test_compare_op.py 8.5 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
import op_test
Y
Yu Yang 已提交
18 19
import unittest
import numpy
20 21
import numpy as np
import paddle
22
import paddle.fluid as fluid
W
wawltor 已提交
23
import paddle.fluid.core as core
24
from paddle.fluid import Program, program_guard
Y
Yu Yang 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39


def create_test_class(op_type, typename, callback):
    class Cls(op_test.OpTest):
        def setUp(self):
            a = numpy.random.random(size=(10, 7)).astype(typename)
            b = numpy.random.random(size=(10, 7)).astype(typename)
            c = callback(a, b)
            self.inputs = {'X': a, 'Y': b}
            self.outputs = {'Out': c}
            self.op_type = op_type

        def test_output(self):
            self.check_output()

40
        def test_errors(self):
41
            paddle.enable_static()
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
            with program_guard(Program(), Program()):
                x = fluid.layers.data(name='x', shape=[2], dtype='int32')
                y = fluid.layers.data(name='y', shape=[2], dtype='int32')
                a = fluid.layers.data(name='a', shape=[2], dtype='int16')
                if self.op_type == "less_than":
                    self.assertRaises(
                        TypeError,
                        fluid.layers.less_than,
                        x=x,
                        y=y,
                        force_cpu=1)
                op = eval("fluid.layers.%s" % self.op_type)
                self.assertRaises(TypeError, op, x=x, y=y, cond=1)
                self.assertRaises(TypeError, op, x=x, y=a)
                self.assertRaises(TypeError, op, x=a, y=y)

Y
Yu Yang 已提交
58 59 60 61 62 63
    cls_name = "{0}_{1}".format(op_type, typename)
    Cls.__name__ = cls_name
    globals()[cls_name] = Cls


for _type_name in {'float32', 'float64', 'int32', 'int64'}:
F
furnace 已提交
64 65 66
    if _type_name == 'float64' and core.is_compiled_with_rocm():
        _type_name = 'float32'

Y
Yu Yang 已提交
67
    create_test_class('less_than', _type_name, lambda _a, _b: _a < _b)
68
    create_test_class('less_equal', _type_name, lambda _a, _b: _a <= _b)
Q
qiaolongfei 已提交
69 70
    create_test_class('greater_than', _type_name, lambda _a, _b: _a > _b)
    create_test_class('greater_equal', _type_name, lambda _a, _b: _a >= _b)
Y
Yu Yang 已提交
71
    create_test_class('equal', _type_name, lambda _a, _b: _a == _b)
Q
qiaolongfei 已提交
72
    create_test_class('not_equal', _type_name, lambda _a, _b: _a != _b)
Y
Yu Yang 已提交
73

74

W
wawltor 已提交
75 76 77 78
def create_paddle_case(op_type, callback):
    class PaddleCls(unittest.TestCase):
        def setUp(self):
            self.op_type = op_type
79 80
            self.input_x = np.array([1, 2, 3, 4]).astype(np.int64)
            self.input_y = np.array([1, 3, 2, 4]).astype(np.int64)
W
wawltor 已提交
81
            self.real_result = callback(self.input_x, self.input_y)
82 83 84
            self.place = fluid.CPUPlace()
            if core.is_compiled_with_cuda():
                self.place = paddle.CUDAPlace(0)
W
wawltor 已提交
85 86

        def test_api(self):
87
            paddle.enable_static()
W
wawltor 已提交
88
            with program_guard(Program(), Program()):
89 90
                x = fluid.data(name='x', shape=[4], dtype='int64')
                y = fluid.data(name='y', shape=[4], dtype='int64')
W
wawltor 已提交
91 92
                op = eval("paddle.%s" % (self.op_type))
                out = op(x, y)
93
                exe = fluid.Executor(self.place)
W
wawltor 已提交
94 95 96 97 98
                res, = exe.run(feed={"x": self.input_x,
                                     "y": self.input_y},
                               fetch_list=[out])
            self.assertEqual((res == self.real_result).all(), True)

99 100 101 102 103 104 105 106 107
        def test_dynamic_api(self):
            paddle.disable_static()
            x = paddle.to_tensor(self.input_x)
            y = paddle.to_tensor(self.input_y)
            op = eval("paddle.%s" % (self.op_type))
            out = op(x, y)
            self.assertEqual((out.numpy() == self.real_result).all(), True)
            paddle.enable_static()

108
        def test_broadcast_api_1(self):
109
            paddle.enable_static()
110
            with program_guard(Program(), Program()):
111 112 113
                x = paddle.static.data(
                    name='x', shape=[1, 2, 1, 3], dtype='int32')
                y = paddle.static.data(name='y', shape=[1, 2, 3], dtype='int32')
114 115
                op = eval("paddle.%s" % (self.op_type))
                out = op(x, y)
116
                exe = paddle.static.Executor(self.place)
117 118 119 120 121 122 123 124
                input_x = np.arange(1, 7).reshape((1, 2, 1, 3)).astype(np.int32)
                input_y = np.arange(0, 6).reshape((1, 2, 3)).astype(np.int32)
                real_result = callback(input_x, input_y)
                res, = exe.run(feed={"x": input_x,
                                     "y": input_y},
                               fetch_list=[out])
            self.assertEqual((res == real_result).all(), True)

W
wawltor 已提交
125
        def test_attr_name(self):
126
            paddle.enable_static()
W
wawltor 已提交
127 128 129 130 131 132 133 134 135 136 137 138
            with program_guard(Program(), Program()):
                x = fluid.layers.data(name='x', shape=[4], dtype='int32')
                y = fluid.layers.data(name='y', shape=[4], dtype='int32')
                op = eval("paddle.%s" % (self.op_type))
                out = op(x=x, y=y, name="name_%s" % (self.op_type))
            self.assertEqual("name_%s" % (self.op_type) in out.name, True)

    cls_name = "TestCase_{}".format(op_type)
    PaddleCls.__name__ = cls_name
    globals()[cls_name] = PaddleCls


139
create_paddle_case('less_than', lambda _a, _b: _a < _b)
W
wawltor 已提交
140 141 142 143 144 145 146
create_paddle_case('less_equal', lambda _a, _b: _a <= _b)
create_paddle_case('greater_than', lambda _a, _b: _a > _b)
create_paddle_case('greater_equal', lambda _a, _b: _a >= _b)
create_paddle_case('equal', lambda _a, _b: _a == _b)
create_paddle_case('not_equal', lambda _a, _b: _a != _b)


147
class TestCompareOpError(unittest.TestCase):
148
    def test_errors(self):
149
        paddle.enable_static()
150 151 152 153 154 155 156 157
        with program_guard(Program(), Program()):
            # The input x and y of compare_op must be Variable.
            x = fluid.layers.data(name='x', shape=[1], dtype="float32")
            y = fluid.create_lod_tensor(
                numpy.array([[-1]]), [[1]], fluid.CPUPlace())
            self.assertRaises(TypeError, fluid.layers.greater_equal, x, y)


158 159
class API_TestElementwise_Equal(unittest.TestCase):
    def test_api(self):
160
        paddle.enable_static()
161 162 163
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            label = fluid.layers.assign(np.array([3, 3], dtype="int32"))
            limit = fluid.layers.assign(np.array([3, 2], dtype="int32"))
W
wawltor 已提交
164
            out = paddle.equal(x=label, y=limit)
165 166 167 168 169 170 171 172
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            res, = exe.run(fetch_list=[out])
        self.assertEqual((res == np.array([True, False])).all(), True)

        with fluid.program_guard(fluid.Program(), fluid.Program()):
            label = fluid.layers.assign(np.array([3, 3], dtype="int32"))
            limit = fluid.layers.assign(np.array([3, 3], dtype="int32"))
W
wawltor 已提交
173
            out = paddle.equal(x=label, y=limit)
174 175 176 177 178 179
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            res, = exe.run(fetch_list=[out])
        self.assertEqual((res == np.array([True, True])).all(), True)


180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
class TestCompareOpPlace(unittest.TestCase):
    def test_place_1(self):
        paddle.enable_static()
        place = paddle.CPUPlace()
        if core.is_compiled_with_cuda():
            place = paddle.CUDAPlace(0)
        label = fluid.layers.assign(np.array([3, 3], dtype="int32"))
        limit = fluid.layers.assign(np.array([3, 2], dtype="int32"))
        out = fluid.layers.less_than(label, limit, force_cpu=True)
        exe = fluid.Executor(place)
        res, = exe.run(fetch_list=[out])
        self.assertEqual((res == np.array([False, False])).all(), True)

    def test_place_2(self):
        place = paddle.CPUPlace()
        data_place = place
        if core.is_compiled_with_cuda():
            place = paddle.CUDAPlace(0)
            data_place = paddle.CUDAPinnedPlace()
        paddle.disable_static(place)
        data = np.array([9], dtype="int64")
        data_tensor = paddle.to_tensor(data, place=data_place)
        result = data_tensor == 0
        self.assertEqual((result.numpy() == np.array([False])).all(), True)


Y
Yu Yang 已提交
206 207
if __name__ == '__main__':
    unittest.main()