assign_op.cc 6.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Y
Yu Yang 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Y
Yu Yang 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Y
Yu Yang 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yu Yang 已提交
14

15 16 17
#include "paddle/fluid/operators/assign_op.h"

#include <string>
Y
Yu Yang 已提交
18

W
wanghuancoder 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
namespace paddle {
namespace framework {
class OpDesc;
class Variable;
}  // namespace framework
namespace imperative {
class OpBase;
}  // namespace imperative
namespace platform {
struct CPUPlace;
struct CUDAPlace;
struct float16;
}  // namespace platform
}  // namespace paddle

Y
Yu Yang 已提交
34 35 36
namespace paddle {
namespace operators {

37
class AssignOp : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
38 39 40 41
 public:
  AssignOp(const std::string &type, const framework::VariableNameMap &inputs,
           const framework::VariableNameMap &outputs,
           const framework::AttributeMap &attrs)
42
      : OperatorWithKernel(type, inputs, outputs, attrs) {}
43

44 45 46 47 48 49 50 51 52
  void InferShape(framework::InferShapeContext *ctx) const override {
    if (ctx->HasInput("X")) {
      auto type = ctx->GetInputsVarType("X")[0];
      if (type == framework::proto::VarType::SELECTED_ROWS ||
          type == framework::proto::VarType::LOD_TENSOR) {
        ctx->SetOutputDim("Out", ctx->GetInputDim("X"));
        if (type == framework::proto::VarType::LOD_TENSOR) {
          ctx->ShareLoD("X", /*->*/ "Out");
        }
53 54 55 56 57 58 59
      } else if (type == framework::proto::VarType::LOD_TENSOR_ARRAY) {
        if (ctx->IsRuntime()) {
          // The runtime output shape is determined in kernel.
          return;
        } else {
          ctx->SetOutputDim("Out", ctx->GetInputDim("X"));
        }
60 61 62 63 64
      }
    }
  }

 protected:
65 66 67 68 69 70 71 72
  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const framework::Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const override {
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   expected_kernel_type.place_,
                                   tensor.layout());
  }

73 74
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
L
liym27 已提交
75 76 77 78 79 80 81 82 83 84 85
    const framework::Variable *var = ctx.InputVar("X");
    if (var->IsType<framework::LoDTensorArray>()) {
      auto t_arr = var->Get<framework::LoDTensorArray>();
      // NOTE(liym27): Support an empty tensor array as Input.
      // And set the kernel type is float.
      if (t_arr.size() == 0) {
        return framework::OpKernelType(framework::proto::VarType::FP32,
                                       ctx.device_context());
      }
    }

86 87 88
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"),
        ctx.device_context());
89 90 91
  }
};

92 93 94
class AssignInferVarType : public framework::VarTypeInference {
 public:
  void operator()(framework::InferVarTypeContext *ctx) const override {
95
    ctx->SyncTypeAndDataType("X", "Out");
96 97 98
  }
};

99 100 101 102
class AssignKernel {
 public:
  void operator()(const framework::ExecutionContext &ctx) const {
    auto *x = ctx.InputVar("X");
Y
Yu Yang 已提交
103 104 105
    if (x == nullptr) {
      return;
    }
106 107 108
    PADDLE_ENFORCE_EQ(
        ctx.HasOutput("Out"), true,
        platform::errors::NotFound("Output(Out) of assign_op is not found."));
109
    auto *out = ctx.OutputVar("Out");
Y
Yu Yang 已提交
110
    platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
111
    auto &dev_ctx = *pool.Get(ctx.GetPlace());
D
dzhwinter 已提交
112

Y
Yu Yang 已提交
113 114 115 116 117 118
    framework::VisitVarType(*x, AssignFunctor(out, dev_ctx));
  }
};

class AssignOpProtoMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
119
  void Make() override {
Y
Yu Yang 已提交
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
    AddInput("X",
             "(LoDTensor, SelectedRows or LoDTensorArray) The input variable "
             "could be LoDTensor, SelectedRows or LoDTensorArray.")
        .AsDispensable();
    AddOutput("Out",
              "(LoDTensor, SelectedRows or LoDTensorArray) The type of output "
              "is the same as input X.");
    AddComment(R"DOC(Assign Operator

Out = X,  when type in [LoDTensor/SelectedRows/LoDTensorArray]
raise error if the type is not listed above.
)DOC");
  }
};

H
hong 已提交
135 136
template <typename T>
class AssignGradMaker : public framework::SingleGradOpMaker<T> {
Y
Yu Yang 已提交
137
 public:
H
hong 已提交
138
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
Y
Yu Yang 已提交
139 140

 protected:
141
  void Apply(GradOpPtr<T> op) const override {
Y
Yu Yang 已提交
142
    op->SetType("assign");
H
hong 已提交
143 144
    op->SetInput("X", this->OutputGrad("Out"));
    op->SetOutput("Out", this->InputGrad("X"));
Y
Yu Yang 已提交
145 146 147
  }
};

148 149
DECLARE_INPLACE_OP_INFERER(AssignOpInplaceInferer, {"X", "Out"});

Y
Yu Yang 已提交
150 151 152 153
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
154
namespace plat = paddle::platform;
H
hong 已提交
155 156 157
REGISTER_OPERATOR(assign, ops::AssignOp,
                  ops::AssignGradMaker<paddle::framework::OpDesc>,
                  ops::AssignGradMaker<paddle::imperative::OpBase>,
158 159
                  ops::AssignOpProtoMaker, ops::AssignOpInplaceInferer,
                  ops::AssignInferVarType);
H
hong 已提交
160

161 162
REGISTER_OP_CPU_KERNEL_FUNCTOR(assign, float, ops::AssignKernel, double,
                               ops::AssignKernel, int, ops::AssignKernel,
163 164 165
                               int64_t, ops::AssignKernel, uint8_t,
                               ops::AssignKernel, bool, ops::AssignKernel,
                               plat::float16, ops::AssignKernel, plat::bfloat16,
G
Guo Sheng 已提交
166
                               ops::AssignKernel);
167

168
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
169 170
REGISTER_OP_CUDA_KERNEL_FUNCTOR(assign, float, ops::AssignKernel, double,
                                ops::AssignKernel, int, ops::AssignKernel,
171 172 173
                                int64_t, ops::AssignKernel, uint8_t,
                                ops::AssignKernel, bool, ops::AssignKernel,
                                plat::float16, ops::AssignKernel);
174
#endif