ) self.inputs = {'Input': self.input, 'StartsTensorList': starts_tensor} self.outputs = {'Out': self.out} self.attrs = { 'axes': self.axes, 'starts': self.starts_infer, 'ends': self.ends, 'infer_flags': self.infer_flags, 'decrease_axis': self.decrease_axis, } def config(self): self.input = np.random.random([3, 4, 5, 6]).astype("float64") self.starts = [1, 0, 2] self.ends = [2, 3, 4] self.axes = [0, 1, 2] self.decrease_axis = [0] self.infer_flags = [1, -1, 1] self.out = self.input[1, 0:3, 2:4, :] self.starts_infer = [1, -1, 2] def test_check_output(self): self.check_output(check_prim=True) def test_check_grad_normal(self): self.check_grad( ['Input'], 'Out', max_relative_error=0.006, check_prim=True ) class TestSliceOp_decs_dim_5_starts_ListTensor( TestSliceOp_decs_dim_starts_ListTensor ): def config(self): self.input = np.random.random([3, 4, 5, 6]).astype("float64") self.starts = [-1] self.ends = [1000000] self.axes = [3] self.decrease_axis = [3] self.infer_flags = [-1] self.out = self.input[:, :, :, -1] self.starts_infer = [-1] # Situation 3: starts(tensor), ends(list, no tensor) # with attr(decrease) class TestSliceOp_decs_dim_starts_OneTensor(OpTest): def setUp(self): self.op_type = "slice" self.prim_op_type = "prim" self.python_api = paddle.slice self.config() self.inputs = { 'Input': self.input, "StartsTensor": np.array(self.starts, dtype="int32"), } self.outputs = {'Out': self.out} self.attrs = { 'axes': self.axes, # 'starts': self.starts, 'ends': self.ends, 'infer_flags': self.infer_flags, 'decrease_axis': self.decrease_axis, } def config(self): self.input = np.random.random([3, 4, 5, 6]).astype("float64") self.starts = [1, 0, 2] self.ends = [2, 3, 4] self.axes = [0, 1, 2] self.decrease_axis = [0] self.infer_flags = [-1, -1, -1] self.out = self.input[1, 0:3, 2:4, :] def test_check_output(self): self.check_output(check_prim=True) def test_check_grad_normal(self): self.check_grad( ['Input'], 'Out', max_relative_error=0.006, check_prim=True ) # Situation 4: starts(tensor), ends(tensor) # without attr(decrease) class TestSliceOp_starts_OneTensor_ends_OneTensor(OpTest): def setUp(self): self.op_type = "slice" self.prim_op_type = "prim" self.python_api = paddle.slice self.config() self.inputs = { 'Input': self.input, "StartsTensor": np.array(self.starts, dtype="int64"), "EndsTensor": np.array(self.ends, dtype="int32"), } self.outputs = {'Out': self.out} self.attrs = { 'axes': self.axes, # 'starts': self.starts, # 'ends': self.ends_infer, 'infer_flags': self.infer_flags, } def config(self): self.input = np.random.random([3, 4, 5, 6]).astype("float64") self.starts = [1, 0, 2] self.ends = [3, 3, 4] self.axes = [0, 1, 2] self.infer_flags = [-1, -1, -1] self.out = self.input[1:3, 0:3, 2:4, :] def test_check_output(self): self.check_output(check_prim=True) def test_check_grad_normal(self): self.check_grad( ['Input'], 'Out', max_relative_error=0.006, check_prim=True ) # Situation 5: starts(tensor), ends(tensor) # with attr(decrease) class TestSliceOp_decs_dim_starts_and_ends_OneTensor(OpTest): def setUp(self): self.op_type = "slice" self.prim_op_type = "prim" self.python_api = paddle.slice self.config() self.inputs = { 'Input': self.input, "StartsTensor": np.array(self.starts, dtype="int32"), "EndsTensor": np.array(self.ends, dtype="int32"), } self.outputs = {'Out': self.out} self.attrs = { 'axes': self.axes, # 'starts': self.starts, # 'ends': self.ends, 'infer_flags': self.infer_flags, 'decrease_axis': self.decrease_axis, } def config(self): self.input = np.random.random([3, 4, 5, 6]).astype("float64") self.starts = [1, 0, 2] self.ends = [2, 1, 4] self.axes = [0, 1, 2] self.decrease_axis = [0, 1] self.infer_flags = [-1, -1, -1] self.out = self.input[1, 0, 2:4, :] def test_check_output(self): self.check_output(check_prim=True) def test_check_grad_normal(self): self.check_grad( ['Input'], 'Out', max_relative_error=0.006, check_prim=True ) # Situation 6: starts(tensor), ends(list, have tensor) # without attr(decrease) class TestSliceOp_starts_OneTensor_ends_ListTensor(OpTest): def setUp(self): self.op_type = "slice" self.prim_op_type = "prim" self.python_api = paddle.slice self.config() ends_tensor = [] for index, ele in enumerate(self.ends): ends_tensor.append( ("y" + str(index), np.ones((1)).astype('int32') * ele) ) self.inputs = { 'Input': self.input, "StartsTensor": np.array(self.starts, dtype="int32"), 'EndsTensorList': ends_tensor, } self.outputs = {'Out': self.out} self.attrs = { 'axes': self.axes, # 'starts': self.starts, 'ends': self.ends_infer, 'infer_flags': self.infer_flags, } def config(self): self.input = np.random.random([3, 4, 5, 6]).astype("float64") self.starts = [1, 0, 2] self.ends = [3, 3, 4] self.axes = [0, 1, 2] self.infer_flags = [-1, -1, -1] self.out = self.input[1:3, 0:3, 2:4, :] self.ends_infer = [-1, 3, 4] def test_check_output(self): self.check_output(check_prim=True) def test_check_grad_normal(self): self.check_grad( ['Input'], 'Out', max_relative_error=0.006, check_prim=True ) # Test CUDA float16 @unittest.skipIf( not core.is_compiled_with_cuda(), "core is not compiled with CUDA" ) class TestFP16(OpTest): def setUp(self): self.enable_cinn = True self.op_type = "slice" self.prim_op_type = "prim" self.python_api = paddle.slice self.config() self.inputs = {'Input': self.input} self.outputs = {'Out': self.out} self.attrs = { 'axes': self.axes, 'starts': self.starts, 'ends': self.ends, 'infer_flags': self.infer_flags, } def config(self): self.dtype = "float16" self.input = np.random.random([3, 4, 5, 6]).astype(self.dtype) self.starts = [-3, 0, 2] self.ends = [3, 100, -1] self.axes = [0, 1, 3] self.out = self.input[-3:3, 0:100, :, 2:-1] self.infer_flags = [1, 1, 1] def test_check_output(self): place = core.CUDAPlace(0) if core.is_float16_supported(place): self.check_output_with_place(place, atol=1e-5, check_prim=True) def test_check_grad_normal(self): place = core.CUDAPlace(0) print("core:", core.is_float16_supported(place)) if core.is_float16_supported(place): self.check_grad_with_place( place, ['Input'], 'Out', max_relative_error=0.006, check_prim=True, ) @unittest.skipIf( not core.is_compiled_with_cuda(), "core is not compiled with CUDA" ) class TestFP16_2(OpTest): def setUp(self): self.op_type = "slice" self.prim_op_type = "prim" self.python_api = paddle.slice self.config() self.inputs = {'Input': self.input} self.outputs = {'Out': self.out} self.attrs = { 'axes': self.axes, 'starts': self.starts, 'ends': self.ends, 'infer_flags': self.infer_flags, } def config(self): self.dtype = "float16" self.input = np.random.random([3, 4, 10]).astype(self.dtype) self.starts = [0] self.ends = [1] self.axes = [1] self.out = self.input[:, 0:1, :] self.infer_flags = [1] def test_check_output(self): place = core.CUDAPlace(0) if core.is_float16_supported(place): self.check_output_with_place(place, atol=1e-5, check_prim=True) def test_check_grad_normal(self): place = core.CUDAPlace(0) if core.is_float16_supported(place): self.check_grad_with_place( place, ['Input'], 'Out', max_relative_error=0.006, numeric_grad_delta=0.5, check_prim=True, ) class TestBF16(OpTest): def setUp(self): self.op_type = "slice" self.prim_op_type = "prim" self.python_api = paddle.slice self.config() self.inputs = {'Input': convert_float_to_uint16(self.input)} self.outputs = {'Out': convert_float_to_uint16(self.out)} self.attrs = { 'axes': self.axes, 'starts': self.starts, 'ends': self.ends, 'infer_flags': self.infer_flags, } def config(self): self.dtype = np.uint16 self.input = np.random.random([3, 4, 5, 6]).astype(np.float32) self.starts = [-3, 0, 2] self.ends = [3, 100, -1] self.axes = [0, 1, 3] self.out = self.input[-3:3, 0:100, :, 2:-1] self.infer_flags = [1, 1, 1] def test_check_output(self): self.check_output() def test_check_grad_normal(self): self.check_grad(['Input'], 'Out') # Test python API class TestSliceAPI(unittest.TestCase): def test_1(self): input = np.random.random([3, 4, 5, 6]).astype("float64") minus_1 = fluid.layers.fill_constant([1], "int32", -1) minus_3 = fluid.layers.fill_constant([1], "int64", -3) starts = paddle.static.data( name='starts', shape=[1, 3], dtype="float32" ) starts.desc.set_need_check_feed(False) ends = paddle.static.data(name='ends', shape=[3], dtype="float32") ends.desc.set_need_check_feed(False) x = paddle.static.data( name="x", shape=[3, 4, 5, 6], dtype="float64", ) # value_int64 is greater than 2147483647 which is the max of int32 value_int64 = fluid.layers.fill_constant([1], "int64", 2147483648) out_1 = paddle.slice( x, axes=[0, 1, 2], starts=[-3, 0, 2], ends=[value_int64, 100, -1] ) out_2 = paddle.slice( x, axes=[0, 1, 3], starts=[minus_3, 0, 2], ends=[3, 100, -1] ) out_3 = paddle.slice( x, axes=[0, 1, 3], starts=[minus_3, 0, 2], ends=[3, 100, minus_1] ) out_4 = paddle.slice(x, axes=[0, 1, 2], starts=starts, ends=ends) out_5 = x[-3:3, 0:100, 2:-1] out_6 = x[minus_3:3, 0:100, :, 2:-1] out_7 = x[minus_1, 0:100, :, 2:minus_1] exe = fluid.Executor(place=fluid.CPUPlace()) res_1, res_2, res_3, res_4, res_5, res_6, res_7 = exe.run( fluid.default_main_program(), feed={ "x": input, 'starts': np.array([-3, 0, 2]).astype("int32"), 'ends': np.array([3, 100, -1]).astype("int32"), }, fetch_list=[out_1, out_2, out_3, out_4, out_5, out_6, out_7], ) assert np.array_equal(res_1, input[-3:3, 0:100, 2:-1, :]) assert np.array_equal(res_2, input[-3:3, 0:100, :, 2:-1]) assert np.array_equal(res_3, input[-3:3, 0:100, :, 2:-1]) assert np.array_equal(res_4, input[-3:3, 0:100, 2:-1, :]) assert np.array_equal(res_5, input[-3:3, 0:100, 2:-1, :]) assert np.array_equal(res_6, input[-3:3, 0:100, :, 2:-1]) assert np.array_equal(res_7, input[-1, 0:100, :, 2:-1]) class TestSliceApiWithTensor(unittest.TestCase): def test_starts_ends_is_tensor(self): with paddle.fluid.dygraph.guard(): a = paddle.rand(shape=[4, 5, 6], dtype='float32') axes = [0, 1, 2] starts = [-3, 0, 2] ends = [3, 2, 4] a_1 = paddle.slice( a, axes=axes, starts=paddle.to_tensor(starts, dtype='int32'), ends=paddle.to_tensor(ends, dtype='int32'), ) a_2 = paddle.slice(a, axes=axes, starts=starts, ends=ends) np.testing.assert_array_equal(a_1.numpy(), a_2.numpy()) def test_bool_tensor(self): with paddle.fluid.dygraph.guard(): array = (np.arange(60).reshape([3, 4, 5]) % 3).astype('bool') tt = paddle.to_tensor(array) tt.stop_gradient = False starts = [0, 1, 2] ends = [3, 5, 4] axes = [0, 1, 2] y_paddle = paddle.slice(tt, axes, starts, ends) y_np = tt[0:3, 1:5, 2:4] self.assertTrue(paddle.bool == y_paddle.dtype) np.testing.assert_array_equal(y_paddle.numpy(), y_np) class TestSliceApiEager(unittest.TestCase): def test_slice_api(self): with paddle.fluid.dygraph.guard(): a = paddle.rand(shape=[4, 5, 6], dtype='float32') a.stop_gradient = False axes = [0, 1, 2] starts = [-3, 0, 2] ends = [3, 2, 4] a_1 = paddle.slice(a, axes=axes, starts=starts, ends=ends) a_2 = paddle.slice( a, axes=axes, starts=paddle.to_tensor(starts), ends=paddle.to_tensor(ends), ) np.testing.assert_array_equal(a_1.numpy(), a_2.numpy()) a_1.backward() grad_truth = paddle.zeros_like(a) grad_truth[-3:3, 0:2, 2:4] = 1 np.testing.assert_array_equal(grad_truth, a.gradient()) np.testing.assert_allclose( a_1.numpy(), a[-3:3, 0:2, 2:4], rtol=1e-05 ) class TestSliceApiWithLoDTensorArray(unittest.TestCase): def setUp(self): self.shape = (3, 4) self.data = np.random.random(size=self.shape).astype('float32') self.idx = 0 self.start = 0 self.end = 2 self.axis = 1 self.place = ( fluid.CUDAPlace(0) if fluid.is_compiled_with_cuda() else fluid.CPUPlace() ) self.exe = fluid.Executor(self.place) def set_program_and_run(self, main_program, case_num): with fluid.program_guard(main_program): x = [ fluid.data(name='x0', shape=self.shape, dtype="float32"), fluid.data(name='x1', shape=self.shape, dtype="float32"), fluid.data(name='x2', shape=self.shape, dtype="float32"), ] for each_x in x: each_x.stop_gradient = False arr = paddle.tensor.create_array(dtype="float32") for i in range(3): idx = paddle.tensor.array_length(arr) arr = paddle.tensor.array_write(x=x[i], i=idx, array=arr) if case_num == 1: self.sliced_arr = output = arr[0] elif case_num == 2: end = ( paddle.tensor.array_length(arr) - 1 ) # dtype of end is int64 self.sliced_arr = slice_arr = arr[self.start : end] output, _ = tensor_array_to_tensor( slice_arr, axis=self.axis, use_stack=True ) elif case_num == 3: value_int64 = fluid.layers.fill_constant( [1], "int64", 2147483648 ) self.sliced_arr = slice_arr = arr[self.start : value_int64] output, _ = tensor_array_to_tensor( slice_arr, axis=self.axis, use_stack=True ) loss = paddle.sum(output) fluid.backward.append_backward(loss) g_vars = list( map( main_program.global_block().var, [each_x.name + "@GRAD" for each_x in x], ) ) self.out, self.g_x0, self.g_x1, self.g_x2 = self.exe.run( main_program, feed={'x0': self.data, 'x1': self.data, 'x2': self.data}, fetch_list=[output] + g_vars, ) def test_case_1(self): main_program = fluid.Program() self.set_program_and_run(main_program, 1) self.assertTrue(self.sliced_arr.type == core.VarDesc.VarType.LOD_TENSOR) self.assertEqual(self.sliced_arr.shape, self.shape) np.testing.assert_array_equal(self.out, self.data) np.testing.assert_array_equal(self.g_x0, np.ones_like(self.data)) np.testing.assert_array_equal(self.g_x1, np.zeros_like(self.data)) np.testing.assert_array_equal(self.g_x2, np.zeros_like(self.data)) def test_case_2(self): main_program = fluid.Program() self.set_program_and_run(main_program, 2) self.assertTrue( self.sliced_arr.type == core.VarDesc.VarType.LOD_TENSOR_ARRAY ) self.assertEqual(self.sliced_arr.shape, self.shape) np.testing.assert_array_equal( self.out, np.stack([self.data, self.data], axis=self.axis) ) np.testing.assert_array_equal(self.g_x0, np.ones_like(self.data)) np.testing.assert_array_equal(self.g_x1, np.ones_like(self.data)) np.testing.assert_array_equal(self.g_x2, np.zeros_like(self.data)) def test_case_3(self): main_program = fluid.Program() self.set_program_and_run(main_program, 3) self.assertTrue( self.sliced_arr.type == core.VarDesc.VarType.LOD_TENSOR_ARRAY ) self.assertEqual(self.sliced_arr.shape, self.shape) np.testing.assert_array_equal( self.out, np.stack([self.data, self.data, self.data], axis=self.axis), ) np.testing.assert_array_equal(self.g_x0, np.ones_like(self.data)) np.testing.assert_array_equal(self.g_x1, np.ones_like(self.data)) np.testing.assert_array_equal(self.g_x2, np.ones_like(self.data)) class TestImperativeVarBaseGetItem(unittest.TestCase): def test_getitem_with_long(self): with fluid.dygraph.guard(): data = np.random.random((2, 80, 16128)).astype('float32') var = fluid.dygraph.to_variable(data) sliced = var[:, 10:, : var.shape[1]] # var.shape[1] is 80L here self.assertEqual(sliced.shape, [2, 70, 80]) sliced = var[:, var.shape[0] :, var.shape[0] : var.shape[1]] self.assertEqual(sliced.shape, [2, 78, 78]) def test_getitem_with_float(self): def test_float_in_slice_item(): with fluid.dygraph.guard(): data = np.random.random((2, 80, 16128)).astype('float32') var = fluid.dygraph.to_variable(data) sliced = var[:, 1.1:, : var.shape[1]] self.assertRaises(Exception, test_float_in_slice_item) def test_float_in_index(): with fluid.dygraph.guard(): data = np.random.random((2, 80, 16128)).astype('float32') var = fluid.dygraph.to_variable(data) sliced = var[1.1] self.assertRaises(Exception, test_float_in_index) class TestInferShape(unittest.TestCase): def test(self): x = paddle.ones(shape=[3, 4, 5]) x.desc.set_shape([3, -1, 5]) self.assertEqual(x.shape, (3, -1, 5)) out0 = paddle.slice(x, axes=[1], starts=[0], ends=[3]) self.assertEqual(out0.shape, (3, -1, 5)) def test_axis_less_than_zero(self): # Using paddle.disable_static will make other unittests fail. with fluid.dygraph.guard(): x_arr = np.arange(0, 24, dtype=np.float32).reshape([2, 3, 4]) x = paddle.to_tensor(x_arr) pp_slice = paddle.slice( x, [ 100, ], [0], [1], ) np_slice = x_arr[:, :, 0:1] np.testing.assert_array_equal(pp_slice, np_slice) pp_slice = paddle.slice(x, (-100,), [0], [1]) np_slice = x_arr[0:1] np.testing.assert_array_equal(pp_slice, np_slice) x_arr = np.array([], dtype=np.float32) x = paddle.to_tensor(np.reshape(x_arr, (0, 0, 0))) starts = paddle.to_tensor( np.reshape(np.array([], dtype=np.int32), (0,)) ) ends = paddle.to_tensor( np.reshape(np.array([], dtype=np.int32), (0,)) ) with self.assertRaises(ValueError): paddle.slice(x, [-1000000], starts, ends) with self.assertRaises(ValueError): paddle.slice(x, [1000000], starts, ends) with self.assertRaises(ValueError): paddle.slice(x, [], starts, ends) with self.assertRaises(ValueError): paddle.slice(x, 0, starts, ends) class TestSliceOpError(unittest.TestCase): def test_dismatch_shape(self): with fluid.dygraph.guard(): with self.assertRaises(ValueError): array = np.array([], dtype=np.float32) x = paddle.to_tensor(np.reshape(array, [0]), dtype='float32') paddle.slice(x, axes=[0], starts=[], ends=[]) with self.assertRaises(ValueError): array = np.array([], dtype=np.float32) x = paddle.to_tensor(np.reshape(array, [0]), dtype='float32') paddle.slice(x, axes=[0], starts=[0], ends=[]) # if shape match, pass array = np.array([], dtype=np.float32) x = paddle.to_tensor(np.reshape(array, [0]), dtype='float32') out = paddle.slice(x, axes=[0], starts=[0], ends=[0]) self.assertEqual(out.numel(), 0) # self.assertEqual(out.shape) @unittest.skipIf( not core.is_compiled_with_cuda(), "core is not compiled with CUDA" ) class TestImperativeCUDAPinnedInput(unittest.TestCase): def test_input_cuda_pinned_var(self): with fluid.dygraph.guard(): data = np.random.random((2, 80, 16128)).astype('float32') var = core.eager.Tensor( value=data, name='', persistable=False, place=fluid.CUDAPinnedPlace(), zero_copy=False, ) sliced = var[:, 10:, : var.shape[1]] self.assertEqual(sliced.shape, [2, 70, 80]) class TestSliceDoubleGradCheck(unittest.TestCase): def slice_wrapper(self, x): return paddle.slice( x[0], axes=[0, 1, 2], starts=[-3, 0, 2], ends=[3, 2, 4] ) @prog_scope() def func(self, place): # the shape of input variable should be clearly specified, not inlcude -1. eps = 0.005 dtype = np.float32 data = paddle.static.data('data', [4, 5, 6], dtype) data.persistable = True out = paddle.slice( data, axes=[0, 1, 2], starts=[-3, 0, 2], ends=[3, 2, 4] ) data_arr = np.random.uniform(-1, 1, data.shape).astype(dtype) gradient_checker.double_grad_check( [data], out, x_init=[data_arr], place=place, eps=eps ) gradient_checker.double_grad_check_for_dygraph( self.slice_wrapper, [data], out, x_init=[data_arr], place=place ) def test_grad(self): paddle.enable_static() places = [fluid.CPUPlace()] if core.is_compiled_with_cuda(): places.append(fluid.CUDAPlace(0)) for p in places: self.func(p) class TestSliceTripleGradCheck(unittest.TestCase): def slice_wrapper(self, x): return paddle.slice( x[0], axes=[0, 1, 2], starts=[-3, 0, 2], ends=[3, 2, 4] ) @prog_scope() def func(self, place): # the shape of input variable should be clearly specified, not inlcude -1. eps = 0.005 dtype = np.float32 data = paddle.static.data('data', [4, 5, 6], dtype) data.persistable = True out = paddle.slice( data, axes=[0, 1, 2], starts=[-3, 0, 2], ends=[3, 2, 4] ) data_arr = np.random.uniform(-1, 1, data.shape).astype(dtype) gradient_checker.triple_grad_check( [data], out, x_init=[data_arr], place=place, eps=eps ) gradient_checker.triple_grad_check_for_dygraph( self.slice_wrapper, [data], out, x_init=[data_arr], place=place ) def test_grad(self): paddle.enable_static() places = [fluid.CPUPlace()] if core.is_compiled_with_cuda(): places.append(fluid.CUDAPlace(0)) for p in places: self.func(p) if __name__ == '__main__': paddle.enable_static() unittest.main()