Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
174726fc
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
174726fc
编写于
11月 28, 2022
作者:
C
caozhou
提交者:
GitHub
11月 28, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[Auto Parallel]Add pattern for auto search (#48316)
* add pattern for auto search * add unittest
上级
e7d459ac
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
274 addition
and
1 deletion
+274
-1
python/paddle/distributed/auto_parallel/graph.py
python/paddle/distributed/auto_parallel/graph.py
+3
-0
python/paddle/distributed/auto_parallel/tuner/rule_based_tuner.py
...addle/distributed/auto_parallel/tuner/rule_based_tuner.py
+137
-0
python/paddle/fluid/tests/unittests/auto_parallel/CMakeLists.txt
...paddle/fluid/tests/unittests/auto_parallel/CMakeLists.txt
+1
-1
python/paddle/fluid/tests/unittests/auto_parallel/test_pattern.py
...addle/fluid/tests/unittests/auto_parallel/test_pattern.py
+133
-0
未找到文件。
python/paddle/distributed/auto_parallel/graph.py
浏览文件 @
174726fc
...
...
@@ -123,6 +123,8 @@ class Graph:
else
:
self
.
_nodes
[
node_id
].
attrs
.
update
(
attrs
)
return
self
.
_nodes
[
node_id
]
def
add_edge
(
self
,
src_id
,
tgt_id
,
**
attrs
):
# add nodes
if
src_id
is
None
:
...
...
@@ -140,6 +142,7 @@ class Graph:
# add the edge
edge
=
Edge
(
src_id
,
tgt_id
,
**
attrs
)
self
.
_adjs
[
src_id
][
tgt_id
]
=
edge
return
edge
def
__len__
(
self
):
return
len
(
self
.
_nodes
)
...
...
python/paddle/distributed/auto_parallel/tuner/rule_based_tuner.py
浏览文件 @
174726fc
...
...
@@ -12,6 +12,143 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from
abc
import
ABC
,
abstractmethod
from
..graph
import
Graph
_PATTERNS
=
{}
def
register_pattern
(
cls
):
"""Register pattern for rule-based tuner."""
name
=
cls
.
name
def
register
(
name
):
global
_PATTERNS
_PATTERNS
[
name
]
=
cls
()
register
(
name
)
return
cls
def
convert_to_graph
(
ops
,
block
):
"""Convert ops to graph."""
graph
=
Graph
()
graph
.
attrs
[
"var_to_id"
]
=
{}
# {var_name: node_id}
graph
.
attrs
[
"id_to_var"
]
=
{}
# {node_id: var_name}
graph
.
attrs
[
"op_to_id"
]
=
{}
# {op_id: node_id}
graph
.
attrs
[
"id_to_op"
]
=
{}
# {node_id: op_id}
node_id
=
-
1
for
op
in
ops
:
attrs
=
op
.
all_attrs
()
attrs
[
"type"
]
=
op
.
type
node_id
+=
1
# create op node
op_node
=
graph
.
add_node
(
node_id
,
**
attrs
)
graph
.
attrs
[
"op_to_id"
][
op
.
desc
.
id
()]
=
op_node
.
id
graph
.
attrs
[
"id_to_op"
][
op_node
.
id
]
=
op
.
desc
.
id
()
for
input_name
in
op
.
input_names
:
for
var_name
in
op
.
input
(
input_name
):
if
var_name
not
in
graph
.
attrs
[
"var_to_id"
]:
# create var node
node_id
+=
1
var_node
=
graph
.
add_node
(
node_id
)
var
=
block
.
_var_recursive
(
var_name
)
if
var
.
is_parameter
:
var_node
.
attrs
[
"type"
]
=
"param"
else
:
var_node
.
attrs
[
"type"
]
=
"var"
graph
.
attrs
[
"var_to_id"
][
var_name
]
=
var_node
.
id
graph
.
attrs
[
"id_to_var"
][
var_node
.
id
]
=
var_name
else
:
var_node_id
=
graph
.
attrs
[
"var_to_id"
][
var_name
]
var_node
=
graph
.
_nodes
[
var_node_id
]
# create edge that input -> op
input_edge
=
graph
.
add_edge
(
var_node
.
id
,
op_node
.
id
)
input_edge
.
attrs
[
"input_name"
]
=
input_name
for
output_name
in
op
.
output_names
:
for
var_name
in
op
.
output
(
output_name
):
if
var_name
not
in
graph
.
attrs
[
"var_to_id"
]:
# create var node
node_id
+=
1
var_node
=
graph
.
add_node
(
node_id
)
var
=
block
.
_var_recursive
(
var_name
)
if
var
.
is_parameter
:
var_node
.
attrs
[
"type"
]
=
"param"
else
:
var_node
.
attrs
[
"type"
]
=
"var"
graph
.
attrs
[
"var_to_id"
][
var_name
]
=
var_node
.
id
graph
.
attrs
[
"id_to_var"
][
var_node
.
id
]
=
var_name
else
:
var_node_id
=
graph
.
attrs
[
"var_to_id"
][
var_name
]
var_node
=
graph
.
_nodes
[
var_node_id
]
# create edge that op -> output
output_edge
=
graph
.
add_edge
(
op_node
.
id
,
var_node
.
id
)
output_edge
.
attrs
[
"output_name"
]
=
output_name
return
graph
class
BasePattern
(
ABC
):
name
=
"base"
def
__init__
(
self
):
self
.
graph
=
None
self
.
build
()
@
abstractmethod
def
build
(
self
):
pass
@
register_pattern
class
QKVPattern
(
BasePattern
):
name
=
"qkv"
def
__init__
(
self
):
super
().
__init__
()
def
build
(
self
):
self
.
graph
=
Graph
()
query
=
self
.
graph
.
add_node
(
0
,
**
{
"type"
:
"var"
})
q_weight
=
self
.
graph
.
add_node
(
1
,
**
{
"dim"
:
2
,
"type"
:
"param"
})
k_weight
=
self
.
graph
.
add_node
(
2
,
**
{
"dim"
:
2
,
"type"
:
"param"
})
v_weight
=
self
.
graph
.
add_node
(
3
,
**
{
"dim"
:
2
,
"type"
:
"param"
})
q_matmul
=
self
.
graph
.
add_node
(
4
,
**
{
"type"
:
"matmul_v2"
})
k_matmul
=
self
.
graph
.
add_node
(
5
,
**
{
"type"
:
"matmul_v2"
})
v_matmul
=
self
.
graph
.
add_node
(
6
,
**
{
"type"
:
"matmul_v2"
})
q_x
=
self
.
graph
.
add_edge
(
0
,
4
,
**
{
"input_name"
:
"X"
})
k_x
=
self
.
graph
.
add_edge
(
0
,
5
,
**
{
"input_name"
:
"X"
})
v_x
=
self
.
graph
.
add_edge
(
0
,
6
,
**
{
"input_name"
:
"X"
})
q_y
=
self
.
graph
.
add_edge
(
1
,
4
,
**
{
"input_name"
:
"Y"
})
k_y
=
self
.
graph
.
add_edge
(
2
,
5
,
**
{
"input_name"
:
"Y"
})
v_y
=
self
.
graph
.
add_edge
(
3
,
6
,
**
{
"input_name"
:
"Y"
})
q
=
self
.
graph
.
add_node
(
7
,
**
{
"type"
:
"var"
})
k
=
self
.
graph
.
add_node
(
8
,
**
{
"type"
:
"var"
})
v
=
self
.
graph
.
add_node
(
9
,
**
{
"type"
:
"var"
})
q_out
=
self
.
graph
.
add_edge
(
7
,
4
,
**
{
"output_name"
:
"Out"
})
k_out
=
self
.
graph
.
add_edge
(
8
,
5
,
**
{
"output_name"
:
"Out"
})
v_out
=
self
.
graph
.
add_edge
(
9
,
6
,
**
{
"output_name"
:
"Out"
})
# Pattern
self
.
graph
.
attrs
[
"shard_tensor"
]
=
[
(
1
,
2
,
3
),
[[
-
1
,
0
],
[
-
1
,
1
]],
]
# 2-tuple such as (tensor_id, patterns)
class
OperatorGroupUtil
:
common_starts
=
[
"layer_norm"
,
"matmul_v2"
,
"matmul"
]
...
...
python/paddle/fluid/tests/unittests/auto_parallel/CMakeLists.txt
浏览文件 @
174726fc
...
...
@@ -119,5 +119,5 @@ if(WITH_DISTRIBUTE AND WITH_GPU)
py_test_modules
(
test_engine_api_error MODULES test_engine_api_error
)
py_test_modules
(
test_fp16_assign MODULES test_fp16_assign
)
py_test_modules
(
test_group_operators MODULES test_group_operators
)
py_test_modules
(
test_pattern MODULES test_pattern
)
endif
()
python/paddle/fluid/tests/unittests/auto_parallel/test_pattern.py
0 → 100644
浏览文件 @
174726fc
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
sys
import
unittest
import
numpy
as
np
import
paddle
import
paddle.static
as
static
sys
.
path
.
append
(
".."
)
import
auto_parallel_gpt_model
as
modeling
from
auto_parallel_gpt_model
import
(
GPTModel
,
GPTForPretraining
,
GPTPretrainingCriterion
,
)
def
get_gpt_model
(
train_program
,
start_program
,
place
,
batch_size
,
sequence_len
,
vocab_size
):
with
static
.
program_guard
(
train_program
,
start_program
):
tokens
=
paddle
.
static
.
data
(
name
=
"tokens"
,
shape
=
[
batch_size
,
sequence_len
],
dtype
=
'int64'
)
position_ids
=
paddle
.
static
.
data
(
name
=
"position_ids"
,
shape
=
[
batch_size
,
sequence_len
],
dtype
=
'int64'
)
attention_mask
=
paddle
.
static
.
data
(
name
=
"attention_mask"
,
shape
=
[
batch_size
,
1
,
sequence_len
,
sequence_len
],
dtype
=
'float32'
,
)
labels
=
paddle
.
static
.
data
(
name
=
"labels"
,
shape
=
[
batch_size
,
sequence_len
],
dtype
=
'int64'
)
loss_mask
=
paddle
.
static
.
data
(
name
=
"loss_mask"
,
shape
=
[
batch_size
,
sequence_len
],
dtype
=
'float32'
)
gpt
=
GPTModel
(
vocab_size
=
1000
,
hidden_size
=
64
,
num_hidden_layers
=
2
,
num_attention_heads
=
8
,
intermediate_size
=
256
,
hidden_act
=
"gelu"
,
hidden_dropout_prob
=
0.0
,
attention_probs_dropout_prob
=
0.0
,
max_position_embeddings
=
1024
,
type_vocab_size
=
1
,
initializer_range
=
0.02
,
pad_token_id
=
0
,
eos_token_id
=
7
,
bos_token_id
=
0
,
eol_token_id
=
3
,
)
model
=
GPTForPretraining
(
gpt
,
vocab_size
=
1000
,
hidden_size
=
64
,
initializer_range
=
0.02
)
preds
=
model
(
tokens
,
position_ids
,
attention_mask
)
criterion
=
GPTPretrainingCriterion
()
loss
=
criterion
(
preds
,
labels
,
loss_mask
)
def
gen_data
():
np
.
random
.
seed
(
2021
)
tokens
=
[]
position_ids
=
[]
attention_mask
=
[]
labels
=
[]
loss_mask
=
[]
for
_
in
range
(
batch_size
):
tokens
.
append
(
np
.
random
.
randint
(
vocab_size
,
size
=
sequence_len
))
position_ids
.
append
(
np
.
arange
(
sequence_len
))
attention_mask
.
append
([
np
.
tril
(
np
.
ones
(
sequence_len
))])
labels
.
append
(
np
.
random
.
randint
(
vocab_size
,
size
=
sequence_len
))
loss_mask
.
append
(
np
.
ones
(
sequence_len
))
return
tokens
,
position_ids
,
attention_mask
,
labels
,
loss_mask
return
train_program
,
start_program
,
loss
,
gen_data
class
TestGroupOperators
(
unittest
.
TestCase
):
def
test_gpt
(
self
):
modeling
.
init_global
()
train_program
=
static
.
Program
()
start_program
=
static
.
Program
()
place
=
paddle
.
set_device
(
"gpu"
)
batch_size
=
8
sequence_len
=
512
vocab_size
=
1000
train_program
,
start_program
,
loss
,
gen_data
=
get_gpt_model
(
train_program
,
start_program
,
place
,
batch_size
,
sequence_len
,
vocab_size
,
)
from
paddle.distributed.auto_parallel.tuner.rule_based_tuner
import
(
RuleBasedTuner
,
convert_to_graph
,
_PATTERNS
,
)
from
paddle.distributed.auto_parallel.dist_context
import
(
DistributedContext
,
)
dist_context
=
DistributedContext
()
tuner
=
RuleBasedTuner
(
dist_context
)
layers
=
tuner
.
group_operators
(
train_program
.
global_block
().
ops
)
layer
=
layers
[
0
]
graph
=
convert_to_graph
(
layer
,
train_program
.
global_block
())
print
(
graph
)
print
(
"qkv: "
,
_PATTERNS
[
"qkv"
].
graph
)
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录