matmul_op.cc 35.1 KB
Newer Older
1
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserved.
M
Markus Kliegl 已提交
2 3 4 5 6 7 8 9 10 11
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

12
#include <algorithm>
Y
Yu Yang 已提交
13
#include <utility>
14
#include <vector>
15

Y
Yu Yang 已提交
16
#include "paddle/fluid/framework/op_registry.h"
17
#include "paddle/fluid/framework/op_version_registry.h"
18
#include "paddle/phi/kernels/funcs/blas/blas.h"
19 20 21
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
M
Markus Kliegl 已提交
22 23 24

namespace paddle {
namespace operators {
25 26 27 28

/**
 * Printing shape information into a string is easy to use.
 */
29
inline static std::string DumpMatrixShape(
30
    const phi::funcs::MatDescriptor &desc) {
31 32 33 34 35 36
  std::stringstream buffer;
  buffer << "[" << desc.batch_size_ << ", " << desc.height_ << ", "
         << desc.width_ << "]";
  return buffer.str();
}

Y
Yu Yang 已提交
37 38 39 40
/**
 * Get row matrix shape from a vector shape. If the rank of x_dim > 1, the
 * original x_dim is returned.
 */
Y
yuyang18 已提交
41
static framework::DDim RowMatrixFromVector(const framework::DDim &x_dim) {
Y
Yu Yang 已提交
42 43 44
  if (x_dim.size() > 1) {
    return x_dim;
  }
45
  return phi::make_ddim({1, x_dim[0]});
Y
Yu Yang 已提交
46 47 48 49 50 51
}

/**
 * Get column matrix shape from a vector shape. If the ran of y_dim > 1, the
 * original y_dim is returned.
 */
Y
yuyang18 已提交
52
static framework::DDim ColumnMatrixFromVector(const framework::DDim &y_dim) {
Y
Yu Yang 已提交
53 54 55
  if (y_dim.size() > 1) {
    return y_dim;
  }
56
  return phi::make_ddim({y_dim[0], 1});
Y
Yu Yang 已提交
57 58 59 60 61
}

template <typename DeviceContext, typename T>
class MatMulKernel : public framework::OpKernel<T> {
 public:
Y
yuyang18 已提交
62
  void Compute(const framework::ExecutionContext &context) const override {
63
    auto &x = GET_DATA_SAFELY(
64
        context.Input<phi::DenseTensor>("X"), "Input", "X", "MatMul");
65
    auto &y = GET_DATA_SAFELY(
66 67
        context.Input<phi::DenseTensor>("Y"), "Input", "Y", "MatMul");
    auto *out = context.Output<phi::DenseTensor>("Out");
W
Wilber 已提交
68 69 70

    auto &dev_ctx = context.template device_context<DeviceContext>();
    dev_ctx.template Alloc<T>(out, out->numel() * sizeof(T));
Y
Yu Yang 已提交
71

72
    auto blas = phi::funcs::GetBlas<DeviceContext, T>(dev_ctx);
73
    auto mat_dim_a = phi::funcs::CreateMatrixDescriptor(
Y
Yu Yang 已提交
74
        RowMatrixFromVector(x.dims()), 0, context.Attr<bool>("transpose_X"));
75
    auto mat_dim_b = phi::funcs::CreateMatrixDescriptor(
Y
Yu Yang 已提交
76
        ColumnMatrixFromVector(y.dims()), 0, context.Attr<bool>("transpose_Y"));
S
sneaxiy 已提交
77
    auto scale = static_cast<T>(context.Attr<float>("alpha"));
78

79
    int head_number = 1;
80 81
#if defined(PADDLE_WITH_MKLML) && !defined(PADDLE_WITH_CUDA) && \
    !defined(PADDLE_WITH_HIP)
82 83 84 85 86 87 88 89 90 91 92 93
    head_number = context.Attr<int>("head_number");
#endif

    const auto &x_dims = x.dims();
    const auto &y_dims = y.dims();
    if (head_number <= 1 && x_dims.size() == 3 && y_dims.size() <= 2) {
      // the transpose_X must be false, if is true, the transpose cost much time
      if (!context.Attr<bool>("transpose_X")) {
        mat_dim_a.height_ *= mat_dim_a.batch_size_;
        mat_dim_a.batch_size_ = 0;
      }
    }
94 95
#if defined(PADDLE_WITH_MKLML) && !defined(PADDLE_WITH_CUDA) && \
    !defined(PADDLE_WITH_HIP)
96 97 98
    bool split_vertical_y = (mat_dim_a.width_ != mat_dim_b.height_);

    if (head_number > 1) {
99 100 101 102 103 104 105 106 107
      blas.MatMulWithHead(x,
                          mat_dim_a,
                          y,
                          mat_dim_b,
                          scale,
                          head_number,
                          out,
                          T(0),
                          split_vertical_y);
108 109
    } else {
      blas.MatMul(x, mat_dim_a, y, mat_dim_b, scale, out, T(0));
110 111
    }
#else
S
sneaxiy 已提交
112
    blas.MatMul(x, mat_dim_a, y, mat_dim_b, scale, out, T(0));
113
#endif
Y
Yu Yang 已提交
114 115 116 117 118
  }
};

// Reshape a rank-3 tensor from P x M x N to (P * M) x N.
// Identity op if the tensor is not of rank 3.
119
static phi::DenseTensor FoldInitDims(const phi::DenseTensor &input) {
Y
Yu Yang 已提交
120 121 122 123 124 125 126 127 128 129 130 131
  auto output = input;
  auto in_dims = input.dims();
  if (in_dims.size() == 3) {
    output.Resize({in_dims[0] * in_dims[1], in_dims[2]});
  }
  return output;
}

// Reshape a rank-3 tensor from P x M x N to M x (P * N).
// (Warning: This requires transposing data and writes into new memory.)
// Identity op if the tensor is not of rank 3.
template <typename DeviceContext, typename T>
132 133
static phi::DenseTensor FoldHeadAndLastDims(const DeviceContext &context,
                                            const phi::DenseTensor &input) {
Y
Yu Yang 已提交
134 135 136 137
  auto in_dims = input.dims();
  if (in_dims.size() != 3) {
    return input;
  }
138
  phi::DenseTensor output;
Y
Yu Yang 已提交
139 140 141
  output.Resize({in_dims[1], in_dims[0], in_dims[2]});
  output.mutable_data<T>(context.GetPlace());
  std::vector<int> axis = {1, 0, 2};
142
  phi::funcs::Transpose<DeviceContext, T, 3> trans;
Y
Yu Yang 已提交
143 144
  trans(context, input, &output, axis);
  output.Resize({in_dims[1], in_dims[0] * in_dims[2]});
M
Markus Kliegl 已提交
145

Y
Yu Yang 已提交
146 147 148 149 150 151 152 153 154 155
  return output;
}

/**
 * Reshape a tensor to 3-D or 2-D tensor by matrix descriptor.
 *
 * The shape would be [BatchSize, H, W] or [H, W].
 * If transposed, `H,W` will be swapped.
 */
static void ReshapeTensorIntoMatrixSequence(
156
    phi::DenseTensor *x, const phi::funcs::MatDescriptor &descriptor) {
Y
Yu Yang 已提交
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
  int64_t h, w;
  h = descriptor.height_;
  w = descriptor.width_;
  if (descriptor.trans_) {
    std::swap(w, h);
  }
  if (descriptor.batch_size_) {
    x->Resize({descriptor.batch_size_, h, w});
  } else {
    x->Resize({h, w});
  }
}

/**
 * Reshape the x,y,out tensor to 3-D or 2-D tensor by matrix descriptor
 * Out = matmul(x, y)
 *
 * This method will first calculate X,Y matrix sequence, and then calculate
 * the out shape.
 *
 * Assume X = [BatchSize, H1, W1], Y = [BatchSize, H2, W2]
 * The out = [BatchSize, H1, W2]
 *
 * If there is no batch size in `X` and `Y`, the out will be [H1, W2]
 * If any of `X` and `Y` has batch size BatchSize, the out will have the
 * BatchSize.
 */
184 185 186
static void ReshapeXYOutIntoMatrixSequence(phi::DenseTensor *x,
                                           phi::DenseTensor *y,
                                           phi::DenseTensor *out,
187
                                           bool trans_x,
Y
Yu Yang 已提交
188 189 190
                                           bool trans_y) {
  auto x_dim = RowMatrixFromVector(x->dims());
  auto y_dim = ColumnMatrixFromVector(y->dims());
191 192
  auto mat_dim_x = phi::funcs::CreateMatrixDescriptor(x_dim, 0, trans_x);
  auto mat_dim_y = phi::funcs::CreateMatrixDescriptor(y_dim, 0, trans_y);
Y
Yu Yang 已提交
193 194 195 196
  if (mat_dim_x.batch_size_ == 0 && mat_dim_y.batch_size_ == 0) {
    out->Resize({mat_dim_x.height_, mat_dim_y.width_});
  } else {
    out->Resize({std::max(mat_dim_x.batch_size_, mat_dim_y.batch_size_),
197 198
                 mat_dim_x.height_,
                 mat_dim_y.width_});
Y
Yu Yang 已提交
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
  }

  ReshapeTensorIntoMatrixSequence(x, mat_dim_x);
  ReshapeTensorIntoMatrixSequence(y, mat_dim_y);
}

// Using dimensional constraints on matrix multiplication, it is
// straight-forward to check the following table for when X and Y
// are both matrices.
//
// transpose_X | False    | True     | False    | True
// transpose_Y | False    | False    | True     | True
// -----------+----------+----------+----------+-----------
//        dX = | dOut Y^T | Y dOut^T | dOut Y   | Y^T dOut^T
//        dY = | X^T dOut | X dOut   | dOut^T X | dOut^T X^T
//
// When X is a vector of size K, we treat it instead as a matrix of shape
// (1, K). Similarly, when Y is a vector of size K, we treat it instead as
// a matrix of shape (K, 1).
//
// When X and Y are both 3-dimensional tensors, then the first dimension
// the batch dimension can be ignored and the exact same formulas apply
// as for two matrices.
//
// Finally, when, e.g., X is a 3-dimensional tensor but Y is a matrix, we end
// up with formulas like
//
//   dY_{ij} = \sum_{p, m} X_{pmi} dOut_{pmj}
//
// To handle this sort of scenario, we reshape X : P x M x K, dOut: P x M x N
// to X: (P * M) x K, dOut: (P * M) x N.
template <typename DeviceContext, typename T>
class MatMulGradKernel : public framework::OpKernel<T> {
 public:
Y
yuyang18 已提交
233
  void MatMul(const framework::ExecutionContext &context,
234
              const phi::DenseTensor &a,
235
              bool trans_a,
236
              const phi::DenseTensor &b,
237
              bool trans_b,
238
              phi::DenseTensor *out) const {
Y
Yu Yang 已提交
239
    out->mutable_data<T>(context.GetPlace());
240 241
    auto &dev_ctx = context.template device_context<DeviceContext>();
    auto blas = phi::funcs::GetBlas<DeviceContext, T>(dev_ctx);
242 243
    auto mat_dim_a = phi::funcs::CreateMatrixDescriptor(a.dims(), 0, trans_a);
    auto mat_dim_b = phi::funcs::CreateMatrixDescriptor(b.dims(), 0, trans_b);
244 245

    int head_number = 1;
246 247
#if defined(PADDLE_WITH_MKLML) && !defined(PADDLE_WITH_CUDA) && \
    !defined(PADDLE_WITH_HIP)
248 249 250
    if (context.HasAttr("head_number")) {
      head_number = context.Attr<int>("head_number");
    }
251 252 253 254 255 256 257 258 259
#endif

    if (head_number <= 1 && a.dims().size() == 3 && b.dims().size() <= 2) {
      // the transpose_X must be false, if is true, the transpose cost much time
      if (!trans_a) {
        mat_dim_a.height_ *= mat_dim_a.batch_size_;
        mat_dim_a.batch_size_ = 0;
      }
    }
260 261 262 263 264 265 266
    blas.MatMul(a,
                mat_dim_a,
                b,
                mat_dim_b,
                static_cast<T>(context.Attr<float>("alpha")),
                out,
                T(0));
Y
Yu Yang 已提交
267 268
  }

Y
yuyang18 已提交
269
  void CalcInputGrad(const framework::ExecutionContext &context,
270
                     const phi::DenseTensor &a,
271 272
                     bool trans_a,
                     bool is_fold_init_dims_a,
273
                     const phi::DenseTensor &b,
274 275
                     bool trans_b,
                     bool is_fold_init_dims_b,
276
                     phi::DenseTensor *out) const {
Y
Yu Yang 已提交
277 278 279 280 281 282
    if (out == nullptr) return;
    bool need_combine = (a.dims().size() == 3 || b.dims().size() == 3) &&
                        out->dims().size() == 2;
    if (!need_combine) {
      MatMul(context, a, trans_a, b, trans_b, out);
    } else {
Y
yuyang18 已提交
283
      auto &ctx = context.template device_context<DeviceContext>();
284 285 286 287 288 289 290
      MatMul(
          context,
          is_fold_init_dims_a ? FoldInitDims(a)
                              : FoldHeadAndLastDims<DeviceContext, T>(ctx, a),
          trans_a,
          is_fold_init_dims_b ? FoldInitDims(b)
                              : FoldHeadAndLastDims<DeviceContext, T>(ctx, b),
291 292
          trans_b,
          out);
Y
Yu Yang 已提交
293 294 295
    }
  }

Y
yuyang18 已提交
296
  void Compute(const framework::ExecutionContext &context) const override {
297 298 299 300 301
    auto x = *context.Input<phi::DenseTensor>("X");
    auto y = *context.Input<phi::DenseTensor>("Y");
    auto dout = *context.Input<phi::DenseTensor>(framework::GradVarName("Out"));
    auto *dx = context.Output<phi::DenseTensor>(framework::GradVarName("X"));
    auto *dy = context.Output<phi::DenseTensor>(framework::GradVarName("Y"));
Y
Yu Yang 已提交
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
    bool transpose_x = context.Attr<bool>("transpose_X");
    bool transpose_y = context.Attr<bool>("transpose_Y");

    ReshapeXYOutIntoMatrixSequence(&x, &y, &dout, transpose_x, transpose_y);
    framework::DDim dx_dims;
    if (dx) {
      dx_dims = dx->dims();
      if (dx_dims != x.dims()) {
        dx->Resize(x.dims());
      }
    }

    framework::DDim dy_dims;
    if (dy) {
      dy_dims = dy->dims();
      if (dy_dims != y.dims()) {
        dy->Resize(y.dims());
      }
    }

    if (transpose_x && transpose_y) {
      CalcInputGrad(context, y, true, true, dout, true, false, dx);
      CalcInputGrad(context, dout, true, true, x, true, false, dy);
    } else if (transpose_x) {
      CalcInputGrad(context, y, false, false, dout, true, false, dx);
      CalcInputGrad(context, x, false, false, dout, false, true, dy);
    } else if (transpose_y) {
      CalcInputGrad(context, dout, false, false, y, false, true, dx);
      CalcInputGrad(context, dout, true, true, x, false, true, dy);
    } else {
      CalcInputGrad(context, dout, false, false, y, true, false, dx);
      CalcInputGrad(context, x, true, true, dout, false, true, dy);
    }

    if (dx) {
      if (dx_dims != x.dims()) {
        dx->Resize(dx_dims);
      }
    }
    if (dy) {
      if (dy_dims != y.dims()) {
        dy->Resize(dy_dims);
      }
    }
  }
};
M
Markus Kliegl 已提交
348

349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
framework::DDim GetDimForInput(const framework::InferShapeContext &ctx,
                               std::string input_name) {
  auto shape = ctx.Attrs().Get<std::vector<int>>("fused_reshape_" + input_name);
  auto axis =
      ctx.Attrs().Get<std::vector<int>>("fused_transpose_" + input_name);
  auto dim = ctx.GetInputDim(input_name);

  PADDLE_ENFORCE_GT(dim.size(),
                    0,
                    platform::errors::InvalidArgument(
                        "The Input(%s) has not been initialized properly. The "
                        "shape of Input(%s) = [%s].",
                        dim));

  if (!shape.empty() && !axis.empty()) {
    dim = dim.reshape(shape).transpose(axis);
  }
  return dim;
}

369 370 371 372
template <typename DeviceContext, typename T>
class MatMulDoubleGradKernel : public framework::OpKernel<T> {
 public:
  void MatMul(const framework::ExecutionContext &context,
373
              const phi::DenseTensor &a,
374
              bool trans_a,
375
              const phi::DenseTensor &b,
376 377
              bool trans_b,
              bool flag,
378
              phi::DenseTensor *out) const {
379
    out->mutable_data<T>(context.GetPlace());
380 381
    auto &dev_ctx = context.template device_context<DeviceContext>();
    auto blas = phi::funcs::GetBlas<DeviceContext, T>(dev_ctx);
382 383
    auto mat_dim_a = phi::funcs::CreateMatrixDescriptor(a.dims(), 0, trans_a);
    auto mat_dim_b = phi::funcs::CreateMatrixDescriptor(b.dims(), 0, trans_b);
384 385

    int head_number = 1;
386 387
#if defined(PADDLE_WITH_MKLML) && !defined(PADDLE_WITH_CUDA) && \
    !defined(PADDLE_WITH_HIP)
388 389 390 391 392 393 394 395 396 397
    head_number = context.Attr<int>("head_number");
#endif

    if (head_number <= 1 && a.dims().size() == 3 && b.dims().size() <= 2) {
      // the transpose_X must be false, if is true, the transpose cost much time
      if (!trans_a) {
        mat_dim_a.height_ *= mat_dim_a.batch_size_;
        mat_dim_a.batch_size_ = 0;
      }
    }
398 399 400 401 402 403
    blas.MatMul(a,
                mat_dim_a,
                b,
                mat_dim_b,
                static_cast<T>(context.Attr<float>("alpha")),
                out,
404 405 406 407
                static_cast<T>(flag));
  }

  void CalcInputGrad(const framework::ExecutionContext &context,
408
                     const phi::DenseTensor &a,
409 410
                     bool trans_a,
                     bool is_fold_init_dims_a,
411
                     const phi::DenseTensor &b,
412 413 414
                     bool trans_b,
                     bool is_fold_init_dims_b,
                     bool flag,
415
                     phi::DenseTensor *out) const {
416 417 418 419 420 421 422
    if (out == nullptr) return;
    bool need_combine = (a.dims().size() == 3 || b.dims().size() == 3) &&
                        out->dims().size() == 2;
    if (!need_combine) {
      MatMul(context, a, trans_a, b, trans_b, flag, out);
    } else {
      auto &ctx = context.template device_context<DeviceContext>();
423 424 425 426 427 428 429
      MatMul(
          context,
          is_fold_init_dims_a ? FoldInitDims(a)
                              : FoldHeadAndLastDims<DeviceContext, T>(ctx, a),
          trans_a,
          is_fold_init_dims_b ? FoldInitDims(b)
                              : FoldHeadAndLastDims<DeviceContext, T>(ctx, b),
430 431 432
          trans_b,
          flag,
          out);
433 434 435 436
    }
  }

  void Compute(const framework::ExecutionContext &context) const override {
437 438
    auto x = *context.Input<phi::DenseTensor>("X");
    auto y = *context.Input<phi::DenseTensor>("Y");
439 440 441
    auto dout = *context.Input<phi::DenseTensor>("DOut");
    auto *ddx = context.Input<phi::DenseTensor>("DDX");
    auto *ddy = context.Input<phi::DenseTensor>("DDY");
442

443 444 445
    auto *dx = context.Output<phi::DenseTensor>("DX");
    auto *dy = context.Output<phi::DenseTensor>("DY");
    auto *ddout = context.Output<phi::DenseTensor>("DDOut");
446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484

    bool transpose_x = context.Attr<bool>("transpose_X");
    bool transpose_y = context.Attr<bool>("transpose_Y");

    ReshapeXYOutIntoMatrixSequence(&x, &y, &dout, transpose_x, transpose_y);

    framework::DDim dx_dims;
    if (dx) {
      dx_dims = dx->dims();
      if (dx_dims != x.dims()) {
        dx->Resize(x.dims());
      }
    }

    framework::DDim dy_dims;
    if (dy) {
      dy_dims = dy->dims();
      if (dy_dims != y.dims()) {
        dy->Resize(y.dims());
      }
    }

    framework::DDim ddout_dims;
    if (ddout) {
      ddout_dims = ddout->dims();
      if (ddout_dims != dout.dims()) {
        ddout->Resize(dout.dims());
      }
    }

    bool ddout_flag = false;
    if (ddx) {
      auto ddx_mat = *ddx;
      if (ddx_mat.dims() != x.dims()) {
        ddx_mat.Resize(x.dims());
      }
      if (dy) {
        if (transpose_x && transpose_y) {
          // dy = dout' * ddx'
485 486
          CalcInputGrad(
              context, dout, true, true, ddx_mat, true, false, false, dy);
487 488
        } else if (transpose_x) {
          // dy = ddx * dout
489 490
          CalcInputGrad(
              context, ddx_mat, false, false, dout, false, true, false, dy);
491 492
        } else if (transpose_y) {
          // dy = dout' * ddx
493 494
          CalcInputGrad(
              context, dout, true, true, ddx_mat, false, true, false, dy);
495 496
        } else {
          // dy = ddx' * dout
497 498
          CalcInputGrad(
              context, ddx_mat, true, true, dout, false, true, false, dy);
499 500 501 502
        }
      }

      if (ddout) {
503 504 505 506 507 508 509 510 511
        CalcInputGrad(context,
                      ddx_mat,
                      transpose_x,
                      true,
                      y,
                      transpose_y,
                      false,
                      ddout_flag,
                      ddout);
512 513 514 515 516 517 518 519 520 521 522 523
        ddout_flag = true;
      }
    }

    if (ddy) {
      auto ddy_mat = *ddy;
      if (ddy_mat.dims() != y.dims()) {
        ddy_mat.Resize(y.dims());
      }
      if (dx) {
        if (transpose_x && transpose_y) {
          // dx = ddy' * dout'
524 525
          CalcInputGrad(
              context, ddy_mat, true, true, dout, true, false, false, dx);
526 527
        } else if (transpose_x) {
          // dx = ddy * dout'
528 529
          CalcInputGrad(
              context, ddy_mat, false, false, dout, true, false, false, dx);
530 531
        } else if (transpose_y) {
          // dx = dout * ddy
532 533
          CalcInputGrad(
              context, dout, false, false, ddy_mat, false, true, false, dx);
534 535
        } else {
          // dx = dout * ddy'
536 537
          CalcInputGrad(
              context, dout, false, false, ddy_mat, true, false, false, dx);
538 539 540 541
        }
      }

      if (ddout) {
542 543 544 545 546 547 548 549 550
        CalcInputGrad(context,
                      x,
                      transpose_x,
                      true,
                      ddy_mat,
                      transpose_y,
                      false,
                      ddout_flag,
                      ddout);
551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
      }
    }

    if (dx) {
      if (dx_dims != x.dims()) {
        dx->Resize(dx_dims);
      }
    }

    if (dy) {
      if (dy_dims != y.dims()) {
        dy->Resize(dy_dims);
      }
    }

    if (ddout) {
      if (ddout_dims != dout.dims()) {
        ddout->Resize(ddout_dims);
      }
    }
  }
};

M
Markus Kliegl 已提交
574 575 576 577 578
class MatMulOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
Y
yuyang18 已提交
579
  void InferShape(framework::InferShapeContext *context) const override {
580 581 582
    OP_INOUT_CHECK(context->HasInput("X"), "Input", "X", "matmul");
    OP_INOUT_CHECK(context->HasInput("Y"), "Input", "Y", "matmul");
    OP_INOUT_CHECK(context->HasOutput("Out"), "Output", "Out", "matmul");
M
Markus Kliegl 已提交
583

584 585
    auto dim_x = GetDimForInput(*context, "X");
    auto dim_y = GetDimForInput(*context, "Y");
586 587

#ifdef PADDLE_WITH_MKLDNN
588 589
    // For NHWC execution output shape needs to be
    // computed like instead x*y we are to do y*x
590 591
    bool channelwise_onednn =
        context->IsRunMKLDNNKernel() &&
592
        (phi::OneDNNContext::tls().get_cur_paddle_data_layout() ==
593
         phi::DataLayout::kNHWC);
594 595 596 597 598
    if (channelwise_onednn) {
      std::swap(dim_x, dim_y);
    }
#endif

599
    auto mat_dim_x = phi::funcs::CreateMatrixDescriptor(
600 601
        RowMatrixFromVector(dim_x),
        0,
602
        context->Attrs().Get<bool>("transpose_X"));
603
    auto mat_dim_y = phi::funcs::CreateMatrixDescriptor(
604 605
        ColumnMatrixFromVector(dim_y),
        0,
606
        context->Attrs().Get<bool>("transpose_Y"));
C
chengduoZH 已提交
607

608 609 610 611 612 613 614
    if (mat_dim_x.width_ == -1) {
      mat_dim_x.width_ = mat_dim_y.height_;
    }
    if (mat_dim_y.height_ == -1) {
      mat_dim_y.height_ = mat_dim_x.width_;
    }

P
phlrain 已提交
615
    if (context->IsRuntime()) {
616
      PADDLE_ENFORCE_EQ(
617 618
          mat_dim_x.batch_size_ == mat_dim_y.batch_size_ ||
              mat_dim_x.batch_size_ == 0 || mat_dim_y.batch_size_ == 0,
619 620 621 622 623 624 625
          true,
          platform::errors::InvalidArgument(
              "The batch size of the two matrices should be equal, or "
              "at least one is zero.\n"
              "But received X's shape: %s, Y's shape: %s.",
              DumpMatrixShape(mat_dim_x).c_str(),
              DumpMatrixShape(mat_dim_y).c_str()));
P
phlrain 已提交
626
    }
627
    int64_t dim_out_y = mat_dim_y.width_;
628 629
#if defined(PADDLE_WITH_MKLML) && !defined(PADDLE_WITH_CUDA) && \
    !defined(PADDLE_WITH_HIP)
630
    int head_number = context->Attrs().Get<int>("head_number");
631
    bool split_vertical_y = (mat_dim_x.width_ != mat_dim_y.height_);
632 633
    if (context->IsRuntime()) {
      PADDLE_ENFORCE_LE(
634 635
          head_number,
          mat_dim_x.width_,
636 637 638 639
          platform::errors::InvalidArgument(
              "Unsatisfied mkl acceleration library requirements: "
              "The number of heads "
              "(%d) must be equal to X's width. But received X's shape: %s.",
640 641
              head_number,
              DumpMatrixShape(mat_dim_x).c_str()));
642 643 644 645

      if (!split_vertical_y && head_number > 0) {
        dim_out_y = head_number * mat_dim_y.width_;
      }
646
    }
647
#else
648 649
    PADDLE_ENFORCE_EQ(mat_dim_x.width_,
                      mat_dim_y.height_,
650 651
                      platform::errors::InvalidArgument(
                          "Input X's width should be equal to the Y's height, "
652
                          "but received X's shape: [%s], "
653
                          "Y's shape: [%s].",
654 655
                          dim_x,
                          dim_y));
656 657
#endif

658
    std::vector<int64_t> dim_out;
Y
Yu Yang 已提交
659
    if (mat_dim_x.batch_size_ != 0) {
660
      dim_out = phi::vectorize(dim_x);
Y
Yu Yang 已提交
661
      dim_out[dim_out.size() - 2] = mat_dim_x.height_;
662
      dim_out[dim_out.size() - 1] = dim_out_y;
Y
Yu Yang 已提交
663
    } else if (mat_dim_y.batch_size_ != 0) {
664
      dim_out = phi::vectorize(dim_y);
Y
Yu Yang 已提交
665
      dim_out[dim_out.size() - 2] = mat_dim_x.height_;
666
      dim_out[dim_out.size() - 1] = dim_out_y;
Y
Yu Yang 已提交
667
    } else {
668
      dim_out = {mat_dim_x.height_, dim_out_y};
M
Markus Kliegl 已提交
669 670
    }

Y
Yu Yang 已提交
671 672 673
    if (dim_x.size() == 1 && dim_out[dim_out.size() - 2] == 1) {
      std::swap(dim_out[dim_out.size() - 2], dim_out[dim_out.size() - 1]);
      dim_out.resize(dim_out.size() - 1);
M
Markus Kliegl 已提交
674 675
    }

Y
Yu Yang 已提交
676 677
    if (dim_y.size() == 1 && dim_out[dim_out.size() - 1] == 1) {
      dim_out.resize(dim_out.size() - 1);
M
Markus Kliegl 已提交
678 679
    }

Y
Yu Yang 已提交
680 681
    if (dim_out.empty()) {
      dim_out = {1};
M
Markus Kliegl 已提交
682
    }
683

684
    framework::DDim ddim_out = phi::make_ddim(dim_out);
685

686 687 688 689 690 691 692 693
#ifdef PADDLE_WITH_MKLDNN
    auto shape = context->Attrs().Get<std::vector<int>>("fused_reshape_Out");
    auto axis = context->Attrs().Get<std::vector<int>>("fused_transpose_Out");

    if (!shape.empty() && !axis.empty()) {
      ddim_out = ddim_out.transpose(axis).reshape(shape);
    }
#endif
694 695
    context->SetOutputDim("Out", ddim_out);
    context->ShareLoD("X", "Out");
M
Markus Kliegl 已提交
696
  }
697

698
  phi::KernelKey GetExpectedKernelType(
699
      const framework::ExecutionContext &ctx) const override {
700 701
    auto input_data_type =
        OperatorWithKernel::IndicateOrPromoteVarDataTypes(ctx, "X", "Y");
702
    return phi::KernelKey(input_data_type, ctx.GetPlace());
703
  }
704

705
  phi::KernelKey GetKernelTypeForVar(
706
      const std::string &var_name,
707
      const phi::DenseTensor &tensor,
708 709
      const phi::KernelKey &expected_kernel_type) const override {
    if (framework::IsComplexType(expected_kernel_type.dtype())) {
710
      // only promote inputs’s types when contains complex input
711
      return phi::KernelKey(tensor.place(), tensor.layout(), tensor.dtype());
712
    } else {
713 714 715 716
#ifdef PADDLE_WITH_MKLDNN
      // When matmul is first oneDNN op in a chain (there was some non oneDNN op
      // previously)
      // then we also need to rotate shape NHWC -> NCWH
717
      if ((expected_kernel_type.layout() == phi::DataLayout::ONEDNN) &&
718
          (tensor.layout() != phi::DataLayout::ONEDNN) &&
719 720
          phi::OneDNNContext::tls().get_cur_paddle_data_layout() ==
              phi::DataLayout::kNHWC) {
721 722 723
        return phi::KernelKey(tensor.place(),
                              phi::DataLayout::kNHWC,
                              expected_kernel_type.dtype());
724 725
      }
#endif
726 727
      return phi::KernelKey(
          tensor.place(), tensor.layout(), expected_kernel_type.dtype());
728 729
    }
  }
M
Markus Kliegl 已提交
730 731 732 733
};

class MatMulOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
734
  void Make() override {
M
Markus Kliegl 已提交
735 736 737 738 739 740 741 742 743 744 745
    AddInput("X", "The first input of MatMul op");
    AddInput("Y", "The second input of MatMul op");
    AddOutput("Out", "The output of MatMul op");
    AddAttr<bool>("transpose_X",
                  R"DOC(If true, use the transpose of `X`.
        )DOC")
        .SetDefault(false);
    AddAttr<bool>("transpose_Y",
                  R"DOC(If true, use the transpose of `Y`.
        )DOC")
        .SetDefault(false);
S
sneaxiy 已提交
746
    AddAttr<float>("alpha", "The scale of Out").SetDefault(1.0f);
747 748 749
    AddAttr<bool>(
        "use_mkldnn",
        "(bool, default false) Indicates if MKL-DNN kernel will be used")
750 751
        .SetDefault(false)
        .AsExtra();
752 753
    AddAttr<std::vector<int>>("fused_reshape_X",
                              R"DOC(Shape of fused reshape of `X` input.)DOC")
754 755
        .SetDefault({})
        .AsExtra();
756 757
    AddAttr<std::vector<int>>("fused_reshape_Y",
                              R"DOC(Shape of fused reshape of `Y` input.)DOC")
758 759
        .SetDefault({})
        .AsExtra();
760 761
    AddAttr<std::vector<int>>("fused_transpose_X",
                              R"DOC(Axis of fused transpose of `X` input.)DOC")
762 763
        .SetDefault({})
        .AsExtra();
764 765
    AddAttr<std::vector<int>>("fused_transpose_Y",
                              R"DOC(Axis of fused transpose of `Y` input.)DOC")
766 767
        .SetDefault({})
        .AsExtra();
768 769 770
    AddAttr<std::vector<int>>(
        "fused_reshape_Out",
        R"DOC(When MKLDNN MatMul_transpose_reshape fuse activated, "
H
HongyuJia 已提交
771
              "it's a shape attribute of fused reshape for `Out` output.)DOC")
772 773
        .SetDefault({})
        .AsExtra();
774 775 776
    AddAttr<std::vector<int>>(
        "fused_transpose_Out",
        R"DOC(When MKLDNN MatMul_transpose_reshape fuse activated, "
H
HongyuJia 已提交
777
              "it's a axis attribute of fused transpose for `Out` output.)DOC")
778 779
        .SetDefault({})
        .AsExtra();
780 781 782 783
    AddAttr<bool>(
        "use_quantizer",
        "(bool, default false) "
        "This parameter is no longer used. Use 'mkldnn_data_type' instead.")
784 785
        .SetDefault(false)
        .AsExtra();
786 787 788 789
    AddAttr<std::string>(
        "mkldnn_data_type",
        "(string, default \"float32\"). Data type of mkldnn kernel")
        .SetDefault("float32")
790 791
        .InEnum({"float32", "int8", "bfloat16"})
        .AsExtra();
792
    /* int8 parameters */
793 794
    AddAttr<float>("Scale_x",
                   "(float, default 1.0f), The quantize scale of X tensor")
795 796
        .SetDefault(1.0f)
        .AsExtra();
797 798
    AddAttr<float>("Scale_y",
                   "(float, default 1.0f), The quantize scale of Y tensor")
799 800
        .SetDefault(1.0f)
        .AsExtra();
801 802
    AddAttr<float>("Scale_out",
                   "(float, default 1.0f), The quantize scale of output data")
803 804
        .SetDefault(1.0f)
        .AsExtra();
805 806 807
    AddAttr<bool>("force_fp32_output",
                  "(bool, default false) Force INT8 kernel output FP32, only "
                  "used in MKL-DNN INT8")
808 809
        .SetDefault(false)
        .AsExtra();
810

811 812
#if defined(PADDLE_WITH_MKLML) && !defined(PADDLE_WITH_CUDA) && \
    !defined(PADDLE_WITH_HIP)
813 814 815
    AddAttr<int>("head_number", "The number of heads of the matrix")
        .SetDefault(1);
#endif
M
Markus Kliegl 已提交
816
    AddComment(R"DOC(
K
kexinzhao 已提交
817 818
MatMul Operator.
This operator is used to perform (batched) matrix multiplication
M
Markus Kliegl 已提交
819 820 821 822 823 824 825 826 827 828 829 830
over the last two dimensions of the input tensors `X` and `Y`.
If a transpose flag is specified, the last two dimensions of the
tensor are transposed. If the tensor is rank-1 of shape [D], then
for `X` it is treated as [1, D] in nontransposed form and as [D, 1]
in transposed form, whereas for `Y` it is the opposite: It is treated
as [D, 1] in nontransposed form and as [1, D] in transposed form.
Examples without transpose:
- X: [K], Y: [K] => Out: [1]
- X: [K], Y: [K, N] => Out: [N]
- X: [B, M, K], Y: [K] => Out: [B, M]
- X: [M, K], Y: [B, K, N] => Out: [B, M, N]
- X: [B, M, K], Y: [B, K, N] => Out: [B, M, N]
C
chengduoZH 已提交
831
- X: [B, ..., M, K], Y: [B, ..., K, N] => Out: [B, ..., M, N]
832 833
Example of matrix multiplication with head_number of H
- X: [B, M, K], Y: [B, K, N] => Out: [B, M, H * N]
M
Markus Kliegl 已提交
834 835
The behavior is designed to be similar to the `numpy.matmul` function.
The differences are:
C
chengduoZH 已提交
836 837
- When the rank of the input data is less than or equal to 3, it
  is similar to the `numpy.matmul` function.
C
chengduoZH 已提交
838
- When the rank of the input is greater than 3, the rank of X and
C
chengduoZH 已提交
839
  Y must be equal, and the first `rank - 2` dimensions must be equal.
M
Markus Kliegl 已提交
840
- We add `transpose_X` and `transpose_Y` flags.
841 842 843
- We add `head_number` attribute, which is used to multiple two matrixes head
  by head, and eventually concatenates the output of several (head_number)
  small matrixes multiplication.
M
Markus Kliegl 已提交
844
Both the input `X` and `Y` can carry the LoD (Level of Details) information,
K
kexinzhao 已提交
845
or not. But the output only shares the LoD information with input `X`.
M
Markus Kliegl 已提交
846 847 848 849 850 851 852 853 854
)DOC");
  }
};

class MatMulOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
Y
yuyang18 已提交
855
  void InferShape(framework::InferShapeContext *context) const override {
856 857
    OP_INOUT_CHECK(context->HasInput("X"), "Input", "X", "matmul");
    OP_INOUT_CHECK(context->HasInput("Y"), "Input", "Y", "matmul");
858 859 860 861
    OP_INOUT_CHECK(context->HasInput(framework::GradVarName("Out")),
                   "Input",
                   "Out@GRAD",
                   "matmul");
M
Markus Kliegl 已提交
862 863 864 865 866 867 868 869 870 871 872 873 874
    auto x_dims = context->GetInputDim("X");
    auto y_dims = context->GetInputDim("Y");

    auto x_grad_name = framework::GradVarName("X");
    auto y_grad_name = framework::GradVarName("Y");

    if (context->HasOutput(x_grad_name)) {
      context->SetOutputDim(x_grad_name, x_dims);
    }
    if (context->HasOutput(y_grad_name)) {
      context->SetOutputDim(y_grad_name, y_dims);
    }
  }
875

876
  phi::KernelKey GetExpectedKernelType(
877 878 879
      const framework::ExecutionContext &ctx) const override {
    auto input_data_type =
        OperatorWithKernel::IndicateOrPromoteVarDataTypes(ctx, "X", "Y");
880
    return phi::KernelKey(input_data_type, ctx.GetPlace());
881
  }
M
Markus Kliegl 已提交
882 883
};

H
hong 已提交
884 885
template <typename T>
class MatMulOpGradMaker : public framework::SingleGradOpMaker<T> {
Y
Yu Yang 已提交
886
 public:
H
hong 已提交
887
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
Y
Yu Yang 已提交
888 889

 protected:
890
  void Apply(GradOpPtr<T> retv) const override {
Y
Yu Yang 已提交
891
    retv->SetType("matmul_grad");
H
hong 已提交
892 893 894 895 896 897
    retv->SetInput("X", this->Input("X"));
    retv->SetInput("Y", this->Input("Y"));
    retv->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    retv->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    retv->SetOutput(framework::GradVarName("Y"), this->InputGrad("Y"));
    retv->SetAttrMap(this->Attrs());
Y
Yu Yang 已提交
898 899
  }
};
900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954

class MatMulOpDoubleGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext *context) const override {
    OP_INOUT_CHECK(context->HasInput("X"), "Input", "X", "matmul");
    OP_INOUT_CHECK(context->HasInput("Y"), "Input", "Y", "matmul");
    OP_INOUT_CHECK(context->HasInput("DOut"), "Input", "DOut", "matmul");

    if (context->HasOutput("DX") && context->HasInput("DDY")) {
      context->ShareDim("X", "DX");
    }

    if (context->HasOutput("DY") && context->HasInput("DDX")) {
      context->ShareDim("Y", "DY");
    }

    if (context->HasOutput("DDOut") &&
        (context->HasInput("DDY") || context->HasInput("DDX"))) {
      context->ShareDim("DOut", "DDOut");
    }
  }
};

template <typename T>
class MatMulOpDoubleGradMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> retv) const override {
    retv->SetType("matmul_grad_grad");
    retv->SetInput("X", this->Input("X"));
    retv->SetInput("Y", this->Input("Y"));
    retv->SetInput("DOut", this->Input(framework::GradVarName("Out")));
    retv->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    retv->SetInput("DDY", this->OutputGrad(framework::GradVarName("Y")));

    auto ddx = this->OutputGrad(framework::GradVarName("X"));
    auto ddy = this->OutputGrad(framework::GradVarName("Y"));

    if (!ddx.empty() || !ddy.empty()) {
      retv->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
    }
    retv->SetOutput(
        "DX", ddy.empty() ? this->EmptyInputGrad() : this->InputGrad("X"));
    retv->SetOutput(
        "DY", ddx.empty() ? this->EmptyInputGrad() : this->InputGrad("Y"));

    retv->SetAttrMap(this->Attrs());
  }
};

M
Markus Kliegl 已提交
955 956 957 958
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
959 960 961
REGISTER_OPERATOR(matmul,
                  ops::MatMulOp,
                  ops::MatMulOpMaker,
H
hong 已提交
962 963
                  ops::MatMulOpGradMaker<paddle::framework::OpDesc>,
                  ops::MatMulOpGradMaker<paddle::imperative::OpBase>);
964 965
REGISTER_OPERATOR(matmul_grad,
                  ops::MatMulOpGrad,
966 967 968
                  ops::MatMulOpDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::MatMulOpDoubleGradMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(matmul_grad_grad, ops::MatMulOpDoubleGrad);
L
Leo Chen 已提交
969 970 971 972 973 974 975 976 977 978
REGISTER_OP_CPU_KERNEL(matmul,
                       ops::MatMulKernel<phi::CPUContext, float>,
                       ops::MatMulKernel<phi::CPUContext, double>);
REGISTER_OP_CPU_KERNEL(matmul_grad,
                       ops::MatMulGradKernel<phi::CPUContext, float>,
                       ops::MatMulGradKernel<phi::CPUContext, double>);

REGISTER_OP_CPU_KERNEL(matmul_grad_grad,
                       ops::MatMulDoubleGradKernel<phi::CPUContext, float>,
                       ops::MatMulDoubleGradKernel<phi::CPUContext, double>);
979

980
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
Y
Yu Yang 已提交
981
REGISTER_OP_CUDA_KERNEL(
982
    matmul,
L
Leo Chen 已提交
983 984 985
    ops::MatMulKernel<phi::GPUContext, float>,
    ops::MatMulKernel<phi::GPUContext, double>,
    ops::MatMulKernel<phi::GPUContext, paddle::platform::float16>);
Y
Yu Yang 已提交
986 987
REGISTER_OP_CUDA_KERNEL(
    matmul_grad,
L
Leo Chen 已提交
988 989 990 991 992 993
    ops::MatMulGradKernel<phi::GPUContext, float>,
    ops::MatMulGradKernel<phi::GPUContext, double>,
    ops::MatMulGradKernel<phi::GPUContext, paddle::platform::float16>);
REGISTER_OP_CUDA_KERNEL(matmul_grad_grad,
                        ops::MatMulDoubleGradKernel<phi::GPUContext, float>,
                        ops::MatMulDoubleGradKernel<phi::GPUContext, double>);
Y
Yu Yang 已提交
994
#endif
995

996 997
REGISTER_OP_VERSION(matmul).AddCheckpoint(
    R"ROC(Register matmul for adding the attribute of
998
       fused_reshape_Y)ROC",
999 1000 1001 1002 1003 1004
    paddle::framework::compatible::OpVersionDesc().NewAttr(
        "fused_reshape_Y",
        "In order to support the function of fused the input Y "
        " and input X into the input X when "
        "using the operator of matmul, and get raw shape of input Y.",
        std::vector<int>{}));