rule_based_tuner.py 13.3 KB
Newer Older
C
caozhou 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
from abc import ABC, abstractmethod

from ..graph import Graph

_PATTERNS = {}


def register_pattern(cls):
    """Register pattern for rule-based tuner."""
    name = cls.name

    def register(name):
        global _PATTERNS
        _PATTERNS[name] = cls()

    register(name)

    return cls


def convert_to_graph(ops, block):
    """Convert ops to graph."""
    graph = Graph()
    graph.attrs["var_to_id"] = {}  # {var_name: node_id}
    graph.attrs["id_to_var"] = {}  # {node_id: var_name}
    graph.attrs["op_to_id"] = {}  # {op_id: node_id}
    graph.attrs["id_to_op"] = {}  # {node_id: op_id}

    node_id = -1
    for op in ops:
        attrs = op.all_attrs()
        attrs["type"] = op.type
        node_id += 1

        # create op node
        op_node = graph.add_node(node_id, **attrs)
        graph.attrs["op_to_id"][op.desc.id()] = op_node.id
        graph.attrs["id_to_op"][op_node.id] = op.desc.id()
        for input_name in op.input_names:
            for var_name in op.input(input_name):
                if var_name not in graph.attrs["var_to_id"]:
                    # create var node
                    node_id += 1
                    var_node = graph.add_node(node_id)
                    var = block._var_recursive(var_name)
                    if var.is_parameter:
                        var_node.attrs["type"] = "param"
                    else:
                        var_node.attrs["type"] = "var"
                    graph.attrs["var_to_id"][var_name] = var_node.id
                    graph.attrs["id_to_var"][var_node.id] = var_name
                else:
                    var_node_id = graph.attrs["var_to_id"][var_name]
                    var_node = graph._nodes[var_node_id]

                # create edge that input -> op
                input_edge = graph.add_edge(var_node.id, op_node.id)
                input_edge.attrs["input_name"] = input_name

            for output_name in op.output_names:
                for var_name in op.output(output_name):
                    if var_name not in graph.attrs["var_to_id"]:
                        # create var node
                        node_id += 1
                        var_node = graph.add_node(node_id)
                        var = block._var_recursive(var_name)
                        if var.is_parameter:
                            var_node.attrs["type"] = "param"
                        else:
                            var_node.attrs["type"] = "var"
                        graph.attrs["var_to_id"][var_name] = var_node.id
                        graph.attrs["id_to_var"][var_node.id] = var_name
                    else:
                        var_node_id = graph.attrs["var_to_id"][var_name]
                        var_node = graph._nodes[var_node_id]

                    # create edge that op -> output
                    output_edge = graph.add_edge(op_node.id, var_node.id)
                    output_edge.attrs["output_name"] = output_name

    return graph


class BasePattern(ABC):
    name = "base"

    def __init__(self):
        self.graph = None
        self.build()

    @abstractmethod
    def build(self):
        pass


@register_pattern
class QKVPattern(BasePattern):
    name = "qkv"

    def __init__(self):
        super().__init__()

    def build(self):
        self.graph = Graph()

        query = self.graph.add_node(0, **{"type": "var"})

        q_weight = self.graph.add_node(1, **{"dim": 2, "type": "param"})
        k_weight = self.graph.add_node(2, **{"dim": 2, "type": "param"})
        v_weight = self.graph.add_node(3, **{"dim": 2, "type": "param"})

        q_matmul = self.graph.add_node(4, **{"type": "matmul_v2"})
        k_matmul = self.graph.add_node(5, **{"type": "matmul_v2"})
        v_matmul = self.graph.add_node(6, **{"type": "matmul_v2"})

        q_x = self.graph.add_edge(0, 4, **{"input_name": "X"})
        k_x = self.graph.add_edge(0, 5, **{"input_name": "X"})
        v_x = self.graph.add_edge(0, 6, **{"input_name": "X"})
        q_y = self.graph.add_edge(1, 4, **{"input_name": "Y"})
        k_y = self.graph.add_edge(2, 5, **{"input_name": "Y"})
        v_y = self.graph.add_edge(3, 6, **{"input_name": "Y"})

        q = self.graph.add_node(7, **{"type": "var"})
        k = self.graph.add_node(8, **{"type": "var"})
        v = self.graph.add_node(9, **{"type": "var"})

        q_out = self.graph.add_edge(7, 4, **{"output_name": "Out"})
        k_out = self.graph.add_edge(8, 5, **{"output_name": "Out"})
        v_out = self.graph.add_edge(9, 6, **{"output_name": "Out"})

        # Pattern
        self.graph.attrs["shard_tensor"] = [
            (1, 2, 3),
            [[-1, 0], [-1, 1]],
        ]  # 2-tuple such as (tensor_id, patterns)

C
caozhou 已提交
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398

class OperatorGroupUtil:
    common_starts = ["layer_norm", "matmul_v2", "matmul"]

    @staticmethod
    def get_ranks(seq):
        """Get rank array of the given seq by doubled algorithm."""
        ordered_seq = sorted(list(set(seq)))
        item_to_rank = {item: idx for idx, item in enumerate(ordered_seq)}
        inter_ranks = [item_to_rank[item] for item in seq]

        length = len(inter_ranks)
        power = 0
        interval = 2**power
        while interval < length:
            for idx, item in enumerate(inter_ranks):
                if idx + interval >= length:
                    inter_ranks[idx] = [item, -1]
                else:
                    inter_ranks[idx] = [item, inter_ranks[idx + interval]]

            tmp = []
            for item in inter_ranks:
                if item not in tmp:
                    tmp.append(item)
            tmp.sort(key=lambda x: (x[0], x[1]))
            item_to_rank = {}
            for idx, val in enumerate(tmp):
                key = ",".join(str(item) for item in val)
                item_to_rank[key] = idx

            inter_ranks = [
                item_to_rank[",".join(str(val) for val in item)]
                for item in inter_ranks
            ]
            power += 1
            interval = 2**power

        return inter_ranks

    @staticmethod
    def get_suffixes(ranks):
        """Get suffix array by the given rank array."""
        suffixes = [0 for idx in range(len(ranks))]
        for idx, item in enumerate(ranks):
            suffixes[item] = idx
        return suffixes

    @staticmethod
    def get_heights(suffixes, seq):
        """Get height array by the suffix array and seq"""
        heights = [-1 for i in range(len(suffixes))]
        for i in range(1, len(seq)):
            x = seq[suffixes[i - 1] :]
            y = seq[suffixes[i] :]
            max_len = len(x) if len(x) > len(y) else len(y)
            same_count = 0
            for j in range(max_len):
                if j >= len(x) or j >= len(y):
                    break
                else:
                    if x[j] == y[j]:
                        same_count += 1
                    else:
                        break
            heights[i] = same_count

        return heights

    @staticmethod
    def get_longest_repeated_sub_seq(suffixes, heights, seq):
        """Get longest repeated sub sequence by suffix array algorithm."""
        length = len(seq)
        if length <= 1:
            return None
        k = length // 2
        height_groups = []
        longest_sub_seq = None
        longest_sub_seqs = []

        while k >= 2:
            height_group = []
            for i in range(1, len(heights)):
                if heights[i] >= k:
                    if i == 1:
                        height_group.append(0)
                    height_group.append(i)
                else:
                    if i == 1:
                        height_groups.append([0])
                        height_group = [i]
                    else:
                        height_groups.append(height_group)
                        height_group = [i]

            if height_group:
                height_groups.append(height_group)

            for height_group in height_groups:
                suffix_group = []
                index_group = []
                for idx in height_group:
                    suffix_group.append(idx)
                    index_group.append(suffixes[idx])

                max_index = max(index_group)
                min_index = min(index_group)
                if max_index - min_index >= k:
                    longest_sub_seq = seq[min_index : min_index + k]
                    if longest_sub_seq[0] in OperatorGroupUtil.common_starts:
                        return longest_sub_seq
            if longest_sub_seq is not None:
                return longest_sub_seq

            k -= 1
            height_groups = []

        return longest_sub_seq

    @staticmethod
    def get_decomposed_sub_seq(seq):
        """Get decomposed sub seq s by seq S such as s * R = S."""
        if not seq:
            return seq

        decomposed_sub_seq = seq
        seq_len = len(seq)
        if seq_len == 1:
            return decomposed_sub_seq
        else:
            for interval in range(2, seq_len + 1):
                if seq_len % interval == 0:
                    repeated_times = seq_len // interval
                    decomposed_sub_seq = seq[0:interval]
                    decomposed = True
                    for j in range(1, repeated_times + 1):
                        sub_seq = seq[interval * (j - 1) : interval * j]
                        if sub_seq != decomposed_sub_seq:
                            decomposed = False
                            break
                    if decomposed:
                        return decomposed_sub_seq

        return decomposed_sub_seq

    @staticmethod
    def replace_by_decomposed_seq(sub_seq, seq):
        """Replace seq by sub seq."""
        if not sub_seq:
            return seq

        result = []
        sub_seq_len = len(sub_seq)
        i = 0
        while i < len(seq):
            if seq[i : i + sub_seq_len] == sub_seq:
                result.append(seq[i : i + sub_seq_len])
                i += sub_seq_len
            else:
                result.append(seq[i])
                i += 1

        return result

    @staticmethod
    def stop_replace(seq):
        for item in seq:
            if not isinstance(item, list):
                return False
        return True


class RuleBasedTuner:
    def __init__(self, dist_context, mode="train"):
        self._dist_context = dist_context
        self._mode = mode

    def group_operators(self, ops):
        """
        Group operators to layers.

        Args:
            ops (list): A operator list.

        Returns:
            List: The list contains the list of operators which belong to the same layer.
        """
        seq = [op.type for op in ops]

        while not OperatorGroupUtil.stop_replace(seq):
            to_replace_seq = []
            to_replace_idxes = []
            has_append = False
            for idx, item in enumerate(seq):
                if not isinstance(item, list):
                    has_append = True
                    to_replace_seq.append(item)
                    to_replace_idxes.append(idx)
                elif isinstance(seq, list) and not has_append:
                    continue
                elif isinstance(seq, list) and has_append:
                    break

            ranks = OperatorGroupUtil.get_ranks(to_replace_seq)
            suffixes = OperatorGroupUtil.get_suffixes(ranks)
            heights = OperatorGroupUtil.get_heights(suffixes, to_replace_seq)
            longest_sub_seq = OperatorGroupUtil.get_longest_repeated_sub_seq(
                suffixes, heights, to_replace_seq
            )
            has_merged = False
            if longest_sub_seq is None:
                for i in range(to_replace_idxes[-1] + 1, len(seq)):
                    if isinstance(seq[i], list):
                        seq[i] = to_replace_seq + seq[i]
                        has_merged = True
                        break
                if not has_merged:
                    for i in range(to_replace_idxes[0] - 1, -1, -1):
                        if isinstance(seq[i], list):
                            seq[i].extend(to_replace_seq)
                            has_merged = True
                            break
                if not has_merged:
                    seq = [to_replace_seq]
                    break

            decomposed_sub_seq = OperatorGroupUtil.get_decomposed_sub_seq(
                longest_sub_seq
            )
            to_replace_seq = OperatorGroupUtil.replace_by_decomposed_seq(
                decomposed_sub_seq, to_replace_seq
            )
            result = seq[: to_replace_idxes[0]]
            if not has_merged:
                result.extend(to_replace_seq)
            result.extend(seq[to_replace_idxes[-1] + 1 :])
            seq = result

        layers = []
        idx = 0
        for groups in seq:
            layer = []
            for op in groups:
                layer.append(ops[idx])
                idx += 1
            layers.append(layer)

        return layers