matmul_op.cc 34.9 KB
Newer Older
1
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserved.
M
Markus Kliegl 已提交
2 3 4 5 6 7 8 9 10 11
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

12
#include <algorithm>
Y
Yu Yang 已提交
13
#include <utility>
14
#include <vector>
15

Y
Yu Yang 已提交
16
#include "paddle/fluid/framework/op_registry.h"
17
#include "paddle/fluid/framework/op_version_registry.h"
18
#include "paddle/phi/kernels/funcs/blas/blas.h"
19 20 21
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
M
Markus Kliegl 已提交
22 23 24

namespace paddle {
namespace operators {
25 26 27 28

/**
 * Printing shape information into a string is easy to use.
 */
29
inline static std::string DumpMatrixShape(
30
    const phi::funcs::MatDescriptor &desc) {
31 32 33 34 35 36
  std::stringstream buffer;
  buffer << "[" << desc.batch_size_ << ", " << desc.height_ << ", "
         << desc.width_ << "]";
  return buffer.str();
}

Y
Yu Yang 已提交
37 38 39 40
/**
 * Get row matrix shape from a vector shape. If the rank of x_dim > 1, the
 * original x_dim is returned.
 */
Y
yuyang18 已提交
41
static framework::DDim RowMatrixFromVector(const framework::DDim &x_dim) {
Y
Yu Yang 已提交
42 43 44
  if (x_dim.size() > 1) {
    return x_dim;
  }
45
  return phi::make_ddim({1, x_dim[0]});
Y
Yu Yang 已提交
46 47 48 49 50 51
}

/**
 * Get column matrix shape from a vector shape. If the ran of y_dim > 1, the
 * original y_dim is returned.
 */
Y
yuyang18 已提交
52
static framework::DDim ColumnMatrixFromVector(const framework::DDim &y_dim) {
Y
Yu Yang 已提交
53 54 55
  if (y_dim.size() > 1) {
    return y_dim;
  }
56
  return phi::make_ddim({y_dim[0], 1});
Y
Yu Yang 已提交
57 58 59 60 61
}

template <typename DeviceContext, typename T>
class MatMulKernel : public framework::OpKernel<T> {
 public:
Y
yuyang18 已提交
62
  void Compute(const framework::ExecutionContext &context) const override {
63
    auto &x = GET_DATA_SAFELY(
64
        context.Input<phi::DenseTensor>("X"), "Input", "X", "MatMul");
65
    auto &y = GET_DATA_SAFELY(
66 67
        context.Input<phi::DenseTensor>("Y"), "Input", "Y", "MatMul");
    auto *out = context.Output<phi::DenseTensor>("Out");
W
Wilber 已提交
68 69 70

    auto &dev_ctx = context.template device_context<DeviceContext>();
    dev_ctx.template Alloc<T>(out, out->numel() * sizeof(T));
Y
Yu Yang 已提交
71

72 73
    auto blas = phi::funcs::GetBlas<DeviceContext, T>(context);
    auto mat_dim_a = phi::funcs::CreateMatrixDescriptor(
Y
Yu Yang 已提交
74
        RowMatrixFromVector(x.dims()), 0, context.Attr<bool>("transpose_X"));
75
    auto mat_dim_b = phi::funcs::CreateMatrixDescriptor(
Y
Yu Yang 已提交
76
        ColumnMatrixFromVector(y.dims()), 0, context.Attr<bool>("transpose_Y"));
S
sneaxiy 已提交
77
    auto scale = static_cast<T>(context.Attr<float>("alpha"));
78

79
    int head_number = 1;
80 81
#if defined(PADDLE_WITH_MKLML) && !defined(PADDLE_WITH_CUDA) && \
    !defined(PADDLE_WITH_HIP)
82 83 84 85 86 87 88 89 90 91 92 93
    head_number = context.Attr<int>("head_number");
#endif

    const auto &x_dims = x.dims();
    const auto &y_dims = y.dims();
    if (head_number <= 1 && x_dims.size() == 3 && y_dims.size() <= 2) {
      // the transpose_X must be false, if is true, the transpose cost much time
      if (!context.Attr<bool>("transpose_X")) {
        mat_dim_a.height_ *= mat_dim_a.batch_size_;
        mat_dim_a.batch_size_ = 0;
      }
    }
94 95
#if defined(PADDLE_WITH_MKLML) && !defined(PADDLE_WITH_CUDA) && \
    !defined(PADDLE_WITH_HIP)
96 97 98
    bool split_vertical_y = (mat_dim_a.width_ != mat_dim_b.height_);

    if (head_number > 1) {
99 100 101 102 103 104 105 106 107
      blas.MatMulWithHead(x,
                          mat_dim_a,
                          y,
                          mat_dim_b,
                          scale,
                          head_number,
                          out,
                          T(0),
                          split_vertical_y);
108 109
    } else {
      blas.MatMul(x, mat_dim_a, y, mat_dim_b, scale, out, T(0));
110 111
    }
#else
S
sneaxiy 已提交
112
    blas.MatMul(x, mat_dim_a, y, mat_dim_b, scale, out, T(0));
113
#endif
Y
Yu Yang 已提交
114 115 116 117 118
  }
};

// Reshape a rank-3 tensor from P x M x N to (P * M) x N.
// Identity op if the tensor is not of rank 3.
119
static phi::DenseTensor FoldInitDims(const phi::DenseTensor &input) {
Y
Yu Yang 已提交
120 121 122 123 124 125 126 127 128 129 130 131
  auto output = input;
  auto in_dims = input.dims();
  if (in_dims.size() == 3) {
    output.Resize({in_dims[0] * in_dims[1], in_dims[2]});
  }
  return output;
}

// Reshape a rank-3 tensor from P x M x N to M x (P * N).
// (Warning: This requires transposing data and writes into new memory.)
// Identity op if the tensor is not of rank 3.
template <typename DeviceContext, typename T>
132 133
static phi::DenseTensor FoldHeadAndLastDims(const DeviceContext &context,
                                            const phi::DenseTensor &input) {
Y
Yu Yang 已提交
134 135 136 137
  auto in_dims = input.dims();
  if (in_dims.size() != 3) {
    return input;
  }
138
  phi::DenseTensor output;
Y
Yu Yang 已提交
139 140 141
  output.Resize({in_dims[1], in_dims[0], in_dims[2]});
  output.mutable_data<T>(context.GetPlace());
  std::vector<int> axis = {1, 0, 2};
142
  phi::funcs::Transpose<DeviceContext, T, 3> trans;
Y
Yu Yang 已提交
143 144
  trans(context, input, &output, axis);
  output.Resize({in_dims[1], in_dims[0] * in_dims[2]});
M
Markus Kliegl 已提交
145

Y
Yu Yang 已提交
146 147 148 149 150 151 152 153 154 155
  return output;
}

/**
 * Reshape a tensor to 3-D or 2-D tensor by matrix descriptor.
 *
 * The shape would be [BatchSize, H, W] or [H, W].
 * If transposed, `H,W` will be swapped.
 */
static void ReshapeTensorIntoMatrixSequence(
156
    phi::DenseTensor *x, const phi::funcs::MatDescriptor &descriptor) {
Y
Yu Yang 已提交
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
  int64_t h, w;
  h = descriptor.height_;
  w = descriptor.width_;
  if (descriptor.trans_) {
    std::swap(w, h);
  }
  if (descriptor.batch_size_) {
    x->Resize({descriptor.batch_size_, h, w});
  } else {
    x->Resize({h, w});
  }
}

/**
 * Reshape the x,y,out tensor to 3-D or 2-D tensor by matrix descriptor
 * Out = matmul(x, y)
 *
 * This method will first calculate X,Y matrix sequence, and then calculate
 * the out shape.
 *
 * Assume X = [BatchSize, H1, W1], Y = [BatchSize, H2, W2]
 * The out = [BatchSize, H1, W2]
 *
 * If there is no batch size in `X` and `Y`, the out will be [H1, W2]
 * If any of `X` and `Y` has batch size BatchSize, the out will have the
 * BatchSize.
 */
184 185 186
static void ReshapeXYOutIntoMatrixSequence(phi::DenseTensor *x,
                                           phi::DenseTensor *y,
                                           phi::DenseTensor *out,
187
                                           bool trans_x,
Y
Yu Yang 已提交
188 189 190
                                           bool trans_y) {
  auto x_dim = RowMatrixFromVector(x->dims());
  auto y_dim = ColumnMatrixFromVector(y->dims());
191 192
  auto mat_dim_x = phi::funcs::CreateMatrixDescriptor(x_dim, 0, trans_x);
  auto mat_dim_y = phi::funcs::CreateMatrixDescriptor(y_dim, 0, trans_y);
Y
Yu Yang 已提交
193 194 195 196
  if (mat_dim_x.batch_size_ == 0 && mat_dim_y.batch_size_ == 0) {
    out->Resize({mat_dim_x.height_, mat_dim_y.width_});
  } else {
    out->Resize({std::max(mat_dim_x.batch_size_, mat_dim_y.batch_size_),
197 198
                 mat_dim_x.height_,
                 mat_dim_y.width_});
Y
Yu Yang 已提交
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
  }

  ReshapeTensorIntoMatrixSequence(x, mat_dim_x);
  ReshapeTensorIntoMatrixSequence(y, mat_dim_y);
}

// Using dimensional constraints on matrix multiplication, it is
// straight-forward to check the following table for when X and Y
// are both matrices.
//
// transpose_X | False    | True     | False    | True
// transpose_Y | False    | False    | True     | True
// -----------+----------+----------+----------+-----------
//        dX = | dOut Y^T | Y dOut^T | dOut Y   | Y^T dOut^T
//        dY = | X^T dOut | X dOut   | dOut^T X | dOut^T X^T
//
// When X is a vector of size K, we treat it instead as a matrix of shape
// (1, K). Similarly, when Y is a vector of size K, we treat it instead as
// a matrix of shape (K, 1).
//
// When X and Y are both 3-dimensional tensors, then the first dimension
// the batch dimension can be ignored and the exact same formulas apply
// as for two matrices.
//
// Finally, when, e.g., X is a 3-dimensional tensor but Y is a matrix, we end
// up with formulas like
//
//   dY_{ij} = \sum_{p, m} X_{pmi} dOut_{pmj}
//
// To handle this sort of scenario, we reshape X : P x M x K, dOut: P x M x N
// to X: (P * M) x K, dOut: (P * M) x N.
template <typename DeviceContext, typename T>
class MatMulGradKernel : public framework::OpKernel<T> {
 public:
Y
yuyang18 已提交
233
  void MatMul(const framework::ExecutionContext &context,
234
              const phi::DenseTensor &a,
235
              bool trans_a,
236
              const phi::DenseTensor &b,
237
              bool trans_b,
238
              phi::DenseTensor *out) const {
Y
Yu Yang 已提交
239
    out->mutable_data<T>(context.GetPlace());
240 241 242
    auto blas = phi::funcs::GetBlas<DeviceContext, T>(context);
    auto mat_dim_a = phi::funcs::CreateMatrixDescriptor(a.dims(), 0, trans_a);
    auto mat_dim_b = phi::funcs::CreateMatrixDescriptor(b.dims(), 0, trans_b);
243 244

    int head_number = 1;
245 246
#if defined(PADDLE_WITH_MKLML) && !defined(PADDLE_WITH_CUDA) && \
    !defined(PADDLE_WITH_HIP)
247 248 249
    if (context.HasAttr("head_number")) {
      head_number = context.Attr<int>("head_number");
    }
250 251 252 253 254 255 256 257 258
#endif

    if (head_number <= 1 && a.dims().size() == 3 && b.dims().size() <= 2) {
      // the transpose_X must be false, if is true, the transpose cost much time
      if (!trans_a) {
        mat_dim_a.height_ *= mat_dim_a.batch_size_;
        mat_dim_a.batch_size_ = 0;
      }
    }
259 260 261 262 263 264 265
    blas.MatMul(a,
                mat_dim_a,
                b,
                mat_dim_b,
                static_cast<T>(context.Attr<float>("alpha")),
                out,
                T(0));
Y
Yu Yang 已提交
266 267
  }

Y
yuyang18 已提交
268
  void CalcInputGrad(const framework::ExecutionContext &context,
269
                     const phi::DenseTensor &a,
270 271
                     bool trans_a,
                     bool is_fold_init_dims_a,
272
                     const phi::DenseTensor &b,
273 274
                     bool trans_b,
                     bool is_fold_init_dims_b,
275
                     phi::DenseTensor *out) const {
Y
Yu Yang 已提交
276 277 278 279 280 281
    if (out == nullptr) return;
    bool need_combine = (a.dims().size() == 3 || b.dims().size() == 3) &&
                        out->dims().size() == 2;
    if (!need_combine) {
      MatMul(context, a, trans_a, b, trans_b, out);
    } else {
Y
yuyang18 已提交
282
      auto &ctx = context.template device_context<DeviceContext>();
283 284 285 286 287 288 289
      MatMul(
          context,
          is_fold_init_dims_a ? FoldInitDims(a)
                              : FoldHeadAndLastDims<DeviceContext, T>(ctx, a),
          trans_a,
          is_fold_init_dims_b ? FoldInitDims(b)
                              : FoldHeadAndLastDims<DeviceContext, T>(ctx, b),
290 291
          trans_b,
          out);
Y
Yu Yang 已提交
292 293 294
    }
  }

Y
yuyang18 已提交
295
  void Compute(const framework::ExecutionContext &context) const override {
296 297 298 299 300
    auto x = *context.Input<phi::DenseTensor>("X");
    auto y = *context.Input<phi::DenseTensor>("Y");
    auto dout = *context.Input<phi::DenseTensor>(framework::GradVarName("Out"));
    auto *dx = context.Output<phi::DenseTensor>(framework::GradVarName("X"));
    auto *dy = context.Output<phi::DenseTensor>(framework::GradVarName("Y"));
Y
Yu Yang 已提交
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
    bool transpose_x = context.Attr<bool>("transpose_X");
    bool transpose_y = context.Attr<bool>("transpose_Y");

    ReshapeXYOutIntoMatrixSequence(&x, &y, &dout, transpose_x, transpose_y);
    framework::DDim dx_dims;
    if (dx) {
      dx_dims = dx->dims();
      if (dx_dims != x.dims()) {
        dx->Resize(x.dims());
      }
    }

    framework::DDim dy_dims;
    if (dy) {
      dy_dims = dy->dims();
      if (dy_dims != y.dims()) {
        dy->Resize(y.dims());
      }
    }

    if (transpose_x && transpose_y) {
      CalcInputGrad(context, y, true, true, dout, true, false, dx);
      CalcInputGrad(context, dout, true, true, x, true, false, dy);
    } else if (transpose_x) {
      CalcInputGrad(context, y, false, false, dout, true, false, dx);
      CalcInputGrad(context, x, false, false, dout, false, true, dy);
    } else if (transpose_y) {
      CalcInputGrad(context, dout, false, false, y, false, true, dx);
      CalcInputGrad(context, dout, true, true, x, false, true, dy);
    } else {
      CalcInputGrad(context, dout, false, false, y, true, false, dx);
      CalcInputGrad(context, x, true, true, dout, false, true, dy);
    }

    if (dx) {
      if (dx_dims != x.dims()) {
        dx->Resize(dx_dims);
      }
    }
    if (dy) {
      if (dy_dims != y.dims()) {
        dy->Resize(dy_dims);
      }
    }
  }
};
M
Markus Kliegl 已提交
347

348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
framework::DDim GetDimForInput(const framework::InferShapeContext &ctx,
                               std::string input_name) {
  auto shape = ctx.Attrs().Get<std::vector<int>>("fused_reshape_" + input_name);
  auto axis =
      ctx.Attrs().Get<std::vector<int>>("fused_transpose_" + input_name);
  auto dim = ctx.GetInputDim(input_name);

  PADDLE_ENFORCE_GT(dim.size(),
                    0,
                    platform::errors::InvalidArgument(
                        "The Input(%s) has not been initialized properly. The "
                        "shape of Input(%s) = [%s].",
                        dim));

  if (!shape.empty() && !axis.empty()) {
    dim = dim.reshape(shape).transpose(axis);
  }
  return dim;
}

368 369 370 371
template <typename DeviceContext, typename T>
class MatMulDoubleGradKernel : public framework::OpKernel<T> {
 public:
  void MatMul(const framework::ExecutionContext &context,
372
              const phi::DenseTensor &a,
373
              bool trans_a,
374
              const phi::DenseTensor &b,
375 376
              bool trans_b,
              bool flag,
377
              phi::DenseTensor *out) const {
378
    out->mutable_data<T>(context.GetPlace());
379 380 381
    auto blas = phi::funcs::GetBlas<DeviceContext, T>(context);
    auto mat_dim_a = phi::funcs::CreateMatrixDescriptor(a.dims(), 0, trans_a);
    auto mat_dim_b = phi::funcs::CreateMatrixDescriptor(b.dims(), 0, trans_b);
382 383

    int head_number = 1;
384 385
#if defined(PADDLE_WITH_MKLML) && !defined(PADDLE_WITH_CUDA) && \
    !defined(PADDLE_WITH_HIP)
386 387 388 389 390 391 392 393 394 395
    head_number = context.Attr<int>("head_number");
#endif

    if (head_number <= 1 && a.dims().size() == 3 && b.dims().size() <= 2) {
      // the transpose_X must be false, if is true, the transpose cost much time
      if (!trans_a) {
        mat_dim_a.height_ *= mat_dim_a.batch_size_;
        mat_dim_a.batch_size_ = 0;
      }
    }
396 397 398 399 400 401
    blas.MatMul(a,
                mat_dim_a,
                b,
                mat_dim_b,
                static_cast<T>(context.Attr<float>("alpha")),
                out,
402 403 404 405
                static_cast<T>(flag));
  }

  void CalcInputGrad(const framework::ExecutionContext &context,
406
                     const phi::DenseTensor &a,
407 408
                     bool trans_a,
                     bool is_fold_init_dims_a,
409
                     const phi::DenseTensor &b,
410 411 412
                     bool trans_b,
                     bool is_fold_init_dims_b,
                     bool flag,
413
                     phi::DenseTensor *out) const {
414 415 416 417 418 419 420
    if (out == nullptr) return;
    bool need_combine = (a.dims().size() == 3 || b.dims().size() == 3) &&
                        out->dims().size() == 2;
    if (!need_combine) {
      MatMul(context, a, trans_a, b, trans_b, flag, out);
    } else {
      auto &ctx = context.template device_context<DeviceContext>();
421 422 423 424 425 426 427
      MatMul(
          context,
          is_fold_init_dims_a ? FoldInitDims(a)
                              : FoldHeadAndLastDims<DeviceContext, T>(ctx, a),
          trans_a,
          is_fold_init_dims_b ? FoldInitDims(b)
                              : FoldHeadAndLastDims<DeviceContext, T>(ctx, b),
428 429 430
          trans_b,
          flag,
          out);
431 432 433 434
    }
  }

  void Compute(const framework::ExecutionContext &context) const override {
435 436
    auto x = *context.Input<phi::DenseTensor>("X");
    auto y = *context.Input<phi::DenseTensor>("Y");
437 438 439
    auto dout = *context.Input<phi::DenseTensor>("DOut");
    auto *ddx = context.Input<phi::DenseTensor>("DDX");
    auto *ddy = context.Input<phi::DenseTensor>("DDY");
440

441 442 443
    auto *dx = context.Output<phi::DenseTensor>("DX");
    auto *dy = context.Output<phi::DenseTensor>("DY");
    auto *ddout = context.Output<phi::DenseTensor>("DDOut");
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482

    bool transpose_x = context.Attr<bool>("transpose_X");
    bool transpose_y = context.Attr<bool>("transpose_Y");

    ReshapeXYOutIntoMatrixSequence(&x, &y, &dout, transpose_x, transpose_y);

    framework::DDim dx_dims;
    if (dx) {
      dx_dims = dx->dims();
      if (dx_dims != x.dims()) {
        dx->Resize(x.dims());
      }
    }

    framework::DDim dy_dims;
    if (dy) {
      dy_dims = dy->dims();
      if (dy_dims != y.dims()) {
        dy->Resize(y.dims());
      }
    }

    framework::DDim ddout_dims;
    if (ddout) {
      ddout_dims = ddout->dims();
      if (ddout_dims != dout.dims()) {
        ddout->Resize(dout.dims());
      }
    }

    bool ddout_flag = false;
    if (ddx) {
      auto ddx_mat = *ddx;
      if (ddx_mat.dims() != x.dims()) {
        ddx_mat.Resize(x.dims());
      }
      if (dy) {
        if (transpose_x && transpose_y) {
          // dy = dout' * ddx'
483 484
          CalcInputGrad(
              context, dout, true, true, ddx_mat, true, false, false, dy);
485 486
        } else if (transpose_x) {
          // dy = ddx * dout
487 488
          CalcInputGrad(
              context, ddx_mat, false, false, dout, false, true, false, dy);
489 490
        } else if (transpose_y) {
          // dy = dout' * ddx
491 492
          CalcInputGrad(
              context, dout, true, true, ddx_mat, false, true, false, dy);
493 494
        } else {
          // dy = ddx' * dout
495 496
          CalcInputGrad(
              context, ddx_mat, true, true, dout, false, true, false, dy);
497 498 499 500
        }
      }

      if (ddout) {
501 502 503 504 505 506 507 508 509
        CalcInputGrad(context,
                      ddx_mat,
                      transpose_x,
                      true,
                      y,
                      transpose_y,
                      false,
                      ddout_flag,
                      ddout);
510 511 512 513 514 515 516 517 518 519 520 521
        ddout_flag = true;
      }
    }

    if (ddy) {
      auto ddy_mat = *ddy;
      if (ddy_mat.dims() != y.dims()) {
        ddy_mat.Resize(y.dims());
      }
      if (dx) {
        if (transpose_x && transpose_y) {
          // dx = ddy' * dout'
522 523
          CalcInputGrad(
              context, ddy_mat, true, true, dout, true, false, false, dx);
524 525
        } else if (transpose_x) {
          // dx = ddy * dout'
526 527
          CalcInputGrad(
              context, ddy_mat, false, false, dout, true, false, false, dx);
528 529
        } else if (transpose_y) {
          // dx = dout * ddy
530 531
          CalcInputGrad(
              context, dout, false, false, ddy_mat, false, true, false, dx);
532 533
        } else {
          // dx = dout * ddy'
534 535
          CalcInputGrad(
              context, dout, false, false, ddy_mat, true, false, false, dx);
536 537 538 539
        }
      }

      if (ddout) {
540 541 542 543 544 545 546 547 548
        CalcInputGrad(context,
                      x,
                      transpose_x,
                      true,
                      ddy_mat,
                      transpose_y,
                      false,
                      ddout_flag,
                      ddout);
549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571
      }
    }

    if (dx) {
      if (dx_dims != x.dims()) {
        dx->Resize(dx_dims);
      }
    }

    if (dy) {
      if (dy_dims != y.dims()) {
        dy->Resize(dy_dims);
      }
    }

    if (ddout) {
      if (ddout_dims != dout.dims()) {
        ddout->Resize(ddout_dims);
      }
    }
  }
};

M
Markus Kliegl 已提交
572 573 574 575 576
class MatMulOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
Y
yuyang18 已提交
577
  void InferShape(framework::InferShapeContext *context) const override {
578 579 580
    OP_INOUT_CHECK(context->HasInput("X"), "Input", "X", "matmul");
    OP_INOUT_CHECK(context->HasInput("Y"), "Input", "Y", "matmul");
    OP_INOUT_CHECK(context->HasOutput("Out"), "Output", "Out", "matmul");
M
Markus Kliegl 已提交
581

582 583
    auto dim_x = GetDimForInput(*context, "X");
    auto dim_y = GetDimForInput(*context, "Y");
584 585 586 587 588 589

#ifdef PADDLE_WITH_MKLDNN
    // (jczaja): For NHWC execution output shape needs
    // to be computed like instead x*y we are to do y*x
    bool channelwise_onednn =
        context->IsRunMKLDNNKernel() &&
590
        (phi::OneDNNContext::tls().get_cur_paddle_data_layout() ==
591
         phi::DataLayout::kNHWC);
592 593 594 595 596
    if (channelwise_onednn) {
      std::swap(dim_x, dim_y);
    }
#endif

597
    auto mat_dim_x = phi::funcs::CreateMatrixDescriptor(
598 599
        RowMatrixFromVector(dim_x),
        0,
600
        context->Attrs().Get<bool>("transpose_X"));
601
    auto mat_dim_y = phi::funcs::CreateMatrixDescriptor(
602 603
        ColumnMatrixFromVector(dim_y),
        0,
604
        context->Attrs().Get<bool>("transpose_Y"));
C
chengduoZH 已提交
605

606 607 608 609 610 611 612
    if (mat_dim_x.width_ == -1) {
      mat_dim_x.width_ = mat_dim_y.height_;
    }
    if (mat_dim_y.height_ == -1) {
      mat_dim_y.height_ = mat_dim_x.width_;
    }

P
phlrain 已提交
613
    if (context->IsRuntime()) {
614
      PADDLE_ENFORCE_EQ(
615 616
          mat_dim_x.batch_size_ == mat_dim_y.batch_size_ ||
              mat_dim_x.batch_size_ == 0 || mat_dim_y.batch_size_ == 0,
617 618 619 620 621 622 623
          true,
          platform::errors::InvalidArgument(
              "The batch size of the two matrices should be equal, or "
              "at least one is zero.\n"
              "But received X's shape: %s, Y's shape: %s.",
              DumpMatrixShape(mat_dim_x).c_str(),
              DumpMatrixShape(mat_dim_y).c_str()));
P
phlrain 已提交
624
    }
625
    int64_t dim_out_y = mat_dim_y.width_;
626 627
#if defined(PADDLE_WITH_MKLML) && !defined(PADDLE_WITH_CUDA) && \
    !defined(PADDLE_WITH_HIP)
628
    int head_number = context->Attrs().Get<int>("head_number");
629
    bool split_vertical_y = (mat_dim_x.width_ != mat_dim_y.height_);
630 631
    if (context->IsRuntime()) {
      PADDLE_ENFORCE_LE(
632 633
          head_number,
          mat_dim_x.width_,
634 635 636 637
          platform::errors::InvalidArgument(
              "Unsatisfied mkl acceleration library requirements: "
              "The number of heads "
              "(%d) must be equal to X's width. But received X's shape: %s.",
638 639
              head_number,
              DumpMatrixShape(mat_dim_x).c_str()));
640 641 642 643

      if (!split_vertical_y && head_number > 0) {
        dim_out_y = head_number * mat_dim_y.width_;
      }
644
    }
645
#else
646 647
    PADDLE_ENFORCE_EQ(mat_dim_x.width_,
                      mat_dim_y.height_,
648 649
                      platform::errors::InvalidArgument(
                          "Input X's width should be equal to the Y's height, "
650
                          "but received X's shape: [%s], "
651
                          "Y's shape: [%s].",
652 653
                          dim_x,
                          dim_y));
654 655
#endif

656
    std::vector<int64_t> dim_out;
Y
Yu Yang 已提交
657
    if (mat_dim_x.batch_size_ != 0) {
658
      dim_out = phi::vectorize(dim_x);
Y
Yu Yang 已提交
659
      dim_out[dim_out.size() - 2] = mat_dim_x.height_;
660
      dim_out[dim_out.size() - 1] = dim_out_y;
Y
Yu Yang 已提交
661
    } else if (mat_dim_y.batch_size_ != 0) {
662
      dim_out = phi::vectorize(dim_y);
Y
Yu Yang 已提交
663
      dim_out[dim_out.size() - 2] = mat_dim_x.height_;
664
      dim_out[dim_out.size() - 1] = dim_out_y;
Y
Yu Yang 已提交
665
    } else {
666
      dim_out = {mat_dim_x.height_, dim_out_y};
M
Markus Kliegl 已提交
667 668
    }

Y
Yu Yang 已提交
669 670 671
    if (dim_x.size() == 1 && dim_out[dim_out.size() - 2] == 1) {
      std::swap(dim_out[dim_out.size() - 2], dim_out[dim_out.size() - 1]);
      dim_out.resize(dim_out.size() - 1);
M
Markus Kliegl 已提交
672 673
    }

Y
Yu Yang 已提交
674 675
    if (dim_y.size() == 1 && dim_out[dim_out.size() - 1] == 1) {
      dim_out.resize(dim_out.size() - 1);
M
Markus Kliegl 已提交
676 677
    }

Y
Yu Yang 已提交
678 679
    if (dim_out.empty()) {
      dim_out = {1};
M
Markus Kliegl 已提交
680
    }
681

682
    framework::DDim ddim_out = phi::make_ddim(dim_out);
683

684 685 686 687 688 689 690 691
#ifdef PADDLE_WITH_MKLDNN
    auto shape = context->Attrs().Get<std::vector<int>>("fused_reshape_Out");
    auto axis = context->Attrs().Get<std::vector<int>>("fused_transpose_Out");

    if (!shape.empty() && !axis.empty()) {
      ddim_out = ddim_out.transpose(axis).reshape(shape);
    }
#endif
692 693
    context->SetOutputDim("Out", ddim_out);
    context->ShareLoD("X", "Out");
M
Markus Kliegl 已提交
694
  }
695

696
  phi::KernelKey GetExpectedKernelType(
697
      const framework::ExecutionContext &ctx) const override {
698 699
    auto input_data_type =
        OperatorWithKernel::IndicateOrPromoteVarDataTypes(ctx, "X", "Y");
700
    return phi::KernelKey(input_data_type, ctx.GetPlace());
701
  }
702

703
  phi::KernelKey GetKernelTypeForVar(
704
      const std::string &var_name,
705
      const phi::DenseTensor &tensor,
706 707
      const phi::KernelKey &expected_kernel_type) const override {
    if (framework::IsComplexType(expected_kernel_type.dtype())) {
708
      // only promote inputs’s types when contains complex input
709
      return phi::KernelKey(tensor.place(), tensor.layout(), tensor.dtype());
710
    } else {
711 712 713 714
#ifdef PADDLE_WITH_MKLDNN
      // When matmul is first oneDNN op in a chain (there was some non oneDNN op
      // previously)
      // then we also need to rotate shape NHWC -> NCWH
715
      if ((expected_kernel_type.layout() == phi::DataLayout::ONEDNN) &&
716
          (tensor.layout() != phi::DataLayout::ONEDNN) &&
717 718
          phi::OneDNNContext::tls().get_cur_paddle_data_layout() ==
              phi::DataLayout::kNHWC) {
719 720 721
        return phi::KernelKey(tensor.place(),
                              phi::DataLayout::kNHWC,
                              expected_kernel_type.dtype());
722 723
      }
#endif
724 725
      return phi::KernelKey(
          tensor.place(), tensor.layout(), expected_kernel_type.dtype());
726 727
    }
  }
M
Markus Kliegl 已提交
728 729 730 731
};

class MatMulOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
732
  void Make() override {
M
Markus Kliegl 已提交
733 734 735 736 737 738 739 740 741 742 743
    AddInput("X", "The first input of MatMul op");
    AddInput("Y", "The second input of MatMul op");
    AddOutput("Out", "The output of MatMul op");
    AddAttr<bool>("transpose_X",
                  R"DOC(If true, use the transpose of `X`.
        )DOC")
        .SetDefault(false);
    AddAttr<bool>("transpose_Y",
                  R"DOC(If true, use the transpose of `Y`.
        )DOC")
        .SetDefault(false);
S
sneaxiy 已提交
744
    AddAttr<float>("alpha", "The scale of Out").SetDefault(1.0f);
745 746 747
    AddAttr<bool>(
        "use_mkldnn",
        "(bool, default false) Indicates if MKL-DNN kernel will be used")
748 749
        .SetDefault(false)
        .AsExtra();
750 751
    AddAttr<std::vector<int>>("fused_reshape_X",
                              R"DOC(Shape of fused reshape of `X` input.)DOC")
752 753
        .SetDefault({})
        .AsExtra();
754 755
    AddAttr<std::vector<int>>("fused_reshape_Y",
                              R"DOC(Shape of fused reshape of `Y` input.)DOC")
756 757
        .SetDefault({})
        .AsExtra();
758 759
    AddAttr<std::vector<int>>("fused_transpose_X",
                              R"DOC(Axis of fused transpose of `X` input.)DOC")
760 761
        .SetDefault({})
        .AsExtra();
762 763
    AddAttr<std::vector<int>>("fused_transpose_Y",
                              R"DOC(Axis of fused transpose of `Y` input.)DOC")
764 765
        .SetDefault({})
        .AsExtra();
766 767 768
    AddAttr<std::vector<int>>(
        "fused_reshape_Out",
        R"DOC(When MKLDNN MatMul_transpose_reshape fuse activated, "
H
HongyuJia 已提交
769
              "it's a shape attribute of fused reshape for `Out` output.)DOC")
770 771
        .SetDefault({})
        .AsExtra();
772 773 774
    AddAttr<std::vector<int>>(
        "fused_transpose_Out",
        R"DOC(When MKLDNN MatMul_transpose_reshape fuse activated, "
H
HongyuJia 已提交
775
              "it's a axis attribute of fused transpose for `Out` output.)DOC")
776 777
        .SetDefault({})
        .AsExtra();
778 779 780 781
    AddAttr<bool>(
        "use_quantizer",
        "(bool, default false) "
        "This parameter is no longer used. Use 'mkldnn_data_type' instead.")
782 783
        .SetDefault(false)
        .AsExtra();
784 785 786 787
    AddAttr<std::string>(
        "mkldnn_data_type",
        "(string, default \"float32\"). Data type of mkldnn kernel")
        .SetDefault("float32")
788 789
        .InEnum({"float32", "int8", "bfloat16"})
        .AsExtra();
790
    /* int8 parameters */
791 792
    AddAttr<float>("Scale_x",
                   "(float, default 1.0f), The quantize scale of X tensor")
793 794
        .SetDefault(1.0f)
        .AsExtra();
795 796
    AddAttr<float>("Scale_y",
                   "(float, default 1.0f), The quantize scale of Y tensor")
797 798
        .SetDefault(1.0f)
        .AsExtra();
799 800
    AddAttr<float>("Scale_out",
                   "(float, default 1.0f), The quantize scale of output data")
801 802
        .SetDefault(1.0f)
        .AsExtra();
803 804 805
    AddAttr<bool>("force_fp32_output",
                  "(bool, default false) Force INT8 kernel output FP32, only "
                  "used in MKL-DNN INT8")
806 807
        .SetDefault(false)
        .AsExtra();
808

809 810
#if defined(PADDLE_WITH_MKLML) && !defined(PADDLE_WITH_CUDA) && \
    !defined(PADDLE_WITH_HIP)
811 812 813
    AddAttr<int>("head_number", "The number of heads of the matrix")
        .SetDefault(1);
#endif
M
Markus Kliegl 已提交
814
    AddComment(R"DOC(
K
kexinzhao 已提交
815 816
MatMul Operator.
This operator is used to perform (batched) matrix multiplication
M
Markus Kliegl 已提交
817 818 819 820 821 822 823 824 825 826 827 828
over the last two dimensions of the input tensors `X` and `Y`.
If a transpose flag is specified, the last two dimensions of the
tensor are transposed. If the tensor is rank-1 of shape [D], then
for `X` it is treated as [1, D] in nontransposed form and as [D, 1]
in transposed form, whereas for `Y` it is the opposite: It is treated
as [D, 1] in nontransposed form and as [1, D] in transposed form.
Examples without transpose:
- X: [K], Y: [K] => Out: [1]
- X: [K], Y: [K, N] => Out: [N]
- X: [B, M, K], Y: [K] => Out: [B, M]
- X: [M, K], Y: [B, K, N] => Out: [B, M, N]
- X: [B, M, K], Y: [B, K, N] => Out: [B, M, N]
C
chengduoZH 已提交
829
- X: [B, ..., M, K], Y: [B, ..., K, N] => Out: [B, ..., M, N]
830 831
Example of matrix multiplication with head_number of H
- X: [B, M, K], Y: [B, K, N] => Out: [B, M, H * N]
M
Markus Kliegl 已提交
832 833
The behavior is designed to be similar to the `numpy.matmul` function.
The differences are:
C
chengduoZH 已提交
834 835
- When the rank of the input data is less than or equal to 3, it
  is similar to the `numpy.matmul` function.
C
chengduoZH 已提交
836
- When the rank of the input is greater than 3, the rank of X and
C
chengduoZH 已提交
837
  Y must be equal, and the first `rank - 2` dimensions must be equal.
M
Markus Kliegl 已提交
838
- We add `transpose_X` and `transpose_Y` flags.
839 840 841
- We add `head_number` attribute, which is used to multiple two matrixes head
  by head, and eventually concatenates the output of several (head_number)
  small matrixes multiplication.
M
Markus Kliegl 已提交
842
Both the input `X` and `Y` can carry the LoD (Level of Details) information,
K
kexinzhao 已提交
843
or not. But the output only shares the LoD information with input `X`.
M
Markus Kliegl 已提交
844 845 846 847 848 849 850 851 852
)DOC");
  }
};

class MatMulOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
Y
yuyang18 已提交
853
  void InferShape(framework::InferShapeContext *context) const override {
854 855
    OP_INOUT_CHECK(context->HasInput("X"), "Input", "X", "matmul");
    OP_INOUT_CHECK(context->HasInput("Y"), "Input", "Y", "matmul");
856 857 858 859
    OP_INOUT_CHECK(context->HasInput(framework::GradVarName("Out")),
                   "Input",
                   "Out@GRAD",
                   "matmul");
M
Markus Kliegl 已提交
860 861 862 863 864 865 866 867 868 869 870 871 872
    auto x_dims = context->GetInputDim("X");
    auto y_dims = context->GetInputDim("Y");

    auto x_grad_name = framework::GradVarName("X");
    auto y_grad_name = framework::GradVarName("Y");

    if (context->HasOutput(x_grad_name)) {
      context->SetOutputDim(x_grad_name, x_dims);
    }
    if (context->HasOutput(y_grad_name)) {
      context->SetOutputDim(y_grad_name, y_dims);
    }
  }
873

874
  phi::KernelKey GetExpectedKernelType(
875 876 877
      const framework::ExecutionContext &ctx) const override {
    auto input_data_type =
        OperatorWithKernel::IndicateOrPromoteVarDataTypes(ctx, "X", "Y");
878
    return phi::KernelKey(input_data_type, ctx.GetPlace());
879
  }
M
Markus Kliegl 已提交
880 881
};

H
hong 已提交
882 883
template <typename T>
class MatMulOpGradMaker : public framework::SingleGradOpMaker<T> {
Y
Yu Yang 已提交
884
 public:
H
hong 已提交
885
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
Y
Yu Yang 已提交
886 887

 protected:
888
  void Apply(GradOpPtr<T> retv) const override {
Y
Yu Yang 已提交
889
    retv->SetType("matmul_grad");
H
hong 已提交
890 891 892 893 894 895
    retv->SetInput("X", this->Input("X"));
    retv->SetInput("Y", this->Input("Y"));
    retv->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    retv->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    retv->SetOutput(framework::GradVarName("Y"), this->InputGrad("Y"));
    retv->SetAttrMap(this->Attrs());
Y
Yu Yang 已提交
896 897
  }
};
898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952

class MatMulOpDoubleGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext *context) const override {
    OP_INOUT_CHECK(context->HasInput("X"), "Input", "X", "matmul");
    OP_INOUT_CHECK(context->HasInput("Y"), "Input", "Y", "matmul");
    OP_INOUT_CHECK(context->HasInput("DOut"), "Input", "DOut", "matmul");

    if (context->HasOutput("DX") && context->HasInput("DDY")) {
      context->ShareDim("X", "DX");
    }

    if (context->HasOutput("DY") && context->HasInput("DDX")) {
      context->ShareDim("Y", "DY");
    }

    if (context->HasOutput("DDOut") &&
        (context->HasInput("DDY") || context->HasInput("DDX"))) {
      context->ShareDim("DOut", "DDOut");
    }
  }
};

template <typename T>
class MatMulOpDoubleGradMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> retv) const override {
    retv->SetType("matmul_grad_grad");
    retv->SetInput("X", this->Input("X"));
    retv->SetInput("Y", this->Input("Y"));
    retv->SetInput("DOut", this->Input(framework::GradVarName("Out")));
    retv->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    retv->SetInput("DDY", this->OutputGrad(framework::GradVarName("Y")));

    auto ddx = this->OutputGrad(framework::GradVarName("X"));
    auto ddy = this->OutputGrad(framework::GradVarName("Y"));

    if (!ddx.empty() || !ddy.empty()) {
      retv->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
    }
    retv->SetOutput(
        "DX", ddy.empty() ? this->EmptyInputGrad() : this->InputGrad("X"));
    retv->SetOutput(
        "DY", ddx.empty() ? this->EmptyInputGrad() : this->InputGrad("Y"));

    retv->SetAttrMap(this->Attrs());
  }
};

M
Markus Kliegl 已提交
953 954 955 956
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
957 958 959
REGISTER_OPERATOR(matmul,
                  ops::MatMulOp,
                  ops::MatMulOpMaker,
H
hong 已提交
960 961
                  ops::MatMulOpGradMaker<paddle::framework::OpDesc>,
                  ops::MatMulOpGradMaker<paddle::imperative::OpBase>);
962 963
REGISTER_OPERATOR(matmul_grad,
                  ops::MatMulOpGrad,
964 965 966
                  ops::MatMulOpDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::MatMulOpDoubleGradMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(matmul_grad_grad, ops::MatMulOpDoubleGrad);
L
Leo Chen 已提交
967 968 969 970 971 972 973 974 975 976
REGISTER_OP_CPU_KERNEL(matmul,
                       ops::MatMulKernel<phi::CPUContext, float>,
                       ops::MatMulKernel<phi::CPUContext, double>);
REGISTER_OP_CPU_KERNEL(matmul_grad,
                       ops::MatMulGradKernel<phi::CPUContext, float>,
                       ops::MatMulGradKernel<phi::CPUContext, double>);

REGISTER_OP_CPU_KERNEL(matmul_grad_grad,
                       ops::MatMulDoubleGradKernel<phi::CPUContext, float>,
                       ops::MatMulDoubleGradKernel<phi::CPUContext, double>);
977

978
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
Y
Yu Yang 已提交
979
REGISTER_OP_CUDA_KERNEL(
980
    matmul,
L
Leo Chen 已提交
981 982 983
    ops::MatMulKernel<phi::GPUContext, float>,
    ops::MatMulKernel<phi::GPUContext, double>,
    ops::MatMulKernel<phi::GPUContext, paddle::platform::float16>);
Y
Yu Yang 已提交
984 985
REGISTER_OP_CUDA_KERNEL(
    matmul_grad,
L
Leo Chen 已提交
986 987 988 989 990 991
    ops::MatMulGradKernel<phi::GPUContext, float>,
    ops::MatMulGradKernel<phi::GPUContext, double>,
    ops::MatMulGradKernel<phi::GPUContext, paddle::platform::float16>);
REGISTER_OP_CUDA_KERNEL(matmul_grad_grad,
                        ops::MatMulDoubleGradKernel<phi::GPUContext, float>,
                        ops::MatMulDoubleGradKernel<phi::GPUContext, double>);
Y
Yu Yang 已提交
992
#endif
993

994 995
REGISTER_OP_VERSION(matmul).AddCheckpoint(
    R"ROC(Register matmul for adding the attribute of
996
       fused_reshape_Y)ROC",
997 998 999 1000 1001 1002
    paddle::framework::compatible::OpVersionDesc().NewAttr(
        "fused_reshape_Y",
        "In order to support the function of fused the input Y "
        " and input X into the input X when "
        "using the operator of matmul, and get raw shape of input Y.",
        std::vector<int>{}));