test_compare_op.py 21.3 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Y
Yu Yang 已提交
15
import unittest
16

Y
Yu Yang 已提交
17
import numpy
18
import numpy as np
19 20
import op_test

21
import paddle
22
import paddle.fluid as fluid
W
wawltor 已提交
23
import paddle.fluid.core as core
24
from paddle.fluid import Program, program_guard
Y
Yu Yang 已提交
25 26 27 28 29 30 31 32


def create_test_class(op_type, typename, callback):
    class Cls(op_test.OpTest):
        def setUp(self):
            a = numpy.random.random(size=(10, 7)).astype(typename)
            b = numpy.random.random(size=(10, 7)).astype(typename)
            c = callback(a, b)
H
hong 已提交
33
            self.python_api = eval("paddle." + op_type)
Y
Yu Yang 已提交
34 35 36 37 38
            self.inputs = {'X': a, 'Y': b}
            self.outputs = {'Out': c}
            self.op_type = op_type

        def test_output(self):
H
hong 已提交
39
            self.check_output(check_eager=False)
Y
Yu Yang 已提交
40

41
        def test_errors(self):
42
            paddle.enable_static()
43 44 45 46 47
            with program_guard(Program(), Program()):
                x = fluid.layers.data(name='x', shape=[2], dtype='int32')
                y = fluid.layers.data(name='y', shape=[2], dtype='int32')
                a = fluid.layers.data(name='a', shape=[2], dtype='int16')
                if self.op_type == "less_than":
48 49 50
                    self.assertRaises(
                        TypeError, fluid.layers.less_than, x=x, y=y, force_cpu=1
                    )
51
                op = eval("paddle.%s" % self.op_type)
52 53 54 55
                self.assertRaises(TypeError, op, x=x, y=y, cond=1)
                self.assertRaises(TypeError, op, x=x, y=a)
                self.assertRaises(TypeError, op, x=a, y=y)

Y
Yu Yang 已提交
56 57 58 59 60
    cls_name = "{0}_{1}".format(op_type, typename)
    Cls.__name__ = cls_name
    globals()[cls_name] = Cls


61
for _type_name in {'float32', 'float64', 'int32', 'int64', 'float16'}:
F
furnace 已提交
62 63
    if _type_name == 'float64' and core.is_compiled_with_rocm():
        _type_name = 'float32'
64 65
    if _type_name == 'float16' and (not core.is_compiled_with_cuda()):
        continue
F
furnace 已提交
66

Y
Yu Yang 已提交
67
    create_test_class('less_than', _type_name, lambda _a, _b: _a < _b)
68
    create_test_class('less_equal', _type_name, lambda _a, _b: _a <= _b)
Q
qiaolongfei 已提交
69 70
    create_test_class('greater_than', _type_name, lambda _a, _b: _a > _b)
    create_test_class('greater_equal', _type_name, lambda _a, _b: _a >= _b)
Y
Yu Yang 已提交
71
    create_test_class('equal', _type_name, lambda _a, _b: _a == _b)
Q
qiaolongfei 已提交
72
    create_test_class('not_equal', _type_name, lambda _a, _b: _a != _b)
Y
Yu Yang 已提交
73

74

W
wawltor 已提交
75 76 77 78
def create_paddle_case(op_type, callback):
    class PaddleCls(unittest.TestCase):
        def setUp(self):
            self.op_type = op_type
79 80
            self.input_x = np.array([1, 2, 3, 4]).astype(np.int64)
            self.input_y = np.array([1, 3, 2, 4]).astype(np.int64)
W
wawltor 已提交
81
            self.real_result = callback(self.input_x, self.input_y)
82 83 84
            self.place = fluid.CPUPlace()
            if core.is_compiled_with_cuda():
                self.place = paddle.CUDAPlace(0)
W
wawltor 已提交
85 86

        def test_api(self):
87
            paddle.enable_static()
W
wawltor 已提交
88
            with program_guard(Program(), Program()):
89 90
                x = fluid.data(name='x', shape=[4], dtype='int64')
                y = fluid.data(name='y', shape=[4], dtype='int64')
W
wawltor 已提交
91 92
                op = eval("paddle.%s" % (self.op_type))
                out = op(x, y)
93
                exe = fluid.Executor(self.place)
94 95 96 97
                (res,) = exe.run(
                    feed={"x": self.input_x, "y": self.input_y},
                    fetch_list=[out],
                )
W
wawltor 已提交
98 99
            self.assertEqual((res == self.real_result).all(), True)

100 101 102 103 104 105 106 107 108
        def test_api_float(self):
            if self.op_type == "equal":
                paddle.enable_static()
                with program_guard(Program(), Program()):
                    x = fluid.data(name='x', shape=[4], dtype='int64')
                    y = fluid.data(name='y', shape=[1], dtype='int64')
                    op = eval("paddle.%s" % (self.op_type))
                    out = op(x, y)
                    exe = fluid.Executor(self.place)
109 110 111
                    (res,) = exe.run(
                        feed={"x": self.input_x, "y": 1.0}, fetch_list=[out]
                    )
112 113 114
                self.real_result = np.array([1, 0, 0, 0]).astype(np.int64)
                self.assertEqual((res == self.real_result).all(), True)

115 116 117 118 119 120 121 122 123
        def test_dynamic_api(self):
            paddle.disable_static()
            x = paddle.to_tensor(self.input_x)
            y = paddle.to_tensor(self.input_y)
            op = eval("paddle.%s" % (self.op_type))
            out = op(x, y)
            self.assertEqual((out.numpy() == self.real_result).all(), True)
            paddle.enable_static()

124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
        def test_dynamic_api_int(self):
            if self.op_type == "equal":
                paddle.disable_static()
                x = paddle.to_tensor(self.input_x)
                op = eval("paddle.%s" % (self.op_type))
                out = op(x, 1)
                self.real_result = np.array([1, 0, 0, 0]).astype(np.int64)
                self.assertEqual((out.numpy() == self.real_result).all(), True)
                paddle.enable_static()

        def test_dynamic_api_float(self):
            if self.op_type == "equal":
                paddle.disable_static()
                x = paddle.to_tensor(self.input_x)
                op = eval("paddle.%s" % (self.op_type))
                out = op(x, 1.0)
                self.real_result = np.array([1, 0, 0, 0]).astype(np.int64)
                self.assertEqual((out.numpy() == self.real_result).all(), True)
                paddle.enable_static()

144 145 146 147 148 149 150 151 152 153 154 155
        def test_dynamic_api_inf_1(self):
            if self.op_type == "equal":
                paddle.disable_static()
                x1 = np.array([1, float('inf'), float('inf')]).astype(np.int64)
                x = paddle.to_tensor(x1)
                y1 = np.array([1, float('-inf'), float('inf')]).astype(np.int64)
                y = paddle.to_tensor(y1)
                op = eval("paddle.%s" % (self.op_type))
                out = op(x, y)
                self.real_result = (x1 == y1).astype(np.int64)
                self.assertEqual(
                    (out.numpy().astype(np.int64) == self.real_result).all(),
156 157
                    True,
                )
158 159 160 161 162
                paddle.enable_static()

        def test_dynamic_api_inf_2(self):
            if self.op_type == "equal":
                paddle.disable_static()
163 164 165
                x1 = np.array([1, float('inf'), float('inf')]).astype(
                    np.float32
                )
166
                x = paddle.to_tensor(x1)
167 168 169
                y1 = np.array([1, float('-inf'), float('inf')]).astype(
                    np.float32
                )
170 171 172 173 174 175
                y = paddle.to_tensor(y1)
                op = eval("paddle.%s" % (self.op_type))
                out = op(x, y)
                self.real_result = (x1 == y1).astype(np.int64)
                self.assertEqual(
                    (out.numpy().astype(np.int64) == self.real_result).all(),
176 177
                    True,
                )
178 179 180 181 182
                paddle.enable_static()

        def test_dynamic_api_inf_3(self):
            if self.op_type == "equal":
                paddle.disable_static()
183 184 185
                x1 = np.array([1, float('inf'), float('-inf')]).astype(
                    np.float32
                )
186 187 188 189 190 191 192 193
                x = paddle.to_tensor(x1)
                y1 = np.array([1, 2, 3]).astype(np.float32)
                y = paddle.to_tensor(y1)
                op = eval("paddle.%s" % (self.op_type))
                out = op(x, y)
                self.real_result = (x1 == y1).astype(np.int64)
                self.assertEqual(
                    (out.numpy().astype(np.int64) == self.real_result).all(),
194 195
                    True,
                )
196 197 198 199 200 201 202 203 204 205 206 207 208 209
                paddle.enable_static()

        def test_dynamic_api_nan_1(self):
            if self.op_type == "equal":
                paddle.disable_static()
                x1 = np.array([1, float('nan'), float('nan')]).astype(np.int64)
                x = paddle.to_tensor(x1)
                y1 = np.array([1, float('-nan'), float('nan')]).astype(np.int64)
                y = paddle.to_tensor(y1)
                op = eval("paddle.%s" % (self.op_type))
                out = op(x, y)
                self.real_result = (x1 == y1).astype(np.int64)
                self.assertEqual(
                    (out.numpy().astype(np.int64) == self.real_result).all(),
210 211
                    True,
                )
212 213 214 215 216
                paddle.enable_static()

        def test_dynamic_api_nan_2(self):
            if self.op_type == "equal":
                paddle.disable_static()
217 218 219
                x1 = np.array([1, float('nan'), float('nan')]).astype(
                    np.float32
                )
220
                x = paddle.to_tensor(x1)
221 222 223
                y1 = np.array([1, float('-nan'), float('nan')]).astype(
                    np.float32
                )
224 225 226 227 228 229
                y = paddle.to_tensor(y1)
                op = eval("paddle.%s" % (self.op_type))
                out = op(x, y)
                self.real_result = (x1 == y1).astype(np.int64)
                self.assertEqual(
                    (out.numpy().astype(np.int64) == self.real_result).all(),
230 231
                    True,
                )
232 233 234 235 236
                paddle.enable_static()

        def test_dynamic_api_nan_3(self):
            if self.op_type == "equal":
                paddle.disable_static()
237 238 239
                x1 = np.array([1, float('-nan'), float('nan')]).astype(
                    np.float32
                )
240 241 242 243 244 245 246 247
                x = paddle.to_tensor(x1)
                y1 = np.array([1, 2, 1]).astype(np.float32)
                y = paddle.to_tensor(y1)
                op = eval("paddle.%s" % (self.op_type))
                out = op(x, y)
                self.real_result = (x1 == y1).astype(np.int64)
                self.assertEqual(
                    (out.numpy().astype(np.int64) == self.real_result).all(),
248 249
                    True,
                )
250 251
                paddle.enable_static()

Z
Zhang Ting 已提交
252 253 254
        def test_not_equal(self):
            if self.op_type == "not_equal":
                paddle.disable_static()
255 256 257 258 259 260
                x = paddle.to_tensor(
                    np.array([1.2e-8, 2, 2, 1]), dtype="float32"
                )
                y = paddle.to_tensor(
                    np.array([1.1e-8, 2, 2, 1]), dtype="float32"
                )
Z
Zhang Ting 已提交
261 262 263 264 265 266
                op = eval("paddle.%s" % (self.op_type))
                out = op(x, y)
                self.real_result = np.array([0, 0, 0, 0]).astype(np.int64)
                self.assertEqual((out.numpy() == self.real_result).all(), True)
                paddle.enable_static()

267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
        def test_assert(self):
            def test_dynamic_api_string(self):
                if self.op_type == "equal":
                    paddle.disable_static()
                    x = paddle.to_tensor(self.input_x)
                    op = eval("paddle.%s" % (self.op_type))
                    out = op(x, "1.0")
                    paddle.enable_static()

            self.assertRaises(TypeError, test_dynamic_api_string)

        def test_dynamic_api_bool(self):
            if self.op_type == "equal":
                paddle.disable_static()
                x = paddle.to_tensor(self.input_x)
                op = eval("paddle.%s" % (self.op_type))
                out = op(x, True)
                self.real_result = np.array([1, 0, 0, 0]).astype(np.int64)
                self.assertEqual((out.numpy() == self.real_result).all(), True)
                paddle.enable_static()

288
        def test_broadcast_api_1(self):
289
            paddle.enable_static()
290
            with program_guard(Program(), Program()):
291 292 293
                x = paddle.static.data(
                    name='x', shape=[1, 2, 1, 3], dtype='int32'
                )
294
                y = paddle.static.data(name='y', shape=[1, 2, 3], dtype='int32')
295 296
                op = eval("paddle.%s" % (self.op_type))
                out = op(x, y)
297
                exe = paddle.static.Executor(self.place)
298 299 300
                input_x = np.arange(1, 7).reshape((1, 2, 1, 3)).astype(np.int32)
                input_y = np.arange(0, 6).reshape((1, 2, 3)).astype(np.int32)
                real_result = callback(input_x, input_y)
301 302 303
                (res,) = exe.run(
                    feed={"x": input_x, "y": input_y}, fetch_list=[out]
                )
304 305
            self.assertEqual((res == real_result).all(), True)

306 307 308 309
        def test_broadcast_api_2(self):
            paddle.enable_static()
            with program_guard(Program(), Program()):
                x = paddle.static.data(name='x', shape=[1, 2, 3], dtype='int32')
310 311 312
                y = paddle.static.data(
                    name='y', shape=[1, 2, 1, 3], dtype='int32'
                )
313 314 315 316 317 318
                op = eval("paddle.%s" % (self.op_type))
                out = op(x, y)
                exe = paddle.static.Executor(self.place)
                input_x = np.arange(0, 6).reshape((1, 2, 3)).astype(np.int32)
                input_y = np.arange(1, 7).reshape((1, 2, 1, 3)).astype(np.int32)
                real_result = callback(input_x, input_y)
319 320 321
                (res,) = exe.run(
                    feed={"x": input_x, "y": input_y}, fetch_list=[out]
                )
322 323
            self.assertEqual((res == real_result).all(), True)

324 325 326 327 328 329 330 331 332 333 334
        def test_broadcast_api_3(self):
            paddle.enable_static()
            with program_guard(Program(), Program()):
                x = paddle.static.data(name='x', shape=[5], dtype='int32')
                y = paddle.static.data(name='y', shape=[3, 1], dtype='int32')
                op = eval("paddle.%s" % (self.op_type))
                out = op(x, y)
                exe = paddle.static.Executor(self.place)
                input_x = np.arange(0, 5).reshape((5)).astype(np.int32)
                input_y = np.array([5, 3, 2]).reshape((3, 1)).astype(np.int32)
                real_result = callback(input_x, input_y)
335 336 337
                (res,) = exe.run(
                    feed={"x": input_x, "y": input_y}, fetch_list=[out]
                )
338 339
            self.assertEqual((res == real_result).all(), True)

340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
        def test_zero_dim_api_1(self):
            paddle.enable_static()
            with program_guard(Program(), Program()):
                x = paddle.randint(-3, 3, shape=[], dtype='int32')
                y = paddle.randint(-3, 3, shape=[], dtype='int32')
                op = eval("paddle.%s" % (self.op_type))
                out = op(x, y)
                exe = paddle.static.Executor(self.place)
                (
                    x_np,
                    y_np,
                    res,
                ) = exe.run(fetch_list=[x, y, out])
                real_result = callback(x_np, y_np)
            self.assertEqual((res == real_result).all(), True)

        def test_zero_dim_api_2(self):
            paddle.enable_static()
            with program_guard(Program(), Program()):
                x = paddle.randint(-3, 3, shape=[2, 3, 4], dtype='int32')
                y = paddle.randint(-3, 3, shape=[], dtype='int32')
                op = eval("paddle.%s" % (self.op_type))
                out = op(x, y)
                exe = paddle.static.Executor(self.place)
                (
                    x_np,
                    y_np,
                    res,
                ) = exe.run(fetch_list=[x, y, out])
                real_result = callback(x_np, y_np)
            self.assertEqual((res == real_result).all(), True)

        def test_zero_dim_api_3(self):
            paddle.enable_static()
            with program_guard(Program(), Program()):
                x = paddle.randint(-3, 3, shape=[], dtype='int32')
                y = paddle.randint(-3, 3, shape=[2, 3, 4], dtype='int32')
                op = eval("paddle.%s" % (self.op_type))
                out = op(x, y)
                exe = paddle.static.Executor(self.place)
                (
                    x_np,
                    y_np,
                    res,
                ) = exe.run(fetch_list=[x, y, out])
                real_result = callback(x_np, y_np)
            self.assertEqual((res == real_result).all(), True)

388 389 390 391 392 393 394 395
        def test_bool_api_4(self):
            paddle.enable_static()
            with program_guard(Program(), Program()):
                x = paddle.static.data(name='x', shape=[3, 1], dtype='bool')
                y = paddle.static.data(name='y', shape=[3, 1], dtype='bool')
                op = eval("paddle.%s" % (self.op_type))
                out = op(x, y)
                exe = paddle.static.Executor(self.place)
396 397
                input_x = np.array([True, False, True]).astype(np.bool_)
                input_y = np.array([True, True, False]).astype(np.bool_)
398
                real_result = callback(input_x, input_y)
399 400 401
                (res,) = exe.run(
                    feed={"x": input_x, "y": input_y}, fetch_list=[out]
                )
402 403 404 405 406 407 408 409 410 411
            self.assertEqual((res == real_result).all(), True)

        def test_bool_broadcast_api_4(self):
            paddle.enable_static()
            with program_guard(Program(), Program()):
                x = paddle.static.data(name='x', shape=[3, 1], dtype='bool')
                y = paddle.static.data(name='y', shape=[1], dtype='bool')
                op = eval("paddle.%s" % (self.op_type))
                out = op(x, y)
                exe = paddle.static.Executor(self.place)
412 413
                input_x = np.array([True, False, True]).astype(np.bool_)
                input_y = np.array([True]).astype(np.bool_)
414
                real_result = callback(input_x, input_y)
415 416 417
                (res,) = exe.run(
                    feed={"x": input_x, "y": input_y}, fetch_list=[out]
                )
418 419
            self.assertEqual((res == real_result).all(), True)

W
wawltor 已提交
420
        def test_attr_name(self):
421
            paddle.enable_static()
W
wawltor 已提交
422 423 424 425 426 427 428 429 430 431 432 433
            with program_guard(Program(), Program()):
                x = fluid.layers.data(name='x', shape=[4], dtype='int32')
                y = fluid.layers.data(name='y', shape=[4], dtype='int32')
                op = eval("paddle.%s" % (self.op_type))
                out = op(x=x, y=y, name="name_%s" % (self.op_type))
            self.assertEqual("name_%s" % (self.op_type) in out.name, True)

    cls_name = "TestCase_{}".format(op_type)
    PaddleCls.__name__ = cls_name
    globals()[cls_name] = PaddleCls


434
create_paddle_case('less_than', lambda _a, _b: _a < _b)
W
wawltor 已提交
435 436 437 438 439 440 441
create_paddle_case('less_equal', lambda _a, _b: _a <= _b)
create_paddle_case('greater_than', lambda _a, _b: _a > _b)
create_paddle_case('greater_equal', lambda _a, _b: _a >= _b)
create_paddle_case('equal', lambda _a, _b: _a == _b)
create_paddle_case('not_equal', lambda _a, _b: _a != _b)


442
class TestCompareOpError(unittest.TestCase):
443
    def test_errors(self):
444
        paddle.enable_static()
445 446 447
        with program_guard(Program(), Program()):
            # The input x and y of compare_op must be Variable.
            x = fluid.layers.data(name='x', shape=[1], dtype="float32")
448 449 450
            y = fluid.create_lod_tensor(
                numpy.array([[-1]]), [[1]], fluid.CPUPlace()
            )
451
            self.assertRaises(TypeError, paddle.greater_equal, x, y)
452 453


454 455
class API_TestElementwise_Equal(unittest.TestCase):
    def test_api(self):
456
        paddle.enable_static()
457 458 459
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            label = fluid.layers.assign(np.array([3, 3], dtype="int32"))
            limit = fluid.layers.assign(np.array([3, 2], dtype="int32"))
W
wawltor 已提交
460
            out = paddle.equal(x=label, y=limit)
461 462
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
463
            (res,) = exe.run(fetch_list=[out])
464 465 466 467 468
        self.assertEqual((res == np.array([True, False])).all(), True)

        with fluid.program_guard(fluid.Program(), fluid.Program()):
            label = fluid.layers.assign(np.array([3, 3], dtype="int32"))
            limit = fluid.layers.assign(np.array([3, 3], dtype="int32"))
W
wawltor 已提交
469
            out = paddle.equal(x=label, y=limit)
470 471
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
472
            (res,) = exe.run(fetch_list=[out])
473 474 475
        self.assertEqual((res == np.array([True, True])).all(), True)


476 477 478 479 480 481 482 483 484 485
class TestCompareOpPlace(unittest.TestCase):
    def test_place_1(self):
        paddle.enable_static()
        place = paddle.CPUPlace()
        if core.is_compiled_with_cuda():
            place = paddle.CUDAPlace(0)
        label = fluid.layers.assign(np.array([3, 3], dtype="int32"))
        limit = fluid.layers.assign(np.array([3, 2], dtype="int32"))
        out = fluid.layers.less_than(label, limit, force_cpu=True)
        exe = fluid.Executor(place)
486
        (res,) = exe.run(fetch_list=[out])
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
        self.assertEqual((res == np.array([False, False])).all(), True)

    def test_place_2(self):
        place = paddle.CPUPlace()
        data_place = place
        if core.is_compiled_with_cuda():
            place = paddle.CUDAPlace(0)
            data_place = paddle.CUDAPinnedPlace()
        paddle.disable_static(place)
        data = np.array([9], dtype="int64")
        data_tensor = paddle.to_tensor(data, place=data_place)
        result = data_tensor == 0
        self.assertEqual((result.numpy() == np.array([False])).all(), True)


Y
Yu Yang 已提交
502
if __name__ == '__main__':
H
hong 已提交
503
    paddle.enable_static()
Y
Yu Yang 已提交
504
    unittest.main()