Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
48d5c36b
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
48d5c36b
编写于
11月 22, 2022
作者:
C
caozhou
提交者:
GitHub
11月 22, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add group operators (#48208)
上级
df4dfda0
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
396 addition
and
0 deletion
+396
-0
python/paddle/distributed/auto_parallel/tuner/rule_based_tuner.py
...addle/distributed/auto_parallel/tuner/rule_based_tuner.py
+262
-0
python/paddle/fluid/tests/unittests/auto_parallel/CMakeLists.txt
...paddle/fluid/tests/unittests/auto_parallel/CMakeLists.txt
+1
-0
python/paddle/fluid/tests/unittests/auto_parallel/test_group_operators.py
...uid/tests/unittests/auto_parallel/test_group_operators.py
+133
-0
未找到文件。
python/paddle/distributed/auto_parallel/tuner/rule_based_tuner.py
0 → 100644
浏览文件 @
48d5c36b
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
class
OperatorGroupUtil
:
common_starts
=
[
"layer_norm"
,
"matmul_v2"
,
"matmul"
]
@
staticmethod
def
get_ranks
(
seq
):
"""Get rank array of the given seq by doubled algorithm."""
ordered_seq
=
sorted
(
list
(
set
(
seq
)))
item_to_rank
=
{
item
:
idx
for
idx
,
item
in
enumerate
(
ordered_seq
)}
inter_ranks
=
[
item_to_rank
[
item
]
for
item
in
seq
]
length
=
len
(
inter_ranks
)
power
=
0
interval
=
2
**
power
while
interval
<
length
:
for
idx
,
item
in
enumerate
(
inter_ranks
):
if
idx
+
interval
>=
length
:
inter_ranks
[
idx
]
=
[
item
,
-
1
]
else
:
inter_ranks
[
idx
]
=
[
item
,
inter_ranks
[
idx
+
interval
]]
tmp
=
[]
for
item
in
inter_ranks
:
if
item
not
in
tmp
:
tmp
.
append
(
item
)
tmp
.
sort
(
key
=
lambda
x
:
(
x
[
0
],
x
[
1
]))
item_to_rank
=
{}
for
idx
,
val
in
enumerate
(
tmp
):
key
=
","
.
join
(
str
(
item
)
for
item
in
val
)
item_to_rank
[
key
]
=
idx
inter_ranks
=
[
item_to_rank
[
","
.
join
(
str
(
val
)
for
val
in
item
)]
for
item
in
inter_ranks
]
power
+=
1
interval
=
2
**
power
return
inter_ranks
@
staticmethod
def
get_suffixes
(
ranks
):
"""Get suffix array by the given rank array."""
suffixes
=
[
0
for
idx
in
range
(
len
(
ranks
))]
for
idx
,
item
in
enumerate
(
ranks
):
suffixes
[
item
]
=
idx
return
suffixes
@
staticmethod
def
get_heights
(
suffixes
,
seq
):
"""Get height array by the suffix array and seq"""
heights
=
[
-
1
for
i
in
range
(
len
(
suffixes
))]
for
i
in
range
(
1
,
len
(
seq
)):
x
=
seq
[
suffixes
[
i
-
1
]
:]
y
=
seq
[
suffixes
[
i
]
:]
max_len
=
len
(
x
)
if
len
(
x
)
>
len
(
y
)
else
len
(
y
)
same_count
=
0
for
j
in
range
(
max_len
):
if
j
>=
len
(
x
)
or
j
>=
len
(
y
):
break
else
:
if
x
[
j
]
==
y
[
j
]:
same_count
+=
1
else
:
break
heights
[
i
]
=
same_count
return
heights
@
staticmethod
def
get_longest_repeated_sub_seq
(
suffixes
,
heights
,
seq
):
"""Get longest repeated sub sequence by suffix array algorithm."""
length
=
len
(
seq
)
if
length
<=
1
:
return
None
k
=
length
//
2
height_groups
=
[]
longest_sub_seq
=
None
longest_sub_seqs
=
[]
while
k
>=
2
:
height_group
=
[]
for
i
in
range
(
1
,
len
(
heights
)):
if
heights
[
i
]
>=
k
:
if
i
==
1
:
height_group
.
append
(
0
)
height_group
.
append
(
i
)
else
:
if
i
==
1
:
height_groups
.
append
([
0
])
height_group
=
[
i
]
else
:
height_groups
.
append
(
height_group
)
height_group
=
[
i
]
if
height_group
:
height_groups
.
append
(
height_group
)
for
height_group
in
height_groups
:
suffix_group
=
[]
index_group
=
[]
for
idx
in
height_group
:
suffix_group
.
append
(
idx
)
index_group
.
append
(
suffixes
[
idx
])
max_index
=
max
(
index_group
)
min_index
=
min
(
index_group
)
if
max_index
-
min_index
>=
k
:
longest_sub_seq
=
seq
[
min_index
:
min_index
+
k
]
if
longest_sub_seq
[
0
]
in
OperatorGroupUtil
.
common_starts
:
return
longest_sub_seq
if
longest_sub_seq
is
not
None
:
return
longest_sub_seq
k
-=
1
height_groups
=
[]
return
longest_sub_seq
@
staticmethod
def
get_decomposed_sub_seq
(
seq
):
"""Get decomposed sub seq s by seq S such as s * R = S."""
if
not
seq
:
return
seq
decomposed_sub_seq
=
seq
seq_len
=
len
(
seq
)
if
seq_len
==
1
:
return
decomposed_sub_seq
else
:
for
interval
in
range
(
2
,
seq_len
+
1
):
if
seq_len
%
interval
==
0
:
repeated_times
=
seq_len
//
interval
decomposed_sub_seq
=
seq
[
0
:
interval
]
decomposed
=
True
for
j
in
range
(
1
,
repeated_times
+
1
):
sub_seq
=
seq
[
interval
*
(
j
-
1
)
:
interval
*
j
]
if
sub_seq
!=
decomposed_sub_seq
:
decomposed
=
False
break
if
decomposed
:
return
decomposed_sub_seq
return
decomposed_sub_seq
@
staticmethod
def
replace_by_decomposed_seq
(
sub_seq
,
seq
):
"""Replace seq by sub seq."""
if
not
sub_seq
:
return
seq
result
=
[]
sub_seq_len
=
len
(
sub_seq
)
i
=
0
while
i
<
len
(
seq
):
if
seq
[
i
:
i
+
sub_seq_len
]
==
sub_seq
:
result
.
append
(
seq
[
i
:
i
+
sub_seq_len
])
i
+=
sub_seq_len
else
:
result
.
append
(
seq
[
i
])
i
+=
1
return
result
@
staticmethod
def
stop_replace
(
seq
):
for
item
in
seq
:
if
not
isinstance
(
item
,
list
):
return
False
return
True
class
RuleBasedTuner
:
def
__init__
(
self
,
dist_context
,
mode
=
"train"
):
self
.
_dist_context
=
dist_context
self
.
_mode
=
mode
def
group_operators
(
self
,
ops
):
"""
Group operators to layers.
Args:
ops (list): A operator list.
Returns:
List: The list contains the list of operators which belong to the same layer.
"""
seq
=
[
op
.
type
for
op
in
ops
]
while
not
OperatorGroupUtil
.
stop_replace
(
seq
):
to_replace_seq
=
[]
to_replace_idxes
=
[]
has_append
=
False
for
idx
,
item
in
enumerate
(
seq
):
if
not
isinstance
(
item
,
list
):
has_append
=
True
to_replace_seq
.
append
(
item
)
to_replace_idxes
.
append
(
idx
)
elif
isinstance
(
seq
,
list
)
and
not
has_append
:
continue
elif
isinstance
(
seq
,
list
)
and
has_append
:
break
ranks
=
OperatorGroupUtil
.
get_ranks
(
to_replace_seq
)
suffixes
=
OperatorGroupUtil
.
get_suffixes
(
ranks
)
heights
=
OperatorGroupUtil
.
get_heights
(
suffixes
,
to_replace_seq
)
longest_sub_seq
=
OperatorGroupUtil
.
get_longest_repeated_sub_seq
(
suffixes
,
heights
,
to_replace_seq
)
has_merged
=
False
if
longest_sub_seq
is
None
:
for
i
in
range
(
to_replace_idxes
[
-
1
]
+
1
,
len
(
seq
)):
if
isinstance
(
seq
[
i
],
list
):
seq
[
i
]
=
to_replace_seq
+
seq
[
i
]
has_merged
=
True
break
if
not
has_merged
:
for
i
in
range
(
to_replace_idxes
[
0
]
-
1
,
-
1
,
-
1
):
if
isinstance
(
seq
[
i
],
list
):
seq
[
i
].
extend
(
to_replace_seq
)
has_merged
=
True
break
if
not
has_merged
:
seq
=
[
to_replace_seq
]
break
decomposed_sub_seq
=
OperatorGroupUtil
.
get_decomposed_sub_seq
(
longest_sub_seq
)
to_replace_seq
=
OperatorGroupUtil
.
replace_by_decomposed_seq
(
decomposed_sub_seq
,
to_replace_seq
)
result
=
seq
[:
to_replace_idxes
[
0
]]
if
not
has_merged
:
result
.
extend
(
to_replace_seq
)
result
.
extend
(
seq
[
to_replace_idxes
[
-
1
]
+
1
:])
seq
=
result
layers
=
[]
idx
=
0
for
groups
in
seq
:
layer
=
[]
for
op
in
groups
:
layer
.
append
(
ops
[
idx
])
idx
+=
1
layers
.
append
(
layer
)
return
layers
python/paddle/fluid/tests/unittests/auto_parallel/CMakeLists.txt
浏览文件 @
48d5c36b
...
...
@@ -118,5 +118,6 @@ if(WITH_DISTRIBUTE AND WITH_GPU)
test_conditional_block_reshard
)
py_test_modules
(
test_engine_api_error MODULES test_engine_api_error
)
py_test_modules
(
test_fp16_assign MODULES test_fp16_assign
)
py_test_modules
(
test_group_operators MODULES test_group_operators
)
endif
()
python/paddle/fluid/tests/unittests/auto_parallel/test_group_operators.py
0 → 100644
浏览文件 @
48d5c36b
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
sys
import
unittest
import
numpy
as
np
import
paddle
import
paddle.static
as
static
sys
.
path
.
append
(
".."
)
import
auto_parallel_gpt_model
as
modeling
from
auto_parallel_gpt_model
import
(
GPTModel
,
GPTForPretraining
,
GPTPretrainingCriterion
,
)
def
get_gpt_model
(
train_program
,
start_program
,
place
,
batch_size
,
sequence_len
,
vocab_size
):
with
static
.
program_guard
(
train_program
,
start_program
):
tokens
=
paddle
.
static
.
data
(
name
=
"tokens"
,
shape
=
[
batch_size
,
sequence_len
],
dtype
=
'int64'
)
position_ids
=
paddle
.
static
.
data
(
name
=
"position_ids"
,
shape
=
[
batch_size
,
sequence_len
],
dtype
=
'int64'
)
attention_mask
=
paddle
.
static
.
data
(
name
=
"attention_mask"
,
shape
=
[
batch_size
,
1
,
sequence_len
,
sequence_len
],
dtype
=
'float32'
,
)
labels
=
paddle
.
static
.
data
(
name
=
"labels"
,
shape
=
[
batch_size
,
sequence_len
],
dtype
=
'int64'
)
loss_mask
=
paddle
.
static
.
data
(
name
=
"loss_mask"
,
shape
=
[
batch_size
,
sequence_len
],
dtype
=
'float32'
)
gpt
=
GPTModel
(
vocab_size
=
1000
,
hidden_size
=
64
,
num_hidden_layers
=
2
,
num_attention_heads
=
8
,
intermediate_size
=
256
,
hidden_act
=
"gelu"
,
hidden_dropout_prob
=
0.0
,
attention_probs_dropout_prob
=
0.0
,
max_position_embeddings
=
1024
,
type_vocab_size
=
1
,
initializer_range
=
0.02
,
pad_token_id
=
0
,
eos_token_id
=
7
,
bos_token_id
=
0
,
eol_token_id
=
3
,
)
model
=
GPTForPretraining
(
gpt
,
vocab_size
=
1000
,
hidden_size
=
64
,
initializer_range
=
0.02
)
preds
=
model
(
tokens
,
position_ids
,
attention_mask
)
criterion
=
GPTPretrainingCriterion
()
loss
=
criterion
(
preds
,
labels
,
loss_mask
)
def
gen_data
():
np
.
random
.
seed
(
2021
)
tokens
=
[]
position_ids
=
[]
attention_mask
=
[]
labels
=
[]
loss_mask
=
[]
for
_
in
range
(
batch_size
):
tokens
.
append
(
np
.
random
.
randint
(
vocab_size
,
size
=
sequence_len
))
position_ids
.
append
(
np
.
arange
(
sequence_len
))
attention_mask
.
append
([
np
.
tril
(
np
.
ones
(
sequence_len
))])
labels
.
append
(
np
.
random
.
randint
(
vocab_size
,
size
=
sequence_len
))
loss_mask
.
append
(
np
.
ones
(
sequence_len
))
return
tokens
,
position_ids
,
attention_mask
,
labels
,
loss_mask
return
train_program
,
start_program
,
loss
,
gen_data
class
TestGroupOperators
(
unittest
.
TestCase
):
def
test_gpt
(
self
):
modeling
.
init_global
()
train_program
=
static
.
Program
()
start_program
=
static
.
Program
()
place
=
paddle
.
set_device
(
"gpu"
)
batch_size
=
8
sequence_len
=
512
vocab_size
=
1000
train_program
,
start_program
,
loss
,
gen_data
=
get_gpt_model
(
train_program
,
start_program
,
place
,
batch_size
,
sequence_len
,
vocab_size
,
)
from
paddle.distributed.auto_parallel.tuner.rule_based_tuner
import
(
RuleBasedTuner
,
)
from
paddle.distributed.auto_parallel.dist_context
import
(
DistributedContext
,
)
dist_context
=
DistributedContext
()
tuner
=
RuleBasedTuner
(
dist_context
)
layers
=
tuner
.
group_operators
(
train_program
.
global_block
().
ops
)
op_types
=
[]
for
layer
in
layers
:
tmp
=
[]
for
op
in
layer
:
tmp
.
append
(
op
.
type
)
op_types
.
append
(
tmp
)
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录