matmul_op.cc 33.9 KB
Newer Older
1
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserved.
M
Markus Kliegl 已提交
2 3 4 5 6 7 8 9 10 11
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

12
#include <algorithm>
Y
Yu Yang 已提交
13
#include <utility>
14
#include <vector>
15

Y
Yu Yang 已提交
16
#include "paddle/fluid/framework/op_registry.h"
17
#include "paddle/fluid/framework/op_version_registry.h"
18
#include "paddle/phi/kernels/funcs/blas/blas.h"
19 20 21
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
M
Markus Kliegl 已提交
22 23 24

namespace paddle {
namespace operators {
25 26 27 28

/**
 * Printing shape information into a string is easy to use.
 */
29
inline static std::string DumpMatrixShape(
30
    const phi::funcs::MatDescriptor &desc) {
31 32 33 34 35 36
  std::stringstream buffer;
  buffer << "[" << desc.batch_size_ << ", " << desc.height_ << ", "
         << desc.width_ << "]";
  return buffer.str();
}

Y
Yu Yang 已提交
37 38 39 40
/**
 * Get row matrix shape from a vector shape. If the rank of x_dim > 1, the
 * original x_dim is returned.
 */
Y
yuyang18 已提交
41
static framework::DDim RowMatrixFromVector(const framework::DDim &x_dim) {
Y
Yu Yang 已提交
42 43 44
  if (x_dim.size() > 1) {
    return x_dim;
  }
45
  return phi::make_ddim({1, x_dim[0]});
Y
Yu Yang 已提交
46 47 48 49 50 51
}

/**
 * Get column matrix shape from a vector shape. If the ran of y_dim > 1, the
 * original y_dim is returned.
 */
Y
yuyang18 已提交
52
static framework::DDim ColumnMatrixFromVector(const framework::DDim &y_dim) {
Y
Yu Yang 已提交
53 54 55
  if (y_dim.size() > 1) {
    return y_dim;
  }
56
  return phi::make_ddim({y_dim[0], 1});
Y
Yu Yang 已提交
57 58 59 60 61
}

template <typename DeviceContext, typename T>
class MatMulKernel : public framework::OpKernel<T> {
 public:
Y
yuyang18 已提交
62
  void Compute(const framework::ExecutionContext &context) const override {
63
    auto &x = GET_DATA_SAFELY(
64
        context.Input<phi::DenseTensor>("X"), "Input", "X", "MatMul");
65
    auto &y = GET_DATA_SAFELY(
66 67
        context.Input<phi::DenseTensor>("Y"), "Input", "Y", "MatMul");
    auto *out = context.Output<phi::DenseTensor>("Out");
W
Wilber 已提交
68 69 70

    auto &dev_ctx = context.template device_context<DeviceContext>();
    dev_ctx.template Alloc<T>(out, out->numel() * sizeof(T));
Y
Yu Yang 已提交
71

72 73
    auto blas = phi::funcs::GetBlas<DeviceContext, T>(context);
    auto mat_dim_a = phi::funcs::CreateMatrixDescriptor(
Y
Yu Yang 已提交
74
        RowMatrixFromVector(x.dims()), 0, context.Attr<bool>("transpose_X"));
75
    auto mat_dim_b = phi::funcs::CreateMatrixDescriptor(
Y
Yu Yang 已提交
76
        ColumnMatrixFromVector(y.dims()), 0, context.Attr<bool>("transpose_Y"));
S
sneaxiy 已提交
77
    auto scale = static_cast<T>(context.Attr<float>("alpha"));
78

79
    int head_number = 1;
80 81
#if defined(PADDLE_WITH_MKLML) && !defined(PADDLE_WITH_CUDA) && \
    !defined(PADDLE_WITH_HIP)
82 83 84 85 86 87 88 89 90 91 92 93
    head_number = context.Attr<int>("head_number");
#endif

    const auto &x_dims = x.dims();
    const auto &y_dims = y.dims();
    if (head_number <= 1 && x_dims.size() == 3 && y_dims.size() <= 2) {
      // the transpose_X must be false, if is true, the transpose cost much time
      if (!context.Attr<bool>("transpose_X")) {
        mat_dim_a.height_ *= mat_dim_a.batch_size_;
        mat_dim_a.batch_size_ = 0;
      }
    }
94 95
#if defined(PADDLE_WITH_MKLML) && !defined(PADDLE_WITH_CUDA) && \
    !defined(PADDLE_WITH_HIP)
96 97 98
    bool split_vertical_y = (mat_dim_a.width_ != mat_dim_b.height_);

    if (head_number > 1) {
99 100 101 102 103 104 105 106 107
      blas.MatMulWithHead(x,
                          mat_dim_a,
                          y,
                          mat_dim_b,
                          scale,
                          head_number,
                          out,
                          T(0),
                          split_vertical_y);
108 109
    } else {
      blas.MatMul(x, mat_dim_a, y, mat_dim_b, scale, out, T(0));
110 111
    }
#else
S
sneaxiy 已提交
112
    blas.MatMul(x, mat_dim_a, y, mat_dim_b, scale, out, T(0));
113
#endif
Y
Yu Yang 已提交
114 115 116 117 118
  }
};

// Reshape a rank-3 tensor from P x M x N to (P * M) x N.
// Identity op if the tensor is not of rank 3.
119
static phi::DenseTensor FoldInitDims(const phi::DenseTensor &input) {
Y
Yu Yang 已提交
120 121 122 123 124 125 126 127 128 129 130 131
  auto output = input;
  auto in_dims = input.dims();
  if (in_dims.size() == 3) {
    output.Resize({in_dims[0] * in_dims[1], in_dims[2]});
  }
  return output;
}

// Reshape a rank-3 tensor from P x M x N to M x (P * N).
// (Warning: This requires transposing data and writes into new memory.)
// Identity op if the tensor is not of rank 3.
template <typename DeviceContext, typename T>
132 133
static phi::DenseTensor FoldHeadAndLastDims(const DeviceContext &context,
                                            const phi::DenseTensor &input) {
Y
Yu Yang 已提交
134 135 136 137
  auto in_dims = input.dims();
  if (in_dims.size() != 3) {
    return input;
  }
138
  phi::DenseTensor output;
Y
Yu Yang 已提交
139 140 141
  output.Resize({in_dims[1], in_dims[0], in_dims[2]});
  output.mutable_data<T>(context.GetPlace());
  std::vector<int> axis = {1, 0, 2};
142
  phi::funcs::Transpose<DeviceContext, T, 3> trans;
Y
Yu Yang 已提交
143 144
  trans(context, input, &output, axis);
  output.Resize({in_dims[1], in_dims[0] * in_dims[2]});
M
Markus Kliegl 已提交
145

Y
Yu Yang 已提交
146 147 148 149 150 151 152 153 154 155
  return output;
}

/**
 * Reshape a tensor to 3-D or 2-D tensor by matrix descriptor.
 *
 * The shape would be [BatchSize, H, W] or [H, W].
 * If transposed, `H,W` will be swapped.
 */
static void ReshapeTensorIntoMatrixSequence(
156
    phi::DenseTensor *x, const phi::funcs::MatDescriptor &descriptor) {
Y
Yu Yang 已提交
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
  int64_t h, w;
  h = descriptor.height_;
  w = descriptor.width_;
  if (descriptor.trans_) {
    std::swap(w, h);
  }
  if (descriptor.batch_size_) {
    x->Resize({descriptor.batch_size_, h, w});
  } else {
    x->Resize({h, w});
  }
}

/**
 * Reshape the x,y,out tensor to 3-D or 2-D tensor by matrix descriptor
 * Out = matmul(x, y)
 *
 * This method will first calculate X,Y matrix sequence, and then calculate
 * the out shape.
 *
 * Assume X = [BatchSize, H1, W1], Y = [BatchSize, H2, W2]
 * The out = [BatchSize, H1, W2]
 *
 * If there is no batch size in `X` and `Y`, the out will be [H1, W2]
 * If any of `X` and `Y` has batch size BatchSize, the out will have the
 * BatchSize.
 */
184 185 186
static void ReshapeXYOutIntoMatrixSequence(phi::DenseTensor *x,
                                           phi::DenseTensor *y,
                                           phi::DenseTensor *out,
187
                                           bool trans_x,
Y
Yu Yang 已提交
188 189 190
                                           bool trans_y) {
  auto x_dim = RowMatrixFromVector(x->dims());
  auto y_dim = ColumnMatrixFromVector(y->dims());
191 192
  auto mat_dim_x = phi::funcs::CreateMatrixDescriptor(x_dim, 0, trans_x);
  auto mat_dim_y = phi::funcs::CreateMatrixDescriptor(y_dim, 0, trans_y);
Y
Yu Yang 已提交
193 194 195 196
  if (mat_dim_x.batch_size_ == 0 && mat_dim_y.batch_size_ == 0) {
    out->Resize({mat_dim_x.height_, mat_dim_y.width_});
  } else {
    out->Resize({std::max(mat_dim_x.batch_size_, mat_dim_y.batch_size_),
197 198
                 mat_dim_x.height_,
                 mat_dim_y.width_});
Y
Yu Yang 已提交
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
  }

  ReshapeTensorIntoMatrixSequence(x, mat_dim_x);
  ReshapeTensorIntoMatrixSequence(y, mat_dim_y);
}

// Using dimensional constraints on matrix multiplication, it is
// straight-forward to check the following table for when X and Y
// are both matrices.
//
// transpose_X | False    | True     | False    | True
// transpose_Y | False    | False    | True     | True
// -----------+----------+----------+----------+-----------
//        dX = | dOut Y^T | Y dOut^T | dOut Y   | Y^T dOut^T
//        dY = | X^T dOut | X dOut   | dOut^T X | dOut^T X^T
//
// When X is a vector of size K, we treat it instead as a matrix of shape
// (1, K). Similarly, when Y is a vector of size K, we treat it instead as
// a matrix of shape (K, 1).
//
// When X and Y are both 3-dimensional tensors, then the first dimension
// the batch dimension can be ignored and the exact same formulas apply
// as for two matrices.
//
// Finally, when, e.g., X is a 3-dimensional tensor but Y is a matrix, we end
// up with formulas like
//
//   dY_{ij} = \sum_{p, m} X_{pmi} dOut_{pmj}
//
// To handle this sort of scenario, we reshape X : P x M x K, dOut: P x M x N
// to X: (P * M) x K, dOut: (P * M) x N.
template <typename DeviceContext, typename T>
class MatMulGradKernel : public framework::OpKernel<T> {
 public:
Y
yuyang18 已提交
233
  void MatMul(const framework::ExecutionContext &context,
234
              const phi::DenseTensor &a,
235
              bool trans_a,
236
              const phi::DenseTensor &b,
237
              bool trans_b,
238
              phi::DenseTensor *out) const {
Y
Yu Yang 已提交
239
    out->mutable_data<T>(context.GetPlace());
240 241 242
    auto blas = phi::funcs::GetBlas<DeviceContext, T>(context);
    auto mat_dim_a = phi::funcs::CreateMatrixDescriptor(a.dims(), 0, trans_a);
    auto mat_dim_b = phi::funcs::CreateMatrixDescriptor(b.dims(), 0, trans_b);
243 244

    int head_number = 1;
245 246
#if defined(PADDLE_WITH_MKLML) && !defined(PADDLE_WITH_CUDA) && \
    !defined(PADDLE_WITH_HIP)
247 248 249
    if (context.HasAttr("head_number")) {
      head_number = context.Attr<int>("head_number");
    }
250 251 252 253 254 255 256 257 258
#endif

    if (head_number <= 1 && a.dims().size() == 3 && b.dims().size() <= 2) {
      // the transpose_X must be false, if is true, the transpose cost much time
      if (!trans_a) {
        mat_dim_a.height_ *= mat_dim_a.batch_size_;
        mat_dim_a.batch_size_ = 0;
      }
    }
259 260 261 262 263 264 265
    blas.MatMul(a,
                mat_dim_a,
                b,
                mat_dim_b,
                static_cast<T>(context.Attr<float>("alpha")),
                out,
                T(0));
Y
Yu Yang 已提交
266 267
  }

Y
yuyang18 已提交
268
  void CalcInputGrad(const framework::ExecutionContext &context,
269
                     const phi::DenseTensor &a,
270 271
                     bool trans_a,
                     bool is_fold_init_dims_a,
272
                     const phi::DenseTensor &b,
273 274
                     bool trans_b,
                     bool is_fold_init_dims_b,
275
                     phi::DenseTensor *out) const {
Y
Yu Yang 已提交
276 277 278 279 280 281
    if (out == nullptr) return;
    bool need_combine = (a.dims().size() == 3 || b.dims().size() == 3) &&
                        out->dims().size() == 2;
    if (!need_combine) {
      MatMul(context, a, trans_a, b, trans_b, out);
    } else {
Y
yuyang18 已提交
282
      auto &ctx = context.template device_context<DeviceContext>();
283 284 285 286 287 288 289
      MatMul(
          context,
          is_fold_init_dims_a ? FoldInitDims(a)
                              : FoldHeadAndLastDims<DeviceContext, T>(ctx, a),
          trans_a,
          is_fold_init_dims_b ? FoldInitDims(b)
                              : FoldHeadAndLastDims<DeviceContext, T>(ctx, b),
290 291
          trans_b,
          out);
Y
Yu Yang 已提交
292 293 294
    }
  }

Y
yuyang18 已提交
295
  void Compute(const framework::ExecutionContext &context) const override {
296 297 298 299 300
    auto x = *context.Input<phi::DenseTensor>("X");
    auto y = *context.Input<phi::DenseTensor>("Y");
    auto dout = *context.Input<phi::DenseTensor>(framework::GradVarName("Out"));
    auto *dx = context.Output<phi::DenseTensor>(framework::GradVarName("X"));
    auto *dy = context.Output<phi::DenseTensor>(framework::GradVarName("Y"));
Y
Yu Yang 已提交
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
    bool transpose_x = context.Attr<bool>("transpose_X");
    bool transpose_y = context.Attr<bool>("transpose_Y");

    ReshapeXYOutIntoMatrixSequence(&x, &y, &dout, transpose_x, transpose_y);
    framework::DDim dx_dims;
    if (dx) {
      dx_dims = dx->dims();
      if (dx_dims != x.dims()) {
        dx->Resize(x.dims());
      }
    }

    framework::DDim dy_dims;
    if (dy) {
      dy_dims = dy->dims();
      if (dy_dims != y.dims()) {
        dy->Resize(y.dims());
      }
    }

    if (transpose_x && transpose_y) {
      CalcInputGrad(context, y, true, true, dout, true, false, dx);
      CalcInputGrad(context, dout, true, true, x, true, false, dy);
    } else if (transpose_x) {
      CalcInputGrad(context, y, false, false, dout, true, false, dx);
      CalcInputGrad(context, x, false, false, dout, false, true, dy);
    } else if (transpose_y) {
      CalcInputGrad(context, dout, false, false, y, false, true, dx);
      CalcInputGrad(context, dout, true, true, x, false, true, dy);
    } else {
      CalcInputGrad(context, dout, false, false, y, true, false, dx);
      CalcInputGrad(context, x, true, true, dout, false, true, dy);
    }

    if (dx) {
      if (dx_dims != x.dims()) {
        dx->Resize(dx_dims);
      }
    }
    if (dy) {
      if (dy_dims != y.dims()) {
        dy->Resize(dy_dims);
      }
    }
  }
};
M
Markus Kliegl 已提交
347

348 349 350 351
template <typename DeviceContext, typename T>
class MatMulDoubleGradKernel : public framework::OpKernel<T> {
 public:
  void MatMul(const framework::ExecutionContext &context,
352
              const phi::DenseTensor &a,
353
              bool trans_a,
354
              const phi::DenseTensor &b,
355 356
              bool trans_b,
              bool flag,
357
              phi::DenseTensor *out) const {
358
    out->mutable_data<T>(context.GetPlace());
359 360 361
    auto blas = phi::funcs::GetBlas<DeviceContext, T>(context);
    auto mat_dim_a = phi::funcs::CreateMatrixDescriptor(a.dims(), 0, trans_a);
    auto mat_dim_b = phi::funcs::CreateMatrixDescriptor(b.dims(), 0, trans_b);
362 363

    int head_number = 1;
364 365
#if defined(PADDLE_WITH_MKLML) && !defined(PADDLE_WITH_CUDA) && \
    !defined(PADDLE_WITH_HIP)
366 367 368 369 370 371 372 373 374 375
    head_number = context.Attr<int>("head_number");
#endif

    if (head_number <= 1 && a.dims().size() == 3 && b.dims().size() <= 2) {
      // the transpose_X must be false, if is true, the transpose cost much time
      if (!trans_a) {
        mat_dim_a.height_ *= mat_dim_a.batch_size_;
        mat_dim_a.batch_size_ = 0;
      }
    }
376 377 378 379 380 381
    blas.MatMul(a,
                mat_dim_a,
                b,
                mat_dim_b,
                static_cast<T>(context.Attr<float>("alpha")),
                out,
382 383 384 385
                static_cast<T>(flag));
  }

  void CalcInputGrad(const framework::ExecutionContext &context,
386
                     const phi::DenseTensor &a,
387 388
                     bool trans_a,
                     bool is_fold_init_dims_a,
389
                     const phi::DenseTensor &b,
390 391 392
                     bool trans_b,
                     bool is_fold_init_dims_b,
                     bool flag,
393
                     phi::DenseTensor *out) const {
394 395 396 397 398 399 400
    if (out == nullptr) return;
    bool need_combine = (a.dims().size() == 3 || b.dims().size() == 3) &&
                        out->dims().size() == 2;
    if (!need_combine) {
      MatMul(context, a, trans_a, b, trans_b, flag, out);
    } else {
      auto &ctx = context.template device_context<DeviceContext>();
401 402 403 404 405 406 407
      MatMul(
          context,
          is_fold_init_dims_a ? FoldInitDims(a)
                              : FoldHeadAndLastDims<DeviceContext, T>(ctx, a),
          trans_a,
          is_fold_init_dims_b ? FoldInitDims(b)
                              : FoldHeadAndLastDims<DeviceContext, T>(ctx, b),
408 409 410
          trans_b,
          flag,
          out);
411 412 413 414
    }
  }

  void Compute(const framework::ExecutionContext &context) const override {
415 416
    auto x = *context.Input<phi::DenseTensor>("X");
    auto y = *context.Input<phi::DenseTensor>("Y");
417 418 419
    auto dout = *context.Input<phi::DenseTensor>("DOut");
    auto *ddx = context.Input<phi::DenseTensor>("DDX");
    auto *ddy = context.Input<phi::DenseTensor>("DDY");
420

421 422 423
    auto *dx = context.Output<phi::DenseTensor>("DX");
    auto *dy = context.Output<phi::DenseTensor>("DY");
    auto *ddout = context.Output<phi::DenseTensor>("DDOut");
424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462

    bool transpose_x = context.Attr<bool>("transpose_X");
    bool transpose_y = context.Attr<bool>("transpose_Y");

    ReshapeXYOutIntoMatrixSequence(&x, &y, &dout, transpose_x, transpose_y);

    framework::DDim dx_dims;
    if (dx) {
      dx_dims = dx->dims();
      if (dx_dims != x.dims()) {
        dx->Resize(x.dims());
      }
    }

    framework::DDim dy_dims;
    if (dy) {
      dy_dims = dy->dims();
      if (dy_dims != y.dims()) {
        dy->Resize(y.dims());
      }
    }

    framework::DDim ddout_dims;
    if (ddout) {
      ddout_dims = ddout->dims();
      if (ddout_dims != dout.dims()) {
        ddout->Resize(dout.dims());
      }
    }

    bool ddout_flag = false;
    if (ddx) {
      auto ddx_mat = *ddx;
      if (ddx_mat.dims() != x.dims()) {
        ddx_mat.Resize(x.dims());
      }
      if (dy) {
        if (transpose_x && transpose_y) {
          // dy = dout' * ddx'
463 464
          CalcInputGrad(
              context, dout, true, true, ddx_mat, true, false, false, dy);
465 466
        } else if (transpose_x) {
          // dy = ddx * dout
467 468
          CalcInputGrad(
              context, ddx_mat, false, false, dout, false, true, false, dy);
469 470
        } else if (transpose_y) {
          // dy = dout' * ddx
471 472
          CalcInputGrad(
              context, dout, true, true, ddx_mat, false, true, false, dy);
473 474
        } else {
          // dy = ddx' * dout
475 476
          CalcInputGrad(
              context, ddx_mat, true, true, dout, false, true, false, dy);
477 478 479 480
        }
      }

      if (ddout) {
481 482 483 484 485 486 487 488 489
        CalcInputGrad(context,
                      ddx_mat,
                      transpose_x,
                      true,
                      y,
                      transpose_y,
                      false,
                      ddout_flag,
                      ddout);
490 491 492 493 494 495 496 497 498 499 500 501
        ddout_flag = true;
      }
    }

    if (ddy) {
      auto ddy_mat = *ddy;
      if (ddy_mat.dims() != y.dims()) {
        ddy_mat.Resize(y.dims());
      }
      if (dx) {
        if (transpose_x && transpose_y) {
          // dx = ddy' * dout'
502 503
          CalcInputGrad(
              context, ddy_mat, true, true, dout, true, false, false, dx);
504 505
        } else if (transpose_x) {
          // dx = ddy * dout'
506 507
          CalcInputGrad(
              context, ddy_mat, false, false, dout, true, false, false, dx);
508 509
        } else if (transpose_y) {
          // dx = dout * ddy
510 511
          CalcInputGrad(
              context, dout, false, false, ddy_mat, false, true, false, dx);
512 513
        } else {
          // dx = dout * ddy'
514 515
          CalcInputGrad(
              context, dout, false, false, ddy_mat, true, false, false, dx);
516 517 518 519
        }
      }

      if (ddout) {
520 521 522 523 524 525 526 527 528
        CalcInputGrad(context,
                      x,
                      transpose_x,
                      true,
                      ddy_mat,
                      transpose_y,
                      false,
                      ddout_flag,
                      ddout);
529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
      }
    }

    if (dx) {
      if (dx_dims != x.dims()) {
        dx->Resize(dx_dims);
      }
    }

    if (dy) {
      if (dy_dims != y.dims()) {
        dy->Resize(dy_dims);
      }
    }

    if (ddout) {
      if (ddout_dims != dout.dims()) {
        ddout->Resize(ddout_dims);
      }
    }
  }
};

M
Markus Kliegl 已提交
552 553 554 555 556
class MatMulOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
Y
yuyang18 已提交
557
  void InferShape(framework::InferShapeContext *context) const override {
558 559 560
    OP_INOUT_CHECK(context->HasInput("X"), "Input", "X", "matmul");
    OP_INOUT_CHECK(context->HasInput("Y"), "Input", "Y", "matmul");
    OP_INOUT_CHECK(context->HasOutput("Out"), "Output", "Out", "matmul");
M
Markus Kliegl 已提交
561

562 563
    auto dim_x = context->GetInputDim("X");
    auto dim_y = context->GetInputDim("Y");
564 565 566 567 568 569

#ifdef PADDLE_WITH_MKLDNN
    // (jczaja): For NHWC execution output shape needs
    // to be computed like instead x*y we are to do y*x
    bool channelwise_onednn =
        context->IsRunMKLDNNKernel() &&
570
        (phi::OneDNNContext::tls().get_cur_paddle_data_layout() ==
571
         phi::DataLayout::kNHWC);
572 573 574 575 576
    if (channelwise_onednn) {
      std::swap(dim_x, dim_y);
    }
#endif

577
    auto mat_dim_x = phi::funcs::CreateMatrixDescriptor(
578 579
        RowMatrixFromVector(dim_x),
        0,
580
        context->Attrs().Get<bool>("transpose_X"));
581
    auto mat_dim_y = phi::funcs::CreateMatrixDescriptor(
582 583
        ColumnMatrixFromVector(dim_y),
        0,
584
        context->Attrs().Get<bool>("transpose_Y"));
C
chengduoZH 已提交
585

586 587 588 589 590 591 592
    if (mat_dim_x.width_ == -1) {
      mat_dim_x.width_ = mat_dim_y.height_;
    }
    if (mat_dim_y.height_ == -1) {
      mat_dim_y.height_ = mat_dim_x.width_;
    }

P
phlrain 已提交
593
    if (context->IsRuntime()) {
594
      PADDLE_ENFORCE_EQ(
595 596
          mat_dim_x.batch_size_ == mat_dim_y.batch_size_ ||
              mat_dim_x.batch_size_ == 0 || mat_dim_y.batch_size_ == 0,
597 598 599 600 601 602 603
          true,
          platform::errors::InvalidArgument(
              "The batch size of the two matrices should be equal, or "
              "at least one is zero.\n"
              "But received X's shape: %s, Y's shape: %s.",
              DumpMatrixShape(mat_dim_x).c_str(),
              DumpMatrixShape(mat_dim_y).c_str()));
P
phlrain 已提交
604
    }
605
    int64_t dim_out_y = mat_dim_y.width_;
606 607
#if defined(PADDLE_WITH_MKLML) && !defined(PADDLE_WITH_CUDA) && \
    !defined(PADDLE_WITH_HIP)
608
    int head_number = context->Attrs().Get<int>("head_number");
609
    bool split_vertical_y = (mat_dim_x.width_ != mat_dim_y.height_);
610 611
    if (context->IsRuntime()) {
      PADDLE_ENFORCE_LE(
612 613
          head_number,
          mat_dim_x.width_,
614 615 616 617
          platform::errors::InvalidArgument(
              "Unsatisfied mkl acceleration library requirements: "
              "The number of heads "
              "(%d) must be equal to X's width. But received X's shape: %s.",
618 619
              head_number,
              DumpMatrixShape(mat_dim_x).c_str()));
620 621 622 623

      if (!split_vertical_y && head_number > 0) {
        dim_out_y = head_number * mat_dim_y.width_;
      }
624
    }
625
#else
626 627
    PADDLE_ENFORCE_EQ(mat_dim_x.width_,
                      mat_dim_y.height_,
628 629
                      platform::errors::InvalidArgument(
                          "Input X's width should be equal to the Y's height, "
630
                          "but received X's shape: [%s], "
631
                          "Y's shape: [%s].",
632 633
                          dim_x,
                          dim_y));
634 635
#endif

636
    std::vector<int64_t> dim_out;
Y
Yu Yang 已提交
637
    if (mat_dim_x.batch_size_ != 0) {
638
      dim_out = phi::vectorize(dim_x);
Y
Yu Yang 已提交
639
      dim_out[dim_out.size() - 2] = mat_dim_x.height_;
640
      dim_out[dim_out.size() - 1] = dim_out_y;
Y
Yu Yang 已提交
641
    } else if (mat_dim_y.batch_size_ != 0) {
642
      dim_out = phi::vectorize(dim_y);
Y
Yu Yang 已提交
643
      dim_out[dim_out.size() - 2] = mat_dim_x.height_;
644
      dim_out[dim_out.size() - 1] = dim_out_y;
Y
Yu Yang 已提交
645
    } else {
646
      dim_out = {mat_dim_x.height_, dim_out_y};
M
Markus Kliegl 已提交
647 648
    }

Y
Yu Yang 已提交
649 650 651
    if (dim_x.size() == 1 && dim_out[dim_out.size() - 2] == 1) {
      std::swap(dim_out[dim_out.size() - 2], dim_out[dim_out.size() - 1]);
      dim_out.resize(dim_out.size() - 1);
M
Markus Kliegl 已提交
652 653
    }

Y
Yu Yang 已提交
654 655
    if (dim_y.size() == 1 && dim_out[dim_out.size() - 1] == 1) {
      dim_out.resize(dim_out.size() - 1);
M
Markus Kliegl 已提交
656 657
    }

Y
Yu Yang 已提交
658 659
    if (dim_out.empty()) {
      dim_out = {1};
M
Markus Kliegl 已提交
660
    }
661

662
    framework::DDim ddim_out = phi::make_ddim(dim_out);
663

664 665
    context->SetOutputDim("Out", ddim_out);
    context->ShareLoD("X", "Out");
M
Markus Kliegl 已提交
666
  }
667

668
  phi::KernelKey GetExpectedKernelType(
669
      const framework::ExecutionContext &ctx) const override {
670 671
    auto input_data_type =
        OperatorWithKernel::IndicateOrPromoteVarDataTypes(ctx, "X", "Y");
672
    return phi::KernelKey(input_data_type, ctx.GetPlace());
673
  }
674

675
  phi::KernelKey GetKernelTypeForVar(
676
      const std::string &var_name,
677
      const phi::DenseTensor &tensor,
678 679
      const phi::KernelKey &expected_kernel_type) const override {
    if (framework::IsComplexType(expected_kernel_type.dtype())) {
680
      // only promote inputs’s types when contains complex input
681
      return phi::KernelKey(tensor.place(), tensor.layout(), tensor.dtype());
682
    } else {
683 684 685 686
#ifdef PADDLE_WITH_MKLDNN
      // When matmul is first oneDNN op in a chain (there was some non oneDNN op
      // previously)
      // then we also need to rotate shape NHWC -> NCWH
687
      if ((expected_kernel_type.layout() == phi::DataLayout::ONEDNN) &&
688
          (tensor.layout() != phi::DataLayout::ONEDNN) &&
689 690
          phi::OneDNNContext::tls().get_cur_paddle_data_layout() ==
              phi::DataLayout::kNHWC) {
691 692 693
        return phi::KernelKey(tensor.place(),
                              phi::DataLayout::kNHWC,
                              expected_kernel_type.dtype());
694 695
      }
#endif
696 697
      return phi::KernelKey(
          tensor.place(), tensor.layout(), expected_kernel_type.dtype());
698 699
    }
  }
M
Markus Kliegl 已提交
700 701 702 703
};

class MatMulOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
704
  void Make() override {
M
Markus Kliegl 已提交
705 706 707 708 709 710 711 712 713 714 715
    AddInput("X", "The first input of MatMul op");
    AddInput("Y", "The second input of MatMul op");
    AddOutput("Out", "The output of MatMul op");
    AddAttr<bool>("transpose_X",
                  R"DOC(If true, use the transpose of `X`.
        )DOC")
        .SetDefault(false);
    AddAttr<bool>("transpose_Y",
                  R"DOC(If true, use the transpose of `Y`.
        )DOC")
        .SetDefault(false);
S
sneaxiy 已提交
716
    AddAttr<float>("alpha", "The scale of Out").SetDefault(1.0f);
717 718 719
    AddAttr<bool>(
        "use_mkldnn",
        "(bool, default false) Indicates if MKL-DNN kernel will be used")
720 721
        .SetDefault(false)
        .AsExtra();
722 723
    AddAttr<std::vector<int>>("fused_reshape_X",
                              R"DOC(Shape of fused reshape of `X` input.)DOC")
724 725
        .SetDefault({})
        .AsExtra();
726 727
    AddAttr<std::vector<int>>("fused_reshape_Y",
                              R"DOC(Shape of fused reshape of `Y` input.)DOC")
728 729
        .SetDefault({})
        .AsExtra();
730 731
    AddAttr<std::vector<int>>("fused_transpose_X",
                              R"DOC(Axis of fused transpose of `X` input.)DOC")
732 733
        .SetDefault({})
        .AsExtra();
734 735
    AddAttr<std::vector<int>>("fused_transpose_Y",
                              R"DOC(Axis of fused transpose of `Y` input.)DOC")
736 737
        .SetDefault({})
        .AsExtra();
738 739 740
    AddAttr<std::vector<int>>(
        "fused_reshape_Out",
        R"DOC(When MKLDNN MatMul_transpose_reshape fuse activated, "
H
HongyuJia 已提交
741
              "it's a shape attribute of fused reshape for `Out` output.)DOC")
742 743
        .SetDefault({})
        .AsExtra();
744 745 746
    AddAttr<std::vector<int>>(
        "fused_transpose_Out",
        R"DOC(When MKLDNN MatMul_transpose_reshape fuse activated, "
H
HongyuJia 已提交
747
              "it's a axis attribute of fused transpose for `Out` output.)DOC")
748 749
        .SetDefault({})
        .AsExtra();
750 751 752 753
    AddAttr<bool>(
        "use_quantizer",
        "(bool, default false) "
        "This parameter is no longer used. Use 'mkldnn_data_type' instead.")
754 755
        .SetDefault(false)
        .AsExtra();
756 757 758 759
    AddAttr<std::string>(
        "mkldnn_data_type",
        "(string, default \"float32\"). Data type of mkldnn kernel")
        .SetDefault("float32")
760 761
        .InEnum({"float32", "int8", "bfloat16"})
        .AsExtra();
762
    /* int8 parameters */
763 764
    AddAttr<float>("Scale_x",
                   "(float, default 1.0f), The quantize scale of X tensor")
765 766
        .SetDefault(1.0f)
        .AsExtra();
767 768
    AddAttr<float>("Scale_y",
                   "(float, default 1.0f), The quantize scale of Y tensor")
769 770
        .SetDefault(1.0f)
        .AsExtra();
771 772
    AddAttr<float>("Scale_out",
                   "(float, default 1.0f), The quantize scale of output data")
773 774
        .SetDefault(1.0f)
        .AsExtra();
775 776 777
    AddAttr<bool>("force_fp32_output",
                  "(bool, default false) Force INT8 kernel output FP32, only "
                  "used in MKL-DNN INT8")
778 779
        .SetDefault(false)
        .AsExtra();
780

781 782
#if defined(PADDLE_WITH_MKLML) && !defined(PADDLE_WITH_CUDA) && \
    !defined(PADDLE_WITH_HIP)
783 784 785
    AddAttr<int>("head_number", "The number of heads of the matrix")
        .SetDefault(1);
#endif
M
Markus Kliegl 已提交
786
    AddComment(R"DOC(
K
kexinzhao 已提交
787 788
MatMul Operator.
This operator is used to perform (batched) matrix multiplication
M
Markus Kliegl 已提交
789 790 791 792 793 794 795 796 797 798 799 800
over the last two dimensions of the input tensors `X` and `Y`.
If a transpose flag is specified, the last two dimensions of the
tensor are transposed. If the tensor is rank-1 of shape [D], then
for `X` it is treated as [1, D] in nontransposed form and as [D, 1]
in transposed form, whereas for `Y` it is the opposite: It is treated
as [D, 1] in nontransposed form and as [1, D] in transposed form.
Examples without transpose:
- X: [K], Y: [K] => Out: [1]
- X: [K], Y: [K, N] => Out: [N]
- X: [B, M, K], Y: [K] => Out: [B, M]
- X: [M, K], Y: [B, K, N] => Out: [B, M, N]
- X: [B, M, K], Y: [B, K, N] => Out: [B, M, N]
C
chengduoZH 已提交
801
- X: [B, ..., M, K], Y: [B, ..., K, N] => Out: [B, ..., M, N]
802 803
Example of matrix multiplication with head_number of H
- X: [B, M, K], Y: [B, K, N] => Out: [B, M, H * N]
M
Markus Kliegl 已提交
804 805
The behavior is designed to be similar to the `numpy.matmul` function.
The differences are:
C
chengduoZH 已提交
806 807
- When the rank of the input data is less than or equal to 3, it
  is similar to the `numpy.matmul` function.
C
chengduoZH 已提交
808
- When the rank of the input is greater than 3, the rank of X and
C
chengduoZH 已提交
809
  Y must be equal, and the first `rank - 2` dimensions must be equal.
M
Markus Kliegl 已提交
810
- We add `transpose_X` and `transpose_Y` flags.
811 812 813
- We add `head_number` attribute, which is used to multiple two matrixes head
  by head, and eventually concatenates the output of several (head_number)
  small matrixes multiplication.
M
Markus Kliegl 已提交
814
Both the input `X` and `Y` can carry the LoD (Level of Details) information,
K
kexinzhao 已提交
815
or not. But the output only shares the LoD information with input `X`.
M
Markus Kliegl 已提交
816 817 818 819 820 821 822 823 824
)DOC");
  }
};

class MatMulOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
Y
yuyang18 已提交
825
  void InferShape(framework::InferShapeContext *context) const override {
826 827
    OP_INOUT_CHECK(context->HasInput("X"), "Input", "X", "matmul");
    OP_INOUT_CHECK(context->HasInput("Y"), "Input", "Y", "matmul");
828 829 830 831
    OP_INOUT_CHECK(context->HasInput(framework::GradVarName("Out")),
                   "Input",
                   "Out@GRAD",
                   "matmul");
M
Markus Kliegl 已提交
832 833 834 835 836 837 838 839 840 841 842 843 844
    auto x_dims = context->GetInputDim("X");
    auto y_dims = context->GetInputDim("Y");

    auto x_grad_name = framework::GradVarName("X");
    auto y_grad_name = framework::GradVarName("Y");

    if (context->HasOutput(x_grad_name)) {
      context->SetOutputDim(x_grad_name, x_dims);
    }
    if (context->HasOutput(y_grad_name)) {
      context->SetOutputDim(y_grad_name, y_dims);
    }
  }
845

846
  phi::KernelKey GetExpectedKernelType(
847 848 849
      const framework::ExecutionContext &ctx) const override {
    auto input_data_type =
        OperatorWithKernel::IndicateOrPromoteVarDataTypes(ctx, "X", "Y");
850
    return phi::KernelKey(input_data_type, ctx.GetPlace());
851
  }
M
Markus Kliegl 已提交
852 853
};

H
hong 已提交
854 855
template <typename T>
class MatMulOpGradMaker : public framework::SingleGradOpMaker<T> {
Y
Yu Yang 已提交
856
 public:
H
hong 已提交
857
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
Y
Yu Yang 已提交
858 859

 protected:
860
  void Apply(GradOpPtr<T> retv) const override {
Y
Yu Yang 已提交
861
    retv->SetType("matmul_grad");
H
hong 已提交
862 863 864 865 866 867
    retv->SetInput("X", this->Input("X"));
    retv->SetInput("Y", this->Input("Y"));
    retv->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    retv->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    retv->SetOutput(framework::GradVarName("Y"), this->InputGrad("Y"));
    retv->SetAttrMap(this->Attrs());
Y
Yu Yang 已提交
868 869
  }
};
870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924

class MatMulOpDoubleGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext *context) const override {
    OP_INOUT_CHECK(context->HasInput("X"), "Input", "X", "matmul");
    OP_INOUT_CHECK(context->HasInput("Y"), "Input", "Y", "matmul");
    OP_INOUT_CHECK(context->HasInput("DOut"), "Input", "DOut", "matmul");

    if (context->HasOutput("DX") && context->HasInput("DDY")) {
      context->ShareDim("X", "DX");
    }

    if (context->HasOutput("DY") && context->HasInput("DDX")) {
      context->ShareDim("Y", "DY");
    }

    if (context->HasOutput("DDOut") &&
        (context->HasInput("DDY") || context->HasInput("DDX"))) {
      context->ShareDim("DOut", "DDOut");
    }
  }
};

template <typename T>
class MatMulOpDoubleGradMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> retv) const override {
    retv->SetType("matmul_grad_grad");
    retv->SetInput("X", this->Input("X"));
    retv->SetInput("Y", this->Input("Y"));
    retv->SetInput("DOut", this->Input(framework::GradVarName("Out")));
    retv->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    retv->SetInput("DDY", this->OutputGrad(framework::GradVarName("Y")));

    auto ddx = this->OutputGrad(framework::GradVarName("X"));
    auto ddy = this->OutputGrad(framework::GradVarName("Y"));

    if (!ddx.empty() || !ddy.empty()) {
      retv->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
    }
    retv->SetOutput(
        "DX", ddy.empty() ? this->EmptyInputGrad() : this->InputGrad("X"));
    retv->SetOutput(
        "DY", ddx.empty() ? this->EmptyInputGrad() : this->InputGrad("Y"));

    retv->SetAttrMap(this->Attrs());
  }
};

M
Markus Kliegl 已提交
925 926 927 928
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
929 930 931
REGISTER_OPERATOR(matmul,
                  ops::MatMulOp,
                  ops::MatMulOpMaker,
H
hong 已提交
932 933
                  ops::MatMulOpGradMaker<paddle::framework::OpDesc>,
                  ops::MatMulOpGradMaker<paddle::imperative::OpBase>);
934 935
REGISTER_OPERATOR(matmul_grad,
                  ops::MatMulOpGrad,
936 937 938
                  ops::MatMulOpDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::MatMulOpDoubleGradMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(matmul_grad_grad, ops::MatMulOpDoubleGrad);
L
Leo Chen 已提交
939 940 941 942 943 944 945 946 947 948
REGISTER_OP_CPU_KERNEL(matmul,
                       ops::MatMulKernel<phi::CPUContext, float>,
                       ops::MatMulKernel<phi::CPUContext, double>);
REGISTER_OP_CPU_KERNEL(matmul_grad,
                       ops::MatMulGradKernel<phi::CPUContext, float>,
                       ops::MatMulGradKernel<phi::CPUContext, double>);

REGISTER_OP_CPU_KERNEL(matmul_grad_grad,
                       ops::MatMulDoubleGradKernel<phi::CPUContext, float>,
                       ops::MatMulDoubleGradKernel<phi::CPUContext, double>);
949

950
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
Y
Yu Yang 已提交
951
REGISTER_OP_CUDA_KERNEL(
952
    matmul,
L
Leo Chen 已提交
953 954 955
    ops::MatMulKernel<phi::GPUContext, float>,
    ops::MatMulKernel<phi::GPUContext, double>,
    ops::MatMulKernel<phi::GPUContext, paddle::platform::float16>);
Y
Yu Yang 已提交
956 957
REGISTER_OP_CUDA_KERNEL(
    matmul_grad,
L
Leo Chen 已提交
958 959 960 961 962 963
    ops::MatMulGradKernel<phi::GPUContext, float>,
    ops::MatMulGradKernel<phi::GPUContext, double>,
    ops::MatMulGradKernel<phi::GPUContext, paddle::platform::float16>);
REGISTER_OP_CUDA_KERNEL(matmul_grad_grad,
                        ops::MatMulDoubleGradKernel<phi::GPUContext, float>,
                        ops::MatMulDoubleGradKernel<phi::GPUContext, double>);
Y
Yu Yang 已提交
964
#endif
965

966 967
REGISTER_OP_VERSION(matmul).AddCheckpoint(
    R"ROC(Register matmul for adding the attribute of
968
       fused_reshape_Y)ROC",
969 970 971 972 973 974
    paddle::framework::compatible::OpVersionDesc().NewAttr(
        "fused_reshape_Y",
        "In order to support the function of fused the input Y "
        " and input X into the input X when "
        "using the operator of matmul, and get raw shape of input Y.",
        std::vector<int>{}));