提交 58b5b08b 编写于 作者: Z zchen0211

prelu op

上级 4c7a9a4a
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/prelu_op.h"
#include "paddle/operators/net_op.h"
namespace paddle {
namespace operators {
class PreluOp : public framework::OperatorWithKernel {
public:
PreluOp(const std::string &type, const framework::VariableNameMap &inputs,
const framework::VariableNameMap &outputs,
const framework::AttributeMap &attrs)
: OperatorWithKernel(type, inputs, outputs, attrs) {}
protected:
void InferShape(const framework::InferShapeContext &ctx) const override {
auto *in = ctx.Input<framework::Tensor>("X");
auto *out = ctx.Output<framework::LoDTensor>("Out");
out->Resize(in->dims());
}
};
template <typename AttrType>
class PreluOpMaker : public framework::OpProtoAndCheckerMaker {
public:
PreluOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X", "The input tensor of prelu operator.").NotInGradient();
AddOutput("Out", "The output tensor of prelu operator.").NotInGradient();
AddComment(R"DOC(Prelu operator
The equation is:
f(x) = alpha * x , for x < 0
f(x) = x , for x >= 0
)DOC");
AddAttr<AttrType>("alpha", "The scaling factor alpha of prelu.")
.SetDefault(0.0);
}
};
// The operator to calculate gradients of a prelu operator.
class PreluGradOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
void InferShape(const framework::InferShapeContext &ctx) const override {
auto X_grad = ctx.Output<framework::LoDTensor>(framework::GradVarName("X"));
auto X = ctx.Input<Tensor>("X");
X_grad->Resize(X->dims());
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP(prelu, ops::PreluOp, ops::PreluOpMaker<float>, prelu_grad,
ops::PreluGradOp);
REGISTER_OP_CPU_KERNEL(prelu,
ops::PreluKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(prelu_grad,
ops::PreluGradKernel<paddle::platform::CPUPlace, float>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/prelu_op.h"
REGISTER_OP_GPU_KERNEL(
prelu, paddle::operators::PreluKernel<paddle::platform::GPUPlace, float>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
template <typename T, int MajorType = Eigen::RowMajor,
typename IndexType = Eigen::DenseIndex>
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;
template <typename Place, typename T, typename AttrType = T>
class PreluKernel : public framework::OpKernel {
public:
void Compute(const framework::ExecutionContext& context) const override {
auto* X = context.Input<Tensor>("X");
auto* Out = context.Output<Tensor>("Out");
Out->mutable_data<T>(context.GetPlace());
auto alpha = static_cast<T>(context.Attr<AttrType>("alpha"));
auto X_vec = EigenVector<T>::Flatten(*X);
auto Out_vec = EigenVector<T>::Flatten(*Out);
auto place = context.GetEigenDevice<Place>();
Out_vec.device(place) = X_vec.cwiseMax(0.f) + X_vec.cwiseMin(0.f) * alpha;
}
};
template <typename Place, typename T, typename AttrType = T>
class PreluGradKernel : public framework::OpKernel {
public:
void Compute(const framework::ExecutionContext& context) const override {
auto* dX = context.Output<Tensor>(framework::GradVarName("X"));
auto* dO = context.Input<Tensor>(framework::GradVarName("Out"));
auto* Out = context.Output<Tensor>("Out");
auto alpha = static_cast<T>(context.Attr<AttrType>("alpha"));
dX->mutable_data<T>(context.GetPlace());
for (int i = 0; i < dX->numel(); ++i) {
if (Out->data<T>()[i] > 0) {
dX->data<T>()[i] = dO->data<T>()[i];
} else {
dX->data<T>()[i] = dO->data<T>()[i] * alpha;
}
}
}
};
} // namespace operators
} // namespace paddle
import unittest
import numpy as np
from op_test import OpTest
class ScaleTest(OpTest):
def setUp(self):
self.op_type = "prelu"
self.inputs = {'X': np.random.random((10, 10)).astype("float32")}
self.attrs = {'alpha': 0.1}
out_np = np.maximum(self.inputs['X'], 0.)
out_np = out_np + np.minimum(self.inputs['X'], 0.) * self.attrs['alpha']
self.outputs = {'Out': self.inputs['X'] * self.attrs['scale']}
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(['X'], 'Out')
if __name__ == "__main__":
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册