test_prelu_op.py 15.6 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Z
zchen0211 已提交
17 18
import unittest
import numpy as np
19
import paddle.fluid as fluid
M
minqiyang 已提交
20
import six
21
import paddle.fluid.core as core
22
from paddle.fluid import Program, program_guard
23
from op_test import OpTest, skip_check_grad_ci
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
import paddle
import paddle.nn.functional as F


def ref_prelu(x, weight):
    x_t = x.copy()
    weight = weight.reshape(1, -1, 1, 1)
    neg_indices = x <= 0
    assert x.shape == neg_indices.shape
    x_t[neg_indices] = (x_t * weight)[neg_indices]
    return (x_t, )


def ref_prelu_nn(x, num_parameters, init):
    weight_np = np.full((num_parameters), init)
    return ref_prelu(x, weight_np)


class TestFunctionalPReluAPI(unittest.TestCase):
    def setUp(self):
        self.place = paddle.CUDAPlace(0) if core.is_compiled_with_cuda(
        ) else paddle.CPUPlace()
        self.x_np = np.random.uniform(-1., 1., [1, 2, 3, 4]).astype('float32')
        self.weight_np_0 = np.random.randn(1).astype('float32')
        self.weight_np_1 = np.random.randn(self.x_np.shape[1]).astype('float32')

    def static_check(self, weight_np):
        with paddle.static.program_guard(paddle.static.Program()):
52 53
            x = paddle.fluid.data('X', self.x_np.shape, 'float32')
            weight = paddle.fluid.data('Alpha', weight_np.shape, 'float32')
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
            out = F.prelu(x, weight)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np,
                                'Alpha': weight_np},
                          fetch_list=[out])
        out_ref = ref_prelu(self.x_np, weight_np)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

    def dygraph_check(self, weight_np):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        weight = paddle.to_tensor(weight_np)
        out = F.prelu(x, weight)
        out_ref = ref_prelu(self.x_np, weight_np)
        self.assertEqual(np.allclose(out_ref, out.numpy()), True)
        paddle.enable_static()

    def test_static_api(self):
        self.static_check(self.weight_np_0)
        self.static_check(self.weight_np_1)
Z
zchen0211 已提交
74

75 76 77
    def test_dygraph_api(self):
        self.dygraph_check(self.weight_np_0)
        self.dygraph_check(self.weight_np_1)
Z
zchen0211 已提交
78

79 80
    def test_error(self):
        with paddle.static.program_guard(paddle.static.Program()):
81
            weight_fp32 = paddle.fluid.data(
82
                name='weight_fp32', shape=[1], dtype='float32')
83
            # The input type must be Variable.
84
            self.assertRaises(TypeError, F.prelu, x=1, weight=weight_fp32)
85
            # The input dtype must be float16, float32, float64.
86 87
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[2, 3], dtype='int32')
88 89
            self.assertRaises(TypeError, F.prelu, x=x_int32, weight=weight_fp32)
            # support the input dtype is float16
90 91
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[2, 3], dtype='float16')
92 93 94 95 96 97 98 99 100 101 102 103 104
            F.prelu(x=x_fp16, weight=weight_fp32)


class TestNNPReluAPI(unittest.TestCase):
    def setUp(self):
        self.place = paddle.CUDAPlace(0) if core.is_compiled_with_cuda(
        ) else paddle.CPUPlace()
        self.x_np = np.ones([1, 2, 3, 4]).astype('float32')

    def test_static_api(self):
        startup_program = paddle.static.Program()
        train_program = paddle.static.Program()
        with paddle.static.program_guard(train_program, startup_program):
105 106
            x = paddle.fluid.data(
                name='X', shape=self.x_np.shape, dtype='float32')
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
            m = paddle.nn.PReLU()
            out = m(x)
            exe = paddle.static.Executor(self.place)
            exe.run(startup_program)
            res = exe.run(train_program,
                          feed={'X': self.x_np},
                          fetch_list=[out])
        out_ref = ref_prelu_nn(self.x_np, 1, 0.25)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)

        x = paddle.to_tensor(self.x_np)
        m = paddle.nn.PReLU()
        out = m(x)
        out_ref = ref_prelu_nn(self.x_np, 1, 0.25)
        self.assertEqual(np.allclose(out_ref, out.numpy()), True)

        x = paddle.to_tensor(self.x_np)
        m = paddle.nn.PReLU(num_parameters=self.x_np.shape[1])
        out = m(x)
        out_ref = ref_prelu_nn(self.x_np, self.x_np.shape[1], 0.25)
        self.assertEqual(np.allclose(out_ref, out.numpy()), True)

        x = paddle.to_tensor(self.x_np)
        m = paddle.nn.PReLU(init=0.5)
        out = m(x)
        out_ref = ref_prelu_nn(self.x_np, 1, 0.5)
        self.assertEqual(np.allclose(out_ref, out.numpy()), True)

        x = paddle.to_tensor(self.x_np)
        m = paddle.nn.PReLU(weight_attr=fluid.ParamAttr(name="weight"))
        out = m(x)
        out_ref = ref_prelu_nn(self.x_np, 1, 0.25)
        self.assertEqual(np.allclose(out_ref, out.numpy()), True)

        x = paddle.to_tensor(self.x_np)
        m = paddle.nn.PReLU(weight_attr=fluid.ParamAttr(
            initializer=fluid.initializer.Constant(0.5)))
        out = m(x)
        out_ref = ref_prelu_nn(self.x_np, 1, 0.5)
        self.assertEqual(np.allclose(out_ref, out.numpy()), True)

        paddle.enable_static()
152 153


Z
zchen0211 已提交
154
class PReluTest(OpTest):
Z
zchen0211 已提交
155
    def setUp(self):
C
cc 已提交
156
        self.init_dtype()
157 158
        self.init_input_shape()
        self.init_attr()
Z
zchen0211 已提交
159
        self.op_type = "prelu"
J
jerrywgz 已提交
160

C
cc 已提交
161
        x_np = np.random.uniform(-1, 1, self.x_shape).astype(self.dtype)
J
jerrywgz 已提交
162 163 164 165
        # Since zero point in prelu is not differentiable, avoid randomize
        # zero.
        x_np[np.abs(x_np) < 0.005] = 0.02

166 167 168 169 170 171 172
        if self.attrs == {
                'mode': "all",
                "data_format": "NCHW"
        } or self.attrs == {
                'mode': "all",
                "data_format": "NHWC"
        }:
173
            alpha_np = np.random.uniform(-1, -0.5, (1))
174
        elif self.attrs == {'mode': "channel", "data_format": "NCHW"}:
175
            alpha_np = np.random.uniform(-1, -0.5, [1, self.x_shape[1], 1, 1])
176 177
        elif self.attrs == {'mode': "channel", "data_format": "NHWC"}:
            alpha_np = np.random.uniform(-1, -0.5, [1, 1, 1, self.x_shape[-1]])
J
jerrywgz 已提交
178
        else:
179
            alpha_np = np.random.uniform(-1, -0.5, [1] + self.x_shape[1:])
C
cc 已提交
180
        alpha_np = alpha_np.astype(self.dtype)
181

182
        self.inputs = {'X': x_np, 'Alpha': alpha_np}
J
jerrywgz 已提交
183

184 185 186
        # NOTE(zhiqu): reshape inputs['Alpha'] from [1, 100, 1, 1] to [1, 100] + [1]*len(x.shape[2:])
        # since np operands could not be broadcast together with shapes (1,100,2,2,2,3) (1,100,1,1) 	
        reshaped_alpha = self.inputs['Alpha']
187
        if self.attrs == {'mode': "channel", "data_format": "NCHW"}:
188
            reshaped_alpha = np.reshape(
189 190
                self.inputs['Alpha'],
                [1, self.x_shape[1]] + [1] * len(self.x_shape[2:]))
191 192 193 194
        elif self.attrs == {'mode': "channel", "data_format": "NHWC"}:
            reshaped_alpha = np.reshape(
                self.inputs['Alpha'],
                [1] + [1] * len(self.x_shape[1:-1]) + [self.x_shape[-1]])
Z
zchen0211 已提交
195
        out_np = np.maximum(self.inputs['X'], 0.)
196
        out_np = out_np + np.minimum(self.inputs['X'], 0.) * reshaped_alpha
Z
zchen0211 已提交
197 198
        assert out_np is not self.inputs['X']
        self.outputs = {'Out': out_np}
Z
zchen0211 已提交
199

C
cc 已提交
200 201 202
    def init_dtype(self):
        self.dtype = np.float64

203
    def init_input_shape(self):
204
        self.x_shape = [2, 100, 3, 4]
205 206

    def init_attr(self):
207
        self.attrs = {'mode': "channel", "data_format": "NCHW"}
J
jerrywgz 已提交
208

209
    def test_check_output(self):
Z
zchen0211 已提交
210 211
        self.check_output()

212
    def test_check_grad(self):
213
        self.check_grad(['X', 'Alpha'], 'Out')
J
jerrywgz 已提交
214 215


216 217 218 219 220
@skip_check_grad_ci(
    reason="[skip shape check] Input(Alpha) must be 1-D and only has one data in 'all' mode"
)
class TestModeAll(PReluTest):
    def init_input_shape(self):
221
        self.x_shape = [2, 3, 4, 5]
M
minqiyang 已提交
222

223
    def init_attr(self):
224 225 226 227 228 229 230 231 232 233 234 235
        self.attrs = {'mode': "all", "data_format": "NCHW"}


@skip_check_grad_ci(
    reason="[skip shape check] Input(Alpha) must be 1-D and only has one data in 'all' mode"
)
class TestModeAllNHWC(PReluTest):
    def init_input_shape(self):
        self.x_shape = [2, 3, 4, 50]

    def init_attr(self):
        self.attrs = {'mode': "all", "data_format": "NHWC"}
M
minqiyang 已提交
236

Z
zchen0211 已提交
237

238 239
class TestModeElt(PReluTest):
    def init_input_shape(self):
240 241 242
        self.x_shape = [3, 2, 5, 10]

    def init_attr(self):
243 244 245 246 247 248 249 250 251
        self.attrs = {'mode': "element", "data_format": "NCHW"}


class TestModeEltNHWC(PReluTest):
    def init_input_shape(self):
        self.x_shape = [3, 2, 5, 10]

    def init_attr(self):
        self.attrs = {'mode': "element", "data_format": "NHWC"}
252 253 254 255 256 257 258 259 260 261


@skip_check_grad_ci(
    reason="[skip shape check] Input(Alpha) must be 1-D and only has one data in 'all' mode"
)
class TestModeAllRank3(PReluTest):
    def init_input_shape(self):
        self.x_shape = [1, 200, 3]

    def init_attr(self):
262 263 264 265 266 267 268 269 270 271 272 273
        self.attrs = {'mode': "all", "data_format": "NCHW"}


@skip_check_grad_ci(
    reason="[skip shape check] Input(Alpha) must be 1-D and only has one data in 'all' mode"
)
class TestModeAllRank3NHWC(PReluTest):
    def init_input_shape(self):
        self.x_shape = [1, 200, 3]

    def init_attr(self):
        self.attrs = {'mode': "all", "data_format": "NHWC"}
274 275 276 277 278 279 280 281 282 283


@skip_check_grad_ci(
    reason="[skip shape check] Input(Alpha) must be 1-D and only has one data in 'all' mode"
)
class TestModeAllRank6(PReluTest):
    def init_input_shape(self):
        self.x_shape = [1, 2, 3, 4, 5, 6]

    def init_attr(self):
284 285 286 287 288 289 290 291 292 293 294 295
        self.attrs = {'mode': "all", "data_format": "NCHW"}


@skip_check_grad_ci(
    reason="[skip shape check] Input(Alpha) must be 1-D and only has one data in 'all' mode"
)
class TestModeAllRank6NHWC(PReluTest):
    def init_input_shape(self):
        self.x_shape = [1, 2, 3, 4, 5, 6]

    def init_attr(self):
        self.attrs = {'mode': "all", "data_format": "NHWC"}
296 297 298 299 300 301 302


class TestModeChannelRank3(PReluTest):
    def init_input_shape(self):
        self.x_shape = [1, 200, 3]

    def init_attr(self):
303 304 305 306 307 308 309 310 311
        self.attrs = {'mode': "channel", "data_format": "NCHW"}


class TestModeChannelRank3NHWC(PReluTest):
    def init_input_shape(self):
        self.x_shape = [1, 3, 100]

    def init_attr(self):
        self.attrs = {'mode': "channel", "data_format": "NHWC"}
312 313 314 315 316 317 318


class TestModeChannelRank6(PReluTest):
    def init_input_shape(self):
        self.x_shape = [1, 100, 2, 2, 2, 2]

    def init_attr(self):
319 320 321 322 323 324 325 326 327
        self.attrs = {'mode': "channel", "data_format": "NCHW"}


class TestModeChannelRank6NHWC(PReluTest):
    def init_input_shape(self):
        self.x_shape = [1, 2, 2, 2, 2, 100]

    def init_attr(self):
        self.attrs = {'mode': "channel", "data_format": "NHWC"}
328 329 330 331 332 333 334


class TestModeElementRank3(PReluTest):
    def init_input_shape(self):
        self.x_shape = [3, 10, 10]

    def init_attr(self):
335 336 337 338 339 340 341 342 343
        self.attrs = {'mode': "element", "data_format": "NCHW"}


class TestModeElementRank3NHWC(PReluTest):
    def init_input_shape(self):
        self.x_shape = [3, 10, 10]

    def init_attr(self):
        self.attrs = {'mode': "element", "data_format": "NHWC"}
344 345 346 347 348


class TestModeElementRank6(PReluTest):
    def init_input_shape(self):
        self.x_shape = [3, 2, 2, 4, 5, 2]
Z
zchen0211 已提交
349

350
    def init_attr(self):
351 352 353 354 355 356 357 358 359
        self.attrs = {'mode': "element", "data_format": "NCHW"}


class TestModeElementRank6NHWC(PReluTest):
    def init_input_shape(self):
        self.x_shape = [3, 2, 2, 4, 5, 2]

    def init_attr(self):
        self.attrs = {'mode': "element", "data_format": "NHWC"}
360 361


C
cc 已提交
362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
def create_test_fp16_class(parent,
                           check_grad=True,
                           atol=1e-3,
                           max_relative_error=0.05):
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestPReluFp16Case(parent):
        def init_dtype(self):
            self.dtype = np.float16

        def test_check_output(self):
            if core.is_compiled_with_cuda():
                place = core.CUDAPlace(0)
                if core.is_float16_supported(place):
                    self.check_output_with_place(place, atol=atol)

        def test_check_grad(self):
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place) and check_grad:
                self.check_grad_with_place(
                    place, ['X', 'Alpha'],
                    'Out',
                    max_relative_error=max_relative_error)

    cls_name = "{0}_{1}".format(parent.__name__, "Fp16Op")
    TestPReluFp16Case.__name__ = cls_name
    globals()[cls_name] = TestPReluFp16Case


create_test_fp16_class(TestModeElt)
create_test_fp16_class(TestModeAllRank3)
create_test_fp16_class(TestModeAllRank6)
create_test_fp16_class(TestModeChannelRank3)
create_test_fp16_class(TestModeChannelRank6)
create_test_fp16_class(TestModeElementRank3)
create_test_fp16_class(TestModeElementRank6)
398 399 400 401 402 403 404
create_test_fp16_class(TestModeEltNHWC)
create_test_fp16_class(TestModeAllRank3NHWC)
create_test_fp16_class(TestModeAllRank6NHWC)
create_test_fp16_class(TestModeChannelRank3NHWC)
create_test_fp16_class(TestModeChannelRank6NHWC)
create_test_fp16_class(TestModeElementRank3NHWC)
create_test_fp16_class(TestModeElementRank6NHWC)
C
cc 已提交
405 406


407
def prelu_t(x, mode, param_attr=None, name=None, data_format='NCHW'):
408 409 410 411 412 413 414 415 416 417 418 419 420 421
    helper = fluid.layer_helper.LayerHelper('prelu', **locals())
    alpha_shape = [1, x.shape[1], 1, 1]
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
        attr=helper.param_attr,
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=fluid.initializer.ConstantInitializer(0.25))
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
422 423
        attrs={"mode": mode,
               'data_format': data_format},
424 425 426 427 428 429
        outputs={"Out": out})
    return out


# error message test if mode is not one of 'all', 'channel', 'element'
class TestModeError(unittest.TestCase):
430 431 432 433 434
    def setUp(self):
        self.place = paddle.CUDAPlace(0) if core.is_compiled_with_cuda(
        ) else paddle.CPUPlace()
        self.x_np = np.ones([1, 2, 3, 4]).astype('float32')

435 436 437 438 439 440 441
    def test_mode_error(self):
        main_program = Program()
        with fluid.program_guard(main_program, Program()):
            x = fluid.data(name='x', shape=[2, 3, 4, 5])
            try:
                y = prelu_t(x, 'any')
            except Exception as e:
442
                assert (e.args[0].find('InvalidArgument') != -1)
443

444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
    def test_data_format_error1(self):
        main_program = Program()
        with fluid.program_guard(main_program, Program()):
            x = fluid.data(name='x', shape=[2, 3, 4, 5])
            try:
                y = prelu_t(x, 'channel', data_format='N')
            except Exception as e:
                assert (e.args[0].find('InvalidArgument') != -1)

    def test_data_format_error2(self):
        main_program = Program()
        with fluid.program_guard(main_program, Program()):
            x = fluid.data(name='x', shape=[2, 3, 4, 5])
            try:
                y = paddle.static.nn.prelu(x, 'channel', data_format='N')
            except ValueError as e:
                pass

462

Z
zchen0211 已提交
463 464
if __name__ == "__main__":
    unittest.main()