imperative.cc 59.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/pybind/imperative.h"
16

17
#include <Python.h>
18 19 20 21
#include <pybind11/chrono.h>
#include <pybind11/complex.h>
#include <pybind11/functional.h>
#include <pybind11/stl.h>
22

23
#include <algorithm>
24
#include <memory>
25
#include <set>
J
Jiabin Yang 已提交
26
#include <string>
27
#include <unordered_map>
28
#include <unordered_set>
29
#include <utility>
J
Jiabin Yang 已提交
30
#include <vector>
31

32
#include "paddle/fluid/imperative/all_reduce.h"
33
#include "paddle/fluid/imperative/amp_auto_cast.h"
34
#include "paddle/fluid/imperative/basic_engine.h"
35
#include "paddle/fluid/imperative/data_loader.h"
36
#include "paddle/fluid/imperative/layer.h"
J
Jiabin Yang 已提交
37
#include "paddle/fluid/imperative/nccl_context.h"
38
#include "paddle/fluid/imperative/partial_grad_engine.h"
39
#include "paddle/fluid/imperative/profiler.h"
40
#include "paddle/fluid/imperative/reducer.h"
41
#include "paddle/fluid/imperative/tracer.h"
M
minqiyang 已提交
42
#include "paddle/fluid/imperative/type_defs.h"
43
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
44
#include "paddle/fluid/pybind/op_function.h"
45
#include "paddle/fluid/pybind/pybind_boost_headers.h"
L
Leo Chen 已提交
46
#include "paddle/fluid/pybind/tensor_py.h"
47

48 49 50
namespace paddle {
namespace pybind {

51 52
namespace py = ::pybind11;

53 54 55 56
class Layer : public imperative::Layer {
 public:
  using imperative::Layer::Layer;  // Inherit constructors

57 58 59 60
  std::vector<std::shared_ptr<imperative::VarBase>> Forward(
      const std::vector<std::shared_ptr<imperative::VarBase>> &inputs)
      override {
    PYBIND11_OVERLOAD(std::vector<std::shared_ptr<imperative::VarBase>>, Layer,
J
Jiabin Yang 已提交
61
                      Forward, inputs);  // NOLINT
62 63 64
  }
};

L
Leo Chen 已提交
65 66 67 68 69
static const platform::Place PyObjectToPlace(const py::object &place_obj) {
  if (py::isinstance<platform::CPUPlace>(place_obj)) {
    return place_obj.cast<platform::CPUPlace>();
  } else if (py::isinstance<platform::CUDAPlace>(place_obj)) {
    return place_obj.cast<platform::CUDAPlace>();
70 71
  } else if (py::isinstance<platform::XPUPlace>(place_obj)) {
    return place_obj.cast<platform::XPUPlace>();
L
Leo Chen 已提交
72 73
  } else if (py::isinstance<platform::CUDAPinnedPlace>(place_obj)) {
    return place_obj.cast<platform::CUDAPinnedPlace>();
74 75
  } else if (py::isinstance<platform::Place>(place_obj)) {
    return place_obj.cast<platform::Place>();
L
Leo Chen 已提交
76 77
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
78 79
        "Place should be one of "
        "Place/CPUPlace/XPUPlace/CUDAPlace/CUDAPinnedPlace"));
L
Leo Chen 已提交
80 81 82 83 84 85 86
  }
}

static void InitTensorForVarBase(imperative::VarBase *self,
                                 const py::array &array,
                                 const platform::Place place,
                                 bool persistable = false,
87 88
                                 bool zero_copy = false, std::string name = "",
                                 int stop_gradient = -1) {
L
Leo Chen 已提交
89
  if (name == "") {
90 91
    name =
        imperative::GetCurrentTracer()->GenerateUniqueName("generated_tensor");
L
Leo Chen 已提交
92
  }
93 94 95
  VLOG(5) << "Init Tensor as: / name: " << name
          << " / persistable: " << persistable << " / zero_copy: " << zero_copy
          << " / stop_gradient: " << stop_gradient;
L
Leo Chen 已提交
96
  new (self) imperative::VarBase(name);
97
  auto *tensor = self->MutableVar()->GetMutable<framework::LoDTensor>();
L
Leo Chen 已提交
98 99
  if (platform::is_cpu_place(place)) {
    SetTensorFromPyArray<platform::CPUPlace>(
100
        tensor, array, BOOST_GET_CONST(platform::CPUPlace, place), zero_copy);
101 102 103
  } else if (platform::is_xpu_place(place)) {
    SetTensorFromPyArray<platform::XPUPlace>(
        tensor, array, BOOST_GET_CONST(platform::XPUPlace, place), zero_copy);
L
Leo Chen 已提交
104 105
  } else if (platform::is_gpu_place(place)) {
    SetTensorFromPyArray<platform::CUDAPlace>(
106
        tensor, array, BOOST_GET_CONST(platform::CUDAPlace, place), zero_copy);
L
Leo Chen 已提交
107 108
  } else if (platform::is_cuda_pinned_place(place)) {
    SetTensorFromPyArray<platform::CUDAPinnedPlace>(
109 110
        tensor, array, BOOST_GET_CONST(platform::CUDAPinnedPlace, place),
        zero_copy);
111
  } else {
L
Leo Chen 已提交
112
    PADDLE_THROW(platform::errors::InvalidArgument(
113
        "Place should be one of CPUPlace/XPUPlace/CUDAPlace/CUDAPinnedPlace"));
J
Jiabin Yang 已提交
114
  }
115 116 117
  if (stop_gradient != -1) {
    self->SetOverridedStopGradient(stop_gradient);
  }
L
Leo Chen 已提交
118
  self->SetPersistable(persistable);
119 120 121 122 123 124
  self->SetType(framework::proto::VarType::LOD_TENSOR);
  self->SetDataType(tensor->type());
}

static void InitVarBaseFromNumpyWithKwargs(imperative::VarBase *self,
                                           const py::kwargs &kwargs) {
125
  VLOG(4) << "Init VarBase from kwargs: ";
126 127
  PADDLE_ENFORCE_EQ(
      kwargs.contains("value"), true,
128 129
      platform::errors::NotFound(
          "The kwargs used to create Varbase misses argument: value"));
L
Leo Chen 已提交
130 131 132 133 134 135 136 137
  auto persistable = kwargs.contains("persistable")
                         ? kwargs["persistable"].cast<bool>()
                         : false;
  auto array = kwargs.contains("value") ? kwargs["value"].cast<py::array>()
                                        : py::array();
  auto zero_copy =
      kwargs.contains("zero_copy") ? kwargs["zero_copy"].cast<bool>() : false;
  auto name = kwargs.contains("name") ? kwargs["name"].cast<std::string>() : "";
138 139 140
  auto stop_gradient = kwargs.contains("stop_gradient")
                           ? kwargs["stop_gradient"].cast<int>()
                           : -1;
L
Leo Chen 已提交
141 142 143
  auto default_place = imperative::GetCurrentTracer()->ExpectedPlace();
  auto place = kwargs.contains("place") ? PyObjectToPlace(kwargs["place"])
                                        : default_place;
144 145
  InitTensorForVarBase(self, array, place, persistable, zero_copy, name,
                       stop_gradient);
146
}
147

148 149 150
template <typename P>
static void InitVarBaseFromNumpyWithArg(imperative::VarBase *self,
                                        const py::array &array, const P &place,
L
Leo Chen 已提交
151 152
                                        bool persistable = false,
                                        bool zero_copy = false,
153 154 155 156 157
                                        std::string name = "",
                                        int stop_gradient = -1) {
  VLOG(4) << "Init VarBase from Arg: ";
  // 0: self, 1: value, 2: place, 3: persistable, 4: zero_copy, 5: name , 6:
  // stop_gradient
L
Leo Chen 已提交
158
  if (name == "") {
159 160
    name =
        imperative::GetCurrentTracer()->GenerateUniqueName("generated_tensor");
L
Leo Chen 已提交
161
  }
162 163
  VLOG(5) << "Init Tensor as: / name: " << name
          << " / persistable: " << persistable << " / zero_copy: " << zero_copy
164
          << " / stop_gradient: " << stop_gradient << " / at " << place;
L
Leo Chen 已提交
165
  new (self) imperative::VarBase(name);
166 167
  self->SetPersistable(persistable);
  auto *tensor = self->MutableVar()->GetMutable<framework::LoDTensor>();
168 169 170
  if (stop_gradient != -1) {
    self->SetOverridedStopGradient(stop_gradient);
  }
171 172 173 174 175 176
  SetTensorFromPyArray<P>(tensor, array, place, zero_copy);
  self->SetType(framework::proto::VarType::LOD_TENSOR);
  self->SetDataType(tensor->type());
}

static void InitVarBaseFromNumpyWithArgDefault(imperative::VarBase *self,
L
Leo Chen 已提交
177 178
                                               const py::array &array) {
  auto place = imperative::GetCurrentTracer()->ExpectedPlace();
179
  VLOG(4) << "Init VarBase from numpy at " << place;
L
Leo Chen 已提交
180
  InitTensorForVarBase(self, array, place);
181
}
182

183 184 185 186 187
static void InitVarBaseFromTensorWithArgDefault(
    imperative::VarBase *self, const framework::LoDTensor &tensor) {
  VLOG(4) << "Init VarBase";
  auto place = imperative::GetCurrentTracer()->ExpectedPlace();
  new (self) imperative::VarBase(
188
      imperative::GetCurrentTracer()->GenerateUniqueName("generated_tensor"));
189 190 191 192 193 194 195 196 197 198 199 200 201 202
  self->SetPersistable(false);
  self->SetType(framework::proto::VarType::LOD_TENSOR);
  self->SetDataType(tensor.type());
  auto *new_tensor = self->MutableVar()->GetMutable<framework::LoDTensor>();
  // Same place,share data directly
  if (place == tensor.place()) {
    new_tensor->ShareDataWith(tensor);
    VLOG(4) << "Same place, do ShareDataWith";
  } else {
    framework::TensorCopy(tensor, place, new_tensor);
    VLOG(4) << "Different place, do TensorCopy";
  }
}

203 204 205 206 207
static std::string GetTypeName(const imperative::VarBase &var) {
  if (var.Type() == framework::proto::VarType::RAW) {
    return "RAW";
  } else if (!var.Var().IsInitialized()) {
    return "nullptr";
208
  } else {
209
    return framework::ToTypeName(var.Var().Type());
210 211
  }
}
L
Leo Chen 已提交
212

213
using PyNameVarBaseMap = std::unordered_map<std::string, py::handle>;
214 215 216 217 218 219

template <typename T>
static T PyObjectCast(PyObject *obj) {
  try {
    return py::cast<T>(py::handle(obj));
  } catch (py::cast_error &) {
220 221
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Python object is not type of %s", typeid(T).name()));
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
  }
}

// NOTE(zjl): py::handle is a very light wrapper of PyObject *.
// Unlike py::object, py::handle does not change reference count of PyObject *.
static std::vector<std::shared_ptr<imperative::VarBase>>
GetVarBaseListFromPyHandle(const py::handle &handle) {
  PyObject *py_obj = handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
    return {};
  }

  std::vector<std::shared_ptr<imperative::VarBase>> result;

237
  if (PyList_Check(py_obj)) {  // List of VarBase
238 239 240
    size_t len = PyList_GET_SIZE(py_obj);
    result.reserve(len);
    for (size_t i = 0; i < len; ++i) {
241 242 243
      PyObject *py_ivar = PyList_GET_ITEM(py_obj, i);
      PADDLE_ENFORCE_NOT_NULL(
          py_ivar, platform::errors::InvalidArgument("Python Object is NULL"));
244 245 246
      result.emplace_back(
          PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_ivar));
    }
247
  } else if (PyTuple_Check(py_obj)) {  // Tuple of VarBase
248 249 250
    size_t len = PyTuple_GET_SIZE(py_obj);
    result.reserve(len);
    for (size_t i = 0; i < len; ++i) {
251 252 253
      PyObject *py_ivar = PyTuple_GET_ITEM(py_obj, i);
      PADDLE_ENFORCE_NOT_NULL(
          py_ivar, platform::errors::InvalidArgument("Python Object is NULL"));
254 255 256
      result.emplace_back(
          PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_ivar));
    }
257 258 259
  } else {  // VarBase
    result.emplace_back(
        PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_obj));
260 261 262 263 264
  }

  return result;
}

J
Jiabin Yang 已提交
265 266 267
static imperative::NameVarBaseMap ConvertToNameVarBaseMap(
    const PyNameVarBaseMap &map) {
  imperative::NameVarBaseMap result;
268 269 270 271 272 273
  for (auto &pair : map) {
    auto var_vec = GetVarBaseListFromPyHandle(pair.second);
    if (!var_vec.empty()) {
      result.emplace(pair.first, std::move(var_vec));
    }
  }
J
Jiabin Yang 已提交
274

275 276 277
  PADDLE_ENFORCE_EQ(
      PyErr_Occurred(), nullptr,
      platform::errors::InvalidArgument(py::str(py::handle(PyErr_Occurred()))));
278 279 280
  return result;
}

281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
static bool PyCheckInteger(PyObject *obj) {
#if PY_VERSION_HEX < 0x03000000
  return (PyLong_Check(obj) || PyInt_Check(obj)) && !PyBool_Check(obj);
#else
  return PyLong_Check(obj) && !PyBool_Check(obj);
#endif
}

// NOTE(zhiqiu): Revised version of PySlice_GetIndices. From:
// https://github.com/python/cpython/blob/8d21aa21f2cbc6d50aab3f420bb23be1d081dac4/Objects/sliceobject.c#L103
// Original PySlice_GetIndices return wrong result when
// slice_item contains long int, such as arr[:180L].
// NOT sure why this happens !!!
// Besides, PySlice_GetIndices cannot raise error when float in slice item.
// So, I make a revised version of PySlice_GetIndices, named to
// _PySlice_GetIndices. Try to use _PySlice_Unpack which is more robust than
// PySlice_GetIndices in the future.
static int _PySlice_GetIndices(PySliceObject *r, Py_ssize_t length,
                               Py_ssize_t *start, Py_ssize_t *stop,
                               Py_ssize_t *step) {
  /* XXX support long ints */
  if (r->step == Py_None) {
    *step = 1;
  } else {
    if (PyCheckInteger(r->step)) {
      *step = PyLong_AsLong(r->step);
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Currently, VarBase.__getitem__() only allows None or integers in "
          "slice item, but received %s.",
          std::string(Py_TYPE(r->step)->tp_name)));
    }
  }
  if (r->start == Py_None) {
    *start = *step < 0 ? length - 1 : 0;
  } else {
    if (PyCheckInteger(r->start)) {
      *start = PyLong_AsLong(r->start);
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Currently, VarBase.__getitem__() only allows None or integers in "
          "slice item, but received %s.",
          std::string(Py_TYPE(r->start)->tp_name)));
    }
    if (*start < 0) *start += length;
326
    *start = std::max(*start, static_cast<Py_ssize_t>(0));
327 328 329 330 331 332 333 334 335 336 337 338 339
  }
  if (r->stop == Py_None) {
    *stop = *step < 0 ? -1 : length;
  } else {
    if (PyCheckInteger(r->stop)) {
      *stop = PyLong_AsLong(r->stop);
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Currently, VarBase.__getitem__() only allows None or integers in "
          "slice item, but received %s.",
          std::string(Py_TYPE(r->stop)->tp_name)));
    }
    if (*stop < 0) *stop += length;
340
    *stop = std::min(*stop, length);
341 342 343 344 345 346 347
  }
  if (*stop > length) return -1;
  if (*start >= length) return -1;
  if (*step == 0) return -1;
  return 0;
}

S
songyouwei 已提交
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
static void ParseIndexingSlice(framework::LoDTensor *tensor, PyObject *_index,
                               std::vector<int> *slice_axes,
                               std::vector<int> *slice_starts,
                               std::vector<int> *slice_ends,
                               std::vector<int> *slice_strides,
                               std::vector<int> *decrease_axis,
                               std::vector<int> *infer_flags) {
  // We allow indexing by Integers, Slices, and tuples of those
  // types.
  // Ellipsis and None are not supported yet.
  // wrap to tuple
  PyObject *index = !PyTuple_Check(_index) ? PyTuple_Pack(1, _index) : _index;
  PADDLE_ENFORCE_EQ(
      tensor->IsInitialized(), true,
      platform::errors::InvalidArgument("tensor has not been initialized"));
  const auto &shape = tensor->dims();
  const int rank = shape.size();
  const int size = PyTuple_GET_SIZE(index);
  PADDLE_ENFORCE_EQ(
      size <= rank, true,
      platform::errors::InvalidArgument(
          "too many indices (%d) for tensor of dimension %d", size, rank));
  for (int dim = 0; dim < size; ++dim) {
    PyObject *slice_item = PyTuple_GetItem(index, dim);
372 373 374 375 376 377 378
    PADDLE_ENFORCE_EQ(PyCheckInteger(slice_item) || PySlice_Check(slice_item),
                      true,
                      platform::errors::InvalidArgument(
                          "Currently, VarBase.__getitem__() only allows "
                          "indexing by Integers, Slices, and tuples of "
                          "these types, but received %s in %dth slice item",
                          std::string(Py_TYPE(slice_item)->tp_name), dim + 1));
S
songyouwei 已提交
379 380
    infer_flags->push_back(1);
    int dim_len = shape[dim];
381 382
    if (PyCheckInteger(slice_item)) {
      // integer, PyLong_AsLong supports both int and long
S
songyouwei 已提交
383
      int start = static_cast<int>(PyLong_AsLong(slice_item));
H
hong 已提交
384
      auto s_t = start;
S
songyouwei 已提交
385
      start = start < 0 ? start + dim_len : start;
386
      if (start >= dim_len || start < 0) {
H
hong 已提交
387 388 389 390 391 392 393 394 395
        std::string str_error_message =
            "The starting index " + std::to_string(s_t) +
            " of slice is out of bounds in tensor " + std::to_string(dim) +
            "-th axis, it shound be in the range of [" +
            std::to_string(-dim_len) + ", " + std::to_string(dim_len) + ")";
        // py::index_error is corresponding to IndexError in Python
        // Used to indicate out of bounds access in __getitem__, __setitem__
        throw py::index_error(str_error_message);
      }
S
songyouwei 已提交
396 397 398 399 400 401
      slice_axes->push_back(dim);
      slice_starts->push_back(start);
      slice_ends->push_back(start + 1);
      slice_strides->push_back(1);
      decrease_axis->push_back(dim);
    } else {
402
      // slice item
S
songyouwei 已提交
403
      Py_ssize_t start, end, step;
404 405 406
      PySliceObject *p = reinterpret_cast<PySliceObject *>(slice_item);
      _PySlice_GetIndices(p, dim_len, &start, &end, &step);

S
songyouwei 已提交
407
      // :: or : or 0:dim_len:1
408 409 410
      if (start == 0 && end == dim_len && step == 1) {
        continue;
      }
S
songyouwei 已提交
411 412 413 414 415 416 417 418 419
      slice_axes->push_back(dim);
      slice_starts->push_back(start);
      slice_ends->push_back(end);
      slice_strides->push_back(step);
    }
  }
  if (!PyTuple_Check(_index)) Py_DecRef(index);
}

420
// Bind Methods
J
Jiabin Yang 已提交
421
void BindImperative(py::module *m_ptr) {
422 423
  auto &m = *m_ptr;

424 425
  BindOpFunctions(&m);

426 427
#ifndef _WIN32
  // Dygraph DataLoader signal handler
428 429 430 431 432 433 434 435 436 437 438 439 440
  m.def("_set_process_pids", [](int64_t key, py::object &obj) {
    PADDLE_ENFORCE_EQ(
        py::isinstance<py::tuple>(obj) || py::isinstance<py::list>(obj), true,
        platform::errors::InvalidArgument(
            "The subprocess ids set in DataLoader is illegal."
            "Expected data type is tuple or list, but received %s",
            obj.get_type()));
    py::list pids = py::cast<py::list>(obj);
    std::set<pid_t> pids_set = {};
    for (size_t i = 0; i < pids.size(); i++) {
      pids_set.insert(pids[i].cast<pid_t>());
    }
    imperative::SetLoadProcessPIDs(key, pids_set);
441
  });
442 443
  m.def("_erase_process_pids",
        [](int64_t key) { imperative::EraseLoadProcessPIDs(key); });
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
  m.def("_set_process_signal_handler",
        []() { imperative::SetLoadProcessSignalHandler(); });
  m.def("_throw_error_if_process_failed",
        []() { imperative::ThrowErrorIfLoadProcessFailed(); });

  // Dygraph DataLoader reader process & thread related functions
  m.def(
      "_convert_to_tensor_list",
      [](py::object &obj) -> py::list {
        // 0. input data check
        PADDLE_ENFORCE(
            py::isinstance<py::tuple>(obj) || py::isinstance<py::list>(obj),
            platform::errors::InvalidArgument(
                "The batch data read into DataLoader is illegal."
                "Expected data type is tuple or list, but received %s",
                obj.get_type()));
        py::list batch = py::cast<py::list>(obj);
        py::list tensors;
        for (size_t i = 0; i < batch.size(); ++i) {
          // 1. cast to python array
          auto array = batch[i].cast<py::array>();
          PADDLE_ENFORCE_NE(
              string::Sprintf("%s", array.dtype()).compare("object"), 0,
              platform::errors::InvalidArgument(
                  "Faild to convert input data to a regular ndarray.\n  * "
                  "Usually this means the input data contains nested "
                  "lists with different lengths.\n  * Check the reader "
                  "function passed to 'set_(sample/sample_list/batch)"
                  "_generator' to locate the data causes this issue."));
          // 2. construcct LoDTensor
          framework::LoDTensor t;
          SetTensorFromPyArray<platform::CPUPlace>(&t, array,
                                                   platform::CPUPlace(), true);
          // 3. allocate shared memory
          void *data_ptr = t.data<void>();
          size_t data_size = t.numel() * framework::SizeOfType(t.type());
          auto shared_writer_holder =
              memory::allocation::AllocateMemoryMapWriterAllocation(data_size);
          // 4. maintain mmap fd set & backup ipc_name
          const std::string &ipc_name = shared_writer_holder->ipc_name();
          memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);
          // 5. copy data & reset holder
          memory::Copy(platform::CPUPlace(), shared_writer_holder->ptr(),
                       platform::CPUPlace(), data_ptr, data_size);
          t.ResetHolder(shared_writer_holder);
          // 6. append to result list
          tensors.append(t);
        }
        return tensors;
      },
      py::return_value_policy::take_ownership);

  m.def("_remove_tensor_list_mmap_fds", [](py::list &tensor_list) {
    for (size_t i = 0; i < tensor_list.size(); ++i) {
      auto t = tensor_list[i].cast<framework::LoDTensor>();
      auto *mmap_writer_allocation =
          dynamic_cast<memory::allocation::MemoryMapWriterAllocation *>(
              t.Holder().get());
      PADDLE_ENFORCE_NOT_NULL(
          mmap_writer_allocation,
          platform::errors::NotFound("The shared memory of LoDTensor in "
                                     "DataLoader's child process has been "
                                     "released."));
      memory::allocation::MemoryMapFdSet::Instance().Remove(
          mmap_writer_allocation->ipc_name());
    }
  });

  m.def("_cleanup_mmap_fds",
        []() { memory::allocation::MemoryMapFdSet::Instance().Clear(); });
#endif

516 517 518 519 520
  m.def("start_imperative_gperf_profiler",
        []() { imperative::StartProfile(); });

  m.def("stop_imperative_gperf_profiler", []() { imperative::StopProfile(); });

Z
Zeng Jinle 已提交
521 522 523
  m.def("_is_dygraph_debug_enabled",
        []() { return imperative::IsDebugEnabled(); });
  m.def("_dygraph_debug_level", []() { return imperative::GetDebugLevel(); });
524 525 526 527
  m.def("_switch_tracer",
        [](const std::shared_ptr<imperative::Tracer> &tracer) {
          imperative::SetCurrentTracer(tracer);
        });
Z
Zeng Jinle 已提交
528

529
  py::class_<imperative::VarBase, std::shared_ptr<imperative::VarBase>>(
530
      m, "VarBase", R"DOC()DOC")
Z
Zeng Jinle 已提交
531
      .def_static("_alive_vars", &imperative::VarBase::AliveVarNames)
532 533 534 535 536 537 538
      .def("__init__",
           [](imperative::VarBase &self) {
             std::string name =
                 imperative::GetCurrentTracer()->GenerateUniqueName(
                     "generated_tensor");
             new (&self) imperative::VarBase(name);
           })
J
Jiabin Yang 已提交
539
      .def("__init__",
540 541 542
           [](imperative::VarBase &self, framework::proto::VarType::Type dtype,
              const std::vector<int> &dims, const py::handle &name,
              framework::proto::VarType::Type type, bool persistable) {
543
             VLOG(4) << "Init VarBase";
544 545 546
             std::string act_name = "";
             if (!name.ptr() || name.ptr() == Py_None) {
               act_name = imperative::GetCurrentTracer()->GenerateUniqueName(
547
                   "generated_tensor");
548 549 550 551
             } else {
               act_name = name.cast<std::string>();
             }
             new (&self) imperative::VarBase(act_name);
J
Jiabin Yang 已提交
552 553 554 555 556 557 558 559 560
             self.SetPersistable(persistable);
             self.SetType(type);
             self.SetDataType(dtype);
             if (type == framework::proto::VarType::LOD_TENSOR) {
               auto *tensor =
                   self.MutableVar()->GetMutable<framework::LoDTensor>();
               tensor->Resize(framework::make_ddim(dims));
             }
           })
561 562
      .def("__init__", &InitVarBaseFromNumpyWithArg<platform::CPUPlace>,
           py::arg("value"), py::arg("place"), py::arg("persistable") = false,
563 564
           py::arg("zero_copy") = false, py::arg("name") = "",
           py::arg("stop_gradient") = -1)
565 566 567 568
      .def("__init__", &InitVarBaseFromNumpyWithArg<platform::XPUPlace>,
           py::arg("value"), py::arg("place"), py::arg("persistable") = false,
           py::arg("zero_copy") = false, py::arg("name") = "",
           py::arg("stop_gradient") = -1)
569 570
      .def("__init__", &InitVarBaseFromNumpyWithArg<platform::CUDAPlace>,
           py::arg("value"), py::arg("place"), py::arg("persistable") = false,
571 572
           py::arg("zero_copy") = false, py::arg("name") = "",
           py::arg("stop_gradient") = -1)
573 574
      .def("__init__", &InitVarBaseFromNumpyWithArg<platform::CUDAPinnedPlace>,
           py::arg("value"), py::arg("place"), py::arg("persistable") = false,
575 576
           py::arg("zero_copy") = false, py::arg("name") = "",
           py::arg("stop_gradient") = -1)
L
Leo Chen 已提交
577
      .def("__init__", &InitVarBaseFromNumpyWithArgDefault, py::arg("value"))
578
      .def("__init__", &InitVarBaseFromTensorWithArgDefault, py::arg("tensor"))
579
      .def("__init__", &InitVarBaseFromNumpyWithKwargs)
580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
      .def("__setitem__",
           [](std::shared_ptr<imperative::VarBase> &self, py::handle _index,
              py::object &value_obj) {
             auto self_tensor =
                 self->MutableVar()->GetMutable<framework::LoDTensor>();
             auto self_numpy = TensorToPyArray(*self_tensor);

             if (py::isinstance<py::array>(value_obj) ||
                 py::isinstance<py::int_>(value_obj) ||
                 py::isinstance<py::float_>(value_obj)) {
               auto value_numpy = value_obj;
               self_numpy[_index] = value_numpy;
               SetTensorFromPyArray(self_tensor, self_numpy,
                                    self_tensor->place(), true);

             } else {
               auto value =
                   value_obj.cast<std::shared_ptr<imperative::VarBase>>();
               auto value_tensor =
                   value->MutableVar()->GetMutable<framework::LoDTensor>();
               auto value_numpy = TensorToPyArray(*value_tensor);

               self_numpy[_index] = value_numpy;
               SetTensorFromPyArray(self_tensor, self_numpy,
                                    self_tensor->place(), true);
             }
606 607 608 609
             // NOTE(liym27):
             // Increase the version of VarBase self because __setitem__ is an
             // inplace operator for the VarBase self.
             self->BumpInplaceVersion();
610
           })
611
      .def("__getitem__",
S
songyouwei 已提交
612
           [](std::shared_ptr<imperative::VarBase> &self, py::handle _index) {
613
             std::vector<int> slice_axes, slice_starts, slice_ends,
S
songyouwei 已提交
614 615 616 617 618 619
                 slice_strides, decrease_axis, infer_flags;
             auto tensor =
                 self->MutableVar()->GetMutable<framework::LoDTensor>();
             ParseIndexingSlice(tensor, _index.ptr(), &slice_axes,
                                &slice_starts, &slice_ends, &slice_strides,
                                &decrease_axis, &infer_flags);
620 621 622 623
             // release gil and do tracing
             py::gil_scoped_release release;
             const auto &tracer = imperative::GetCurrentTracer();
             if (slice_axes.empty()) {
S
songyouwei 已提交
624
               return self;
625
             } else {
S
songyouwei 已提交
626
               imperative::NameVarBaseMap ins = {{"Input", {self}}};
627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648
               framework::AttributeMap attrs = {
                   {"axes", slice_axes},
                   {"starts", slice_starts},
                   {"ends", slice_ends},
                   {"infer_flags", infer_flags},
                   {"decrease_axis", decrease_axis}};
               auto out = std::shared_ptr<imperative::VarBase>(
                   new imperative::VarBase(tracer->GenerateUniqueName()));
               imperative::NameVarBaseMap outs = {{"Out", {out}}};
               std::string op_type = "slice";
               for (auto stride : slice_strides) {
                 if (stride != 1) {
                   op_type = "strided_slice";
                   attrs.insert({"strides", slice_strides});
                   attrs.erase("decrease_axis");
                   break;
                 }
               }
               tracer->TraceOp(op_type, ins, outs, std::move(attrs));
               return out;
             }
           })
649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670
      .def("_inplace_version",
           [](imperative::VarBase &self) -> uint32_t {
             const auto &var = self.MutableVar();
             PADDLE_ENFORCE_EQ(
                 var->IsInitialized(), true,
                 platform::errors::InvalidArgument(
                     "Tensor of %s is Empty, please check if it has no data.",
                     self.Name()));
             return var->CurrentInplaceVersion();
           })
      .def("_bump_inplace_version",
           [](std::shared_ptr<imperative::VarBase> &self) {
             // NOTE(liym27): _bump_inplace_version is only used for inplace
             // operation
             self->BumpInplaceVersion();
           },
           R"DOC(
        **Notes**:
            **This API is ONLY available in Dygraph mode.**
            **This is a very low level API. Users should not use it directly. **
         Bump the version whenever the Tensor is modified through an inplace operation.
            )DOC")
671 672 673 674 675 676 677
      .def("numpy",
           [](imperative::VarBase &self) -> py::array {
             const auto &tensor =
                 self.MutableVar()->Get<framework::LoDTensor>();
             PADDLE_ENFORCE_EQ(
                 tensor.IsInitialized(), true,
                 platform::errors::InvalidArgument(
678
                     "Tensor of %s is Empty, please check if it has no data.",
679 680 681 682
                     self.Name()));
             return TensorToPyArray(tensor, true);
           },
           R"DOC(
Z
Zhou Wei 已提交
683 684
        Returns a numpy array shows the value of current Tensor.
        
685
        Returns:
Z
Zhou Wei 已提交
686
            ndarray: The numpy value of current Tensor.
687 688

        Returns type:
Z
Zhou Wei 已提交
689
            ndarray: dtype is same as current Tensor
690 691 692 693

        Examples:
            .. code-block:: python

Z
Zhou Wei 已提交
694
                import paddle
695 696
                import numpy as np
                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
Z
Zhou Wei 已提交
697 698 699 700
                linear = paddle.nn.Linear(32, 64)
                data = paddle.to_tensor(data)
                x = linear(data)
                print(x.numpy())
701
       )DOC")
702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
      .def("detach",
           [](const imperative::VarBase
                  &self) -> std::shared_ptr<imperative::VarBase> {
             PADDLE_ENFORCE_EQ(
                 self.Var().IsInitialized(), true,
                 platform::errors::InvalidArgument(
                     "Tensor %s has not been initialized!", self.Name()));

             PADDLE_ENFORCE_EQ(
                 self.Var().IsType<framework::LoDTensor>() ||
                     self.Var().IsType<framework::SelectedRows>(),
                 true,
                 platform::errors::InvalidArgument(
                     "Type of Tensor[%s] must be LoDTensor or SelectedRows!",
                     self.Name()));

             auto detach_var = std::make_shared<imperative::VarBase>(
                 true, "detach_" + self.Name());

             detach_var->SetPersistable(self.Persistable());
             detach_var->SetType(self.Type());
             detach_var->SetDataType(self.DataType());

             if (self.Var().IsType<framework::LoDTensor>()) {
               const auto &origin_tensor =
                   self.Var().Get<framework::LoDTensor>();
               PADDLE_ENFORCE_EQ(
                   origin_tensor.IsInitialized(), true,
                   platform::errors::InvalidArgument(
                       "Tensor %s has not been initialized!", self.Name()));

               auto *detach_tensor =
                   detach_var->MutableVar()->GetMutable<framework::LoDTensor>();
               detach_tensor->ShareDataWith(origin_tensor);
               // NOTE(liym27): Call ShareInplaceVersionCounterWith to share the
               // same TensorInplaceVersion, which is used to check whether
               // inplace
               // operations are correct.
               detach_tensor->ShareInplaceVersionCounterWith(origin_tensor);
             } else {
               const auto &origin_selected_rows =
                   self.Var().Get<framework::SelectedRows>();
               PADDLE_ENFORCE_EQ(
                   origin_selected_rows.value().IsInitialized(), true,
                   platform::errors::InvalidArgument(
                       "Tensor %s has not been initialized!", self.Name()));

               auto *detach_selected_rows =
                   detach_var->MutableVar()
                       ->GetMutable<framework::SelectedRows>();
               detach_selected_rows->set_height(origin_selected_rows.height());
               detach_selected_rows->set_rows(origin_selected_rows.rows());
               detach_selected_rows->mutable_value()->ShareDataWith(
                   origin_selected_rows.value());
               detach_selected_rows->mutable_value()
                   ->ShareInplaceVersionCounterWith(
                       origin_selected_rows.value());
             }
             VLOG(3) << "The detached Tensor(" << detach_var->Name()
                     << ") share data with " << self.Name();
             return detach_var;
           },
           py::return_value_policy::take_ownership, R"DOC(
765

766
        Returns a new Tensor, detached from the current graph.
Z
Zhou Wei 已提交
767 768
        It will share data with origin Tensor and always doesn't have a Tensor copy.
        In addition, the detached Tensor doesn't provide gradient propagation.
769

770
        Returns: The detached Tensor.
771 772 773 774

        Examples:
            .. code-block:: python

775
                import paddle
Z
Zhou Wei 已提交
776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800

                x = paddle.to_tensor(1.0, stop_gradient=False)
                detach_x = x.detach()
                detach_x[:] = 10.0
                print(x)  # Tensor(shape=[1], dtype=float32, place=CPUPlace, stop_gradient=False,
                          #        [10.])
                y = x**2
                y.backward()
                print(x.grad)         # [20.0]
                print(detach_x.grad)  # None, 'stop_gradient=True' by default

                detach_x.stop_gradient = False # Set stop_gradient to be False, supported auto-grad
                z = detach_x**3
                z.backward()

                print(x.grad)         # [20.0], detach_x is detached from x's graph, not affect each other
                print(detach_x.grad)  # [300.0], detach_x has its own graph

                # Due to sharing of data with origin Tensor, There are some unsafe operations:
                y = 2 * x
                detach_x[:] = 5.0
                y.backward() 
                # It will raise Error:
                #   one of the variables needed for gradient computation has been modified by an inplace operation.
             
801 802 803
       )DOC")
      .def("clear_gradient", &imperative::VarBase::ClearGradient, R"DOC(

804
        Only for Tensor that has gradient, normally we use this for Parameters since other temporary Tensor doesen't has gradient.
805

806
        The Gradient of current Tensor will be set to ``0`` .
807 808 809 810 811 812

        Returns:  None

        Examples:
             .. code-block:: python

813
                import paddle
Z
Zhou Wei 已提交
814 815 816 817 818 819 820
                input = paddle.uniform([10, 2])
                linear = paddle.nn.Linear(2, 3)
                out = linear(input)
                out.backward()
                print("Before clear_gradient, linear.weight.grad: {}".format(linear.weight.grad))
                linear.weight.clear_gradient()
                print("After clear_gradient, linear.weight.grad: {}".format(linear.weight.grad))
821
      )DOC")
Z
Zhou Wei 已提交
822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869
      .def("clone",
           [](std::shared_ptr<imperative::VarBase> &self) {
             const auto &tensor = self->Var().Get<framework::LoDTensor>();
             PADDLE_ENFORCE_EQ(
                 tensor.IsInitialized(), true,
                 platform::errors::InvalidArgument(
                     "%s has not been initialized", self->Name()));
             auto tracer = imperative::GetCurrentTracer();
             auto new_var = std::make_shared<imperative::VarBase>(
                 true, tracer->GenerateUniqueName(self->Name() + "_clone"));
             framework::AttributeMap attrs;
             imperative::NameVarBaseMap ins = {{"X", {self}}};
             imperative::NameVarBaseMap outs = {{"Out", {new_var}}};
             tracer->TraceOp("assign", ins, outs, attrs);
             return new_var;
           },
           py::return_value_policy::copy, R"DOC(

        Returns a new Tensor, which is clone of origin Tensor, and it remains in the current graph.
        It will always have a Tensor copy.
        Tn addition, the cloned Tensor provides gradient propagation.

        Returns: The cloned Tensor.

        Examples:
            .. code-block:: python

              import paddle

              x = paddle.to_tensor(1.0, stop_gradient=False)
              clone_x = x.clone()
              y = clone_x**2
              y.backward()
              print(clone_x.stop_gradient) # False
              print(clone_x.grad)          # [2.0], support gradient propagation
              print(x.stop_gradient)       # False
              print(x.grad)                # [2.0], clone_x support gradient propagation for x

              x = paddle.to_tensor(1.0)
              clone_x = x.clone()
              clone_x.stop_gradient = False
              z = clone_x**3
              z.backward()
              print(clone_x.stop_gradient) # False
              print(clone_x.grad)          # [3.0], support gradient propagation
              print(x.stop_gradient) # True
              print(x.grad)          # None
       )DOC")
L
Leo Chen 已提交
870
      .def("_run_backward",
871 872
           [](imperative::VarBase &self, const imperative::Tracer &tracer,
              bool retain_graph) {
873 874
             // TODO(jiabin): when we impl more backward execution we can
             // select them
875
             auto *engine = tracer.GetEngine();
876
             engine->Init(&self, retain_graph);
877
             VLOG(3) << "Start backward";
L
Leo Chen 已提交
878 879 880 881 882 883 884 885 886 887
             engine->Execute();
             VLOG(3) << "Finish backward";
           },
           py::call_guard<py::gil_scoped_release>())
      .def("_grad_name", &imperative::VarBase::GradVarName)
      .def("_grad_value",
           [](imperative::VarBase &self) {
             return self.MutableGradVar()->Get<framework::LoDTensor>();
           },
           py::return_value_policy::reference)
888 889 890 891
      .def("_set_grad_type",
           [](imperative::VarBase &self, framework::proto::VarType::Type type) {
             self.MutableGradVarBase()->SetType(type);
           })
892
      .def("_grad_ivar",
J
Jiabin Yang 已提交
893 894
           [](const imperative::VarBase &self) {
             auto &grad_var = self.GradVarBase();
895 896 897 898 899 900 901 902 903 904 905
             if (grad_var && grad_var->Var().IsInitialized()) {
               auto *tensor =
                   grad_var->MutableVar()->IsType<framework::LoDTensor>()
                       ? grad_var->MutableVar()
                             ->GetMutable<framework::LoDTensor>()
                       : grad_var->MutableVar()
                             ->GetMutable<framework::SelectedRows>()
                             ->mutable_value();
               if (tensor->IsInitialized()) {
                 return grad_var;
               }
J
Jiabin Yang 已提交
906
             }
907
             return std::shared_ptr<imperative::VarBase>(nullptr);
J
Jiabin Yang 已提交
908 909
           },
           py::return_value_policy::copy)
910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939
      .def("_is_sparse",
           [](imperative::VarBase &self) {
             return self.Var().IsType<framework::SelectedRows>();
           })
      .def("_allreduce",
           [](imperative::VarBase &self,
              const imperative::ParallelStrategy &strategy) {
             if (strategy.nranks_ > 1) {
#ifdef PADDLE_WITH_NCCL
#if NCCL_VERSION_CODE >= 2212
               imperative::AllReduce(self.Var(), self.MutableVar(), strategy);
#else
               if (!self.Var().IsType<framework::SelectedRows>()) {
                 imperative::AllReduce(self.Var(), self.MutableVar(), strategy);
               } else {
                 PADDLE_THROW(platform::errors::Unimplemented(
                     "Imperative SelectedRows allreduce is not supported when "
                     "paddle is compiled with NCCL verison lower than v2.2.12. "
                     "You can set is_sparse=False for the Layer containing "
                     "this argument, such as Embedding(is_sparse=False)."));
               }
#endif  // NCCL_VERSION_CODE
#else
               PADDLE_THROW(platform::errors::Unimplemented(
                   "Imperative allreduce is not supported when paddle is "
                   "not compiled with NCCL."));
#endif  // PADDLE_WITH_NCCL
             }
           },
           py::call_guard<py::gil_scoped_release>())
940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
      .def("cpu",
           [](const std::shared_ptr<imperative::VarBase> &self) {
             if (platform::is_cpu_place(self->Place())) {
               return self;
             } else {
               auto new_var = self->NewVarBase(platform::CPUPlace(), true);
               new_var->SetOverridedStopGradient(self->OverridedStopGradient());
               return new_var;
             }
           },
           R"DOC(
        Returns a copy of this Tensor in CPU memory.

        If this Tensor is already in CPU memory, then no copy is performed and the original Tensor is returned.

        Examples:
            .. code-block:: python

              import paddle
              x = paddle.to_tensor(1.0, place=paddle.CUDAPlace(0))
              print(x.place)    # CUDAPlace(0)
              
              y = x.cpu()
              print(y.place)    # CPUPlace

              )DOC")
      .def("pin_memory",
           [](const std::shared_ptr<imperative::VarBase> &self) {
#ifndef PADDLE_WITH_CUDA
             PADDLE_THROW(platform::errors::PermissionDenied(
                 "Cannot copy this Tensor to pinned memory in CPU version "
                 "Paddle, "
                 "Please recompile or reinstall Paddle with CUDA support."));
#endif
             if (platform::is_cuda_pinned_place(self->Place())) {
               return self;
             } else {
               auto new_var =
                   self->NewVarBase(platform::CUDAPinnedPlace(), true);
               new_var->SetOverridedStopGradient(self->OverridedStopGradient());
               return new_var;
             }
           },
           R"DOC(
        Returns a copy of this Tensor in pin memory.

        If this Tensor is already in pin memory, then no copy is performed and the original Tensor is returned.

        Examples:
            .. code-block:: python

              import paddle
              x = paddle.to_tensor(1.0, place=paddle.CUDAPlace(0))
              print(x.place)      # CUDAPlace(0)

              y = x.pin_memory()
              print(y.place)      # CUDAPinnedPlace

      )DOC")
      .def("cuda",
           [](const std::shared_ptr<imperative::VarBase> &self, int device_id,
              bool blocking) {
#ifndef PADDLE_WITH_CUDA
             PADDLE_THROW(platform::errors::PermissionDenied(
                 "Cannot copy this Tensor to GPU in CPU version Paddle, "
                 "Please recompile or reinstall Paddle with CUDA support."));
#else
             int device_count = platform::GetCUDADeviceCount();
             if (device_id == -1) {
               if (platform::is_gpu_place(self->Place())) {
                 return self;
               } else {
                 device_id = 0;
               }
             }
             PADDLE_ENFORCE_GE(
                 device_id, 0,
                 platform::errors::InvalidArgument(
                     "Can not copy Tensor to Invalid CUDAPlace(%d), device id "
                     "must inside [0, %d)",
                     device_id, device_count));
             PADDLE_ENFORCE_LT(
                 device_id, device_count,
                 platform::errors::InvalidArgument(
                     "Can not copy Tensor to Invalid CUDAPlace(%d), device id "
                     "must inside [0, %d)",
                     device_id, device_count));
             platform::CUDAPlace place = platform::CUDAPlace(device_id);
             if (platform::is_same_place(self->Place(), place)) {
               return self;
             } else {
               auto new_var = self->NewVarBase(place, blocking);
               new_var->SetOverridedStopGradient(self->OverridedStopGradient());
               return new_var;
             }
#endif
           },
           py::arg("device_id") = -1, py::arg("blocking") = true, R"DOC(
        Returns a copy of this Tensor in GPU memory.

        If this Tensor is already in GPU memory and device_id is default, 
        then no copy is performed and the original Tensor is returned.
        
        Args:
            device_id(int, optional): The destination GPU device id. Defaults to the current device.
            blocking(bool, optional): If False and the source is in pinned memory, the copy will be 
              asynchronous with respect to the host. Otherwise, the argument has no effect. Default: False.

        Examples:
            .. code-block:: python

              import paddle
              x = paddle.to_tensor(1.0, place=paddle.CPUPlace())
              print(x.place)        # CPUPlace

              y = x.cuda()
              print(y.place)        # CUDAPlace(0)

              y = x.cuda(1)
              print(y.place)        # CUDAPlace(1)
       )DOC")
1061
      .def("copy_", &imperative::VarBase::CopyFrom)
1062
      .def("_copy_to",
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
           [](const std::shared_ptr<imperative::VarBase> &self,
              const platform::CPUPlace &place, bool blocking) {
             auto new_var = self->NewVarBase(place, blocking);
             // Note(zhiqiu): Since NewVarBase may use GpuCopyAsync to
             // copy data from the tensor of self to the tensor of new varbase,
             // we need to ensure that the varbase self is not destructed until
             // the GpuCopyAsync is completed. Otherwise, the memory may be
             // freed
             // when varbase self is destructed.
             // To do that, we increase the reference count of self by 1 and
             // add a cuda event to wait the GpuCopyAsync's completion.
             if (!blocking) {
               IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
             }
             return new_var;
           },
J
Jiabin Yang 已提交
1079
           py::return_value_policy::copy)
1080
      .def("_copy_to",
1081 1082 1083 1084 1085 1086 1087 1088
           [](const std::shared_ptr<imperative::VarBase> &self,
              const platform::CUDAPinnedPlace &place, bool blocking) {
             auto new_var = self->NewVarBase(place, blocking);
             if (!blocking) {
               IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
             }
             return new_var;
           },
1089
           py::return_value_policy::copy)
1090
      .def("_copy_to",
1091 1092 1093 1094 1095 1096 1097 1098
           [](const std::shared_ptr<imperative::VarBase> &self,
              const platform::XPUPlace &place, bool blocking) {
             auto new_var = self->NewVarBase(place, blocking);
             if (!blocking) {
               IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
             }
             return new_var;
           },
1099
           py::return_value_policy::copy)
1100
      .def("_copy_to",
1101 1102 1103 1104 1105 1106 1107 1108
           [](const std::shared_ptr<imperative::VarBase> &self,
              const platform::CUDAPlace &place, bool blocking) {
             auto new_var = self->NewVarBase(place, blocking);
             if (!blocking) {
               IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
             }
             return new_var;
           },
J
Jiabin Yang 已提交
1109 1110
           py::return_value_policy::copy)
      .def("value", [](imperative::VarBase &self) { return self.MutableVar(); },
1111 1112 1113
           py::return_value_policy::reference)
      .def_property("name", &imperative::VarBase::Name,
                    &imperative::VarBase::SetName)
L
Leo Chen 已提交
1114 1115 1116 1117 1118
      .def_property("stop_gradient",
                    &imperative::VarBase::OverridedStopGradient,
                    &imperative::VarBase::SetOverridedStopGradient)
      .def_property("persistable", &imperative::VarBase::Persistable,
                    &imperative::VarBase::SetPersistable)
J
Jiabin Yang 已提交
1119 1120 1121 1122
      .def_property_readonly(
          "shape",
          [](imperative::VarBase &self) {
            if (self.Var().IsType<framework::LoDTensor>()) {
1123
              return framework::vectorize<int>(
J
Jiabin Yang 已提交
1124
                  self.Var().Get<framework::LoDTensor>().dims());
1125 1126 1127
            } else if (self.Var().IsType<framework::SelectedRows>()) {
              return framework::vectorize<int>(
                  self.Var().Get<framework::SelectedRows>().value().dims());
J
Jiabin Yang 已提交
1128
            } else {
1129 1130
              VLOG(2) << "It is meaningless to get shape of "
                         "variable type "
J
Jiabin Yang 已提交
1131 1132 1133 1134
                      << GetTypeName(self);
              return std::vector<int>();
            }
          })
1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
      .def_property_readonly("is_leaf", &imperative::VarBase::IsLeaf,
                             R"DOC(
      Whether a Tensor is leaf Tensor.

      For the Tensor whose stop_gradient is ``True`` , it will be leaf Tensor. 
      
      For the Tensor whose stop_gradient is ``False`` , it will be leaf Tensor too if it is created by user.

      Returns:
          bool: Whether a Tensor is leaf Tensor.

      Examples:
          .. code-block:: python

              import paddle

              x = paddle.to_tensor(1.)
              print(x.is_leaf) # True

              x = paddle.to_tensor(1., stop_gradient=True)
              y = x + 1
              print(x.is_leaf) # True
              print(y.is_leaf) # True

              x = paddle.to_tensor(1., stop_gradient=False)
              y = x + 1
              print(x.is_leaf) # True
              print(y.is_leaf) # False
       )DOC")
1164 1165 1166
      .def_property_readonly(
          "place", [](imperative::VarBase &self) { return self.Place(); },
          py::return_value_policy::copy)
1167 1168 1169 1170 1171 1172
      .def_property_readonly("_place_str",
                             [](imperative::VarBase &self) {
                               std::stringstream ostr;
                               ostr << self.Place();
                               return ostr.str();
                             })
J
Jiabin Yang 已提交
1173
      .def_property_readonly("type", &imperative::VarBase::Type)
L
Leo Chen 已提交
1174
      .def_property_readonly("dtype", &imperative::VarBase::DataType);
1175 1176 1177

  py::class_<imperative::Layer, Layer /* <--- trampoline*/> layer(m, "Layer");
  layer.def(py::init<>())
1178 1179 1180 1181 1182
      .def("forward",
           [](imperative::Layer &self,
              const std::vector<std::shared_ptr<imperative::VarBase>> &inputs) {
             return self.Forward(inputs);
           });
1183

1184 1185 1186 1187 1188
  py::class_<imperative::jit::ProgramDescTracer>(m, "ProgramDescTracer", "")
      .def("create_program_desc",
           &imperative::jit::ProgramDescTracer::CreateProgramDesc)
      .def("reset", &imperative::jit::ProgramDescTracer::Reset);

1189
  py::class_<imperative::Tracer, std::shared_ptr<imperative::Tracer>>(
1190
      m, "Tracer", R"DOC()DOC")
1191
      .def("__init__",
J
Jiabin Yang 已提交
1192
           [](imperative::Tracer &self) { new (&self) imperative::Tracer(); })
1193 1194 1195
      .def_property("_enable_program_desc_tracing",
                    &imperative::Tracer::IsProgramDescTracingEnabled,
                    &imperative::Tracer::SetEnableProgramDescTracing)
1196 1197
      .def_property("_enable_autocast", &imperative::Tracer::IsAutoCastEnabled,
                    &imperative::Tracer::SetEnableAutoCast)
1198
      .def_property("_has_grad", &imperative::Tracer::HasGrad,
1199
                    &imperative::Tracer::SetHasGrad)
1200 1201 1202 1203 1204 1205 1206 1207
      .def_property(
          "_expected_place",
          [](const imperative::Tracer &self) -> py::object {
            return py::cast(self.ExpectedPlace());
          },
          [](imperative::Tracer &self, const py::object &obj) {
            if (py::isinstance<platform::CUDAPlace>(obj)) {
              auto p = obj.cast<platform::CUDAPlace *>();
L
Leo Chen 已提交
1208
              self.SetExpectedPlace(*p);
1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219

// NOTE(zhiqiu): When switching cuda place, we need to set the
// cuda device id.
// Otherwise, some cuda API may be launched at other cuda place,
// which may cost hundreds of MB of GPU memory due to the cuda
// lib.
#ifdef PADDLE_WITH_CUDA
              platform::SetDeviceId(p->device);
#endif
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
1220 1221 1222
            } else if (py::isinstance<platform::XPUPlace>(obj)) {
              auto p = obj.cast<platform::XPUPlace *>();
              self.SetExpectedPlace(*p);
1223 1224
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
1225 1226
            } else if (py::isinstance<platform::CPUPlace>(obj)) {
              auto p = obj.cast<platform::CPUPlace *>();
L
Leo Chen 已提交
1227
              self.SetExpectedPlace(*p);
1228 1229
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
1230 1231
            } else if (py::isinstance<platform::CUDAPinnedPlace>(obj)) {
              auto p = obj.cast<platform::CUDAPinnedPlace *>();
L
Leo Chen 已提交
1232
              self.SetExpectedPlace(*p);
1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
            } else if (py::isinstance<platform::Place>(obj)) {
              auto p = obj.cast<platform::Place *>();
              self.SetExpectedPlace(*p);
              if (platform::is_gpu_place(*p)) {
// NOTE(zhiqu): same as obj is CUDAPlace.
#ifdef PADDLE_WITH_CUDA
                platform::SetDeviceId(
                    BOOST_GET_CONST(platform::CUDAPlace, *p).device);
#endif
              }
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
1247
            } else {
L
Leo Chen 已提交
1248
              PADDLE_THROW(platform::errors::InvalidArgument(
1249 1250
                  "Incompatible Place Type: supports XPUPlace, CUDAPlace, "
                  "CPUPlace, "
L
Leo Chen 已提交
1251 1252
                  "and CUDAPinnedPlace, "
                  "but got Unknown Type!"));
1253 1254
            }
          })
1255 1256 1257
      .def("_get_program_desc_tracer",
           &imperative::Tracer::GetProgramDescTracer,
           py::return_value_policy::reference)
1258
      .def("_generate_unique_name", &imperative::Tracer::GenerateUniqueName,
1259
           py::arg("key") = "dygraph_tmp")
1260 1261 1262 1263 1264
      .def(
          "_set_amp_op_list",
          [](imperative::Tracer &self,
             std::unordered_set<std::string> &allow_ops,
             std::unordered_set<std::string> &block_ops) {
1265 1266
            // NOTE(zhiqiu): The automatic conversion in pybind11 between
            // c++
1267 1268 1269 1270
            // STL and python set/list/dict involve a copy operation that
            // prevents pass-by-reference semantics, so it is ok to swap.
            // The reaseon why not directly pass
            // std::shared_ptr<std::unordered_set<std::string>>
1271 1272
            // is that pybind11 forbid shared_ptr<T> where T is not custom
            // type.
1273 1274 1275 1276 1277 1278 1279 1280 1281
            imperative::AmpOperators::Instance().GetAllowOps()->swap(allow_ops);
            imperative::AmpOperators::Instance().GetBlockOps()->swap(block_ops);
          })
      .def("_get_amp_op_list",
           [](imperative::Tracer &self) {
             return std::make_tuple(
                 *(imperative::AmpOperators::Instance().GetAllowOps()),
                 *(imperative::AmpOperators::Instance().GetBlockOps()));
           })
1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294
      .def("trace",
           [](imperative::Tracer &self, const std::string &type,
              const PyNameVarBaseMap &ins, const PyNameVarBaseMap &outs,
              framework::AttributeMap attrs, const platform::XPUPlace &place,
              bool trace_backward) {
             auto ins_map = ConvertToNameVarBaseMap(ins);
             auto outs_map = ConvertToNameVarBaseMap(outs);
             {
               py::gil_scoped_release release;
               self.TraceOp(type, std::move(ins_map), std::move(outs_map),
                            std::move(attrs), place, trace_backward);
             }
           })
M
minqiyang 已提交
1295
      .def("trace",
J
Jiabin Yang 已提交
1296 1297 1298 1299 1300 1301
           [](imperative::Tracer &self, const std::string &type,
              const PyNameVarBaseMap &ins, const PyNameVarBaseMap &outs,
              framework::AttributeMap attrs, const platform::CUDAPlace &place,
              bool trace_backward) {
             auto ins_map = ConvertToNameVarBaseMap(ins);
             auto outs_map = ConvertToNameVarBaseMap(outs);
1302 1303
             {
               py::gil_scoped_release release;
J
Jiabin Yang 已提交
1304 1305
               self.TraceOp(type, std::move(ins_map), std::move(outs_map),
                            std::move(attrs), place, trace_backward);
1306
             }
M
minqiyang 已提交
1307
           })
J
Jiabin Yang 已提交
1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320
      .def("trace",
           [](imperative::Tracer &self, const std::string &type,
              const PyNameVarBaseMap &ins, const PyNameVarBaseMap &outs,
              framework::AttributeMap attrs, const platform::CPUPlace &place,
              bool trace_backward) {
             auto ins_map = ConvertToNameVarBaseMap(ins);
             auto outs_map = ConvertToNameVarBaseMap(outs);
             {
               py::gil_scoped_release release;
               self.TraceOp(type, std::move(ins_map), std::move(outs_map),
                            std::move(attrs), place, trace_backward);
             }
           });
1321 1322

  // define parallel context
1323 1324 1325
  py::class_<imperative::ParallelStrategy> parallel_strategy(
      m, "ParallelStrategy", "");
  parallel_strategy.def(py::init())
1326 1327
      .def_property(
          "nranks",
1328 1329
          [](const imperative::ParallelStrategy &self) { return self.nranks_; },
          [](imperative::ParallelStrategy &self, int nranks) {
1330 1331 1332
            self.nranks_ = nranks;
          })
      .def_property("local_rank",
1333
                    [](const imperative::ParallelStrategy &self) {
1334 1335
                      return self.local_rank_;
                    },
1336
                    [](imperative::ParallelStrategy &self, int local_rank) {
1337 1338 1339 1340
                      self.local_rank_ = local_rank;
                    })
      .def_property(
          "trainer_endpoints",
1341
          [](const imperative::ParallelStrategy &self) {
1342 1343
            return self.trainer_endpoints_;
          },
1344
          [](imperative::ParallelStrategy &self, std::vector<std::string> eps) {
1345 1346 1347
            self.trainer_endpoints_ = eps;
          })
      .def_property("current_endpoint",
1348
                    [](const imperative::ParallelStrategy &self) {
1349 1350
                      return self.current_endpoint_;
                    },
1351
                    [](imperative::ParallelStrategy &self,
1352 1353 1354 1355 1356 1357 1358
                       const std::string &ep) { self.current_endpoint_ = ep; })
      .def_property(
          "nrings",
          [](const imperative::ParallelStrategy &self) { return self.nrings_; },
          [](imperative::ParallelStrategy &self, int nrings) {
            self.nrings_ = nrings;
          });
1359 1360 1361 1362 1363 1364 1365 1366

  m.def(
      "dygraph_partial_grad",
      [](const std::vector<std::shared_ptr<imperative::VarBase>> &input_targets,
         const std::vector<std::shared_ptr<imperative::VarBase>>
             &output_targets,
         const std::vector<std::shared_ptr<imperative::VarBase>> &output_grads,
         const std::vector<std::shared_ptr<imperative::VarBase>> &no_grad_vars,
1367 1368
         const platform::Place &place, bool create_graph, bool retain_graph,
         bool allow_unused, bool only_inputs) {
Z
Zeng Jinle 已提交
1369 1370
        imperative::PartialGradEngine engine(
            input_targets, output_targets, output_grads, no_grad_vars, place,
1371
            create_graph, retain_graph, allow_unused, only_inputs);
1372 1373 1374 1375 1376
        engine.Execute();
        return engine.GetResult();
      },
      py::call_guard<py::gil_scoped_release>());

1377
#if defined(PADDLE_WITH_NCCL)
1378 1379 1380 1381 1382 1383
  py::class_<imperative::ParallelContext,
             std::shared_ptr<imperative::ParallelContext>>(m,
                                                           "ParallelContext");
  py::class_<imperative::NCCLParallelContext, imperative::ParallelContext,
             std::shared_ptr<imperative::NCCLParallelContext>>(
      m, "NCCLParallelContext")
1384 1385 1386
      .def(py::init<const imperative::ParallelStrategy &,
                    const platform::CUDAPlace &>())
      .def("init", [](imperative::NCCLParallelContext &self) { self.Init(); });
1387 1388 1389

  py::class_<imperative::Reducer, std::shared_ptr<imperative::Reducer>>(
      m, "Reducer", R"DOC()DOC")
1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
      .def(py::init([](
          const std::vector<std::shared_ptr<imperative::VarBase>> &vars,
          const std::vector<std::vector<size_t>> &group_indices,
          const std::vector<bool> &is_sparse_gradient,
          std::shared_ptr<imperative::ParallelContext> parallel_ctx,
          const std::vector<size_t> &group_size_limits, bool find_unused_vars) {
        return imperative::Reducer::SetInstance(
            vars, group_indices, is_sparse_gradient, parallel_ctx,
            group_size_limits, find_unused_vars);
      }))
1400
      .def("prepare_for_backward", &imperative::Reducer::PrepareForBackward,
1401
           py::arg("vars"), py::call_guard<py::gil_scoped_release>());
1402 1403 1404 1405

  m.def("assign_group_by_size", &imperative::AssignGroupBySize, py::arg("vars"),
        py::arg("is_sparse_gradient"),
        py::arg("group_size_limits") = std::vector<size_t>{25 * 1024 * 1024},
1406
        py::arg("tensor_indices") = std::vector<int64_t>{},
1407
        py::call_guard<py::gil_scoped_release>());
1408
#endif
1409 1410 1411 1412
}

}  // namespace pybind
}  // namespace paddle