assign_op.cc 5.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Y
Yu Yang 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Y
Yu Yang 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Y
Yu Yang 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yu Yang 已提交
14

Y
Yi Wang 已提交
15 16 17 18
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/var_type.h"
#include "paddle/fluid/platform/device_context.h"
Y
Yu Yang 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46

namespace paddle {
namespace operators {
class AssignFunctor {
 public:
  AssignFunctor(framework::Variable *out,
                const platform::DeviceContext &dev_ctx)
      : out_(out), dev_ctx_(dev_ctx) {}

  void operator()(const framework::LoDTensor &lod_tensor) const {
    auto &out_tensor = *out_->GetMutable<framework::LoDTensor>();
    copy_tensor(lod_tensor, &out_tensor);
  }

  void operator()(const framework::LoDTensorArray &array) const {
    auto &out_array = *out_->GetMutable<framework::LoDTensorArray>();
    out_array.resize(array.size());
    for (size_t i = 0; i < array.size(); ++i) {
      copy_tensor(array[i], &out_array[i]);
    }
  }

  void operator()(const framework::SelectedRows &rows) const {
    framework::SelectedRows &out_rows =
        *out_->GetMutable<framework::SelectedRows>();
    out_rows.set_rows(rows.rows());
    out_rows.set_height(rows.height());
    auto &t = rows.value();
D
dzhwinter 已提交
47
    auto *m = out_rows.mutable_value();
Y
Yi Wang 已提交
48
    framework::TensorCopy(t, t.place(), dev_ctx_, m);
Y
Yu Yang 已提交
49 50 51 52 53 54 55 56 57 58
  }

  template <typename T>
  void operator()(const T &v) const {
    PADDLE_THROW("Not support type for assign op %s", typeid(T).name());
  }

 private:
  void copy_tensor(const framework::LoDTensor &lod_tensor,
                   framework::LoDTensor *out) const {
C
chengduoZH 已提交
59
    if (lod_tensor.numel() == 0) return;
Y
Yu Yang 已提交
60
    auto &out_tensor = *out;
Y
Yi Wang 已提交
61
    TensorCopy(lod_tensor, lod_tensor.place(), dev_ctx_, &out_tensor);
Y
Yu Yang 已提交
62 63 64 65 66 67 68
    out_tensor.set_lod(lod_tensor.lod());
  }

  framework::Variable *out_;
  const platform::DeviceContext &dev_ctx_;
};

69
class AssignOp : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
70 71 72 73
 public:
  AssignOp(const std::string &type, const framework::VariableNameMap &inputs,
           const framework::VariableNameMap &outputs,
           const framework::AttributeMap &attrs)
74
      : OperatorWithKernel(type, inputs, outputs, attrs) {}
75

76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
  void InferShape(framework::InferShapeContext *ctx) const override {
    if (ctx->HasInput("X")) {
      auto type = ctx->GetInputsVarType("X")[0];
      if (type == framework::proto::VarType::SELECTED_ROWS ||
          type == framework::proto::VarType::LOD_TENSOR) {
        ctx->SetOutputDim("Out", ctx->GetInputDim("X"));
        if (type == framework::proto::VarType::LOD_TENSOR) {
          ctx->ShareLoD("X", /*->*/ "Out");
        }
      }
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    return framework::OpKernelType(ctx.Input<framework::LoDTensor>("X")->type(),
                                   ctx.device_context());
  }
};

class AssignKernel {
 public:
  void operator()(const framework::ExecutionContext &ctx) const {
    auto *x = ctx.InputVar("X");
Y
Yu Yang 已提交
101 102 103
    if (x == nullptr) {
      return;
    }
104
    auto *out = ctx.OutputVar("Out");
Y
Yu Yang 已提交
105 106 107
    PADDLE_ENFORCE(
        out != nullptr,
        "The Output(Out) should not be null if the Input(X) is set.");
Y
Yu Yang 已提交
108
    platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
109
    auto &dev_ctx = *pool.Get(ctx.GetPlace());
D
dzhwinter 已提交
110

Y
Yu Yang 已提交
111 112 113 114 115 116
    framework::VisitVarType(*x, AssignFunctor(out, dev_ctx));
  }
};

class AssignOpProtoMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
117
  void Make() override {
Y
Yu Yang 已提交
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
    AddInput("X",
             "(LoDTensor, SelectedRows or LoDTensorArray) The input variable "
             "could be LoDTensor, SelectedRows or LoDTensorArray.")
        .AsDispensable();
    AddOutput("Out",
              "(LoDTensor, SelectedRows or LoDTensorArray) The type of output "
              "is the same as input X.");
    AddComment(R"DOC(Assign Operator

Out = X,  when type in [LoDTensor/SelectedRows/LoDTensorArray]
raise error if the type is not listed above.
)DOC");
  }
};

class AssignGradMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
Y
Yu Yang 已提交
138 139
  std::unique_ptr<framework::OpDesc> Apply() const override {
    auto *op = new framework::OpDesc();
Y
Yu Yang 已提交
140 141 142
    op->SetType("assign");
    op->SetInput("X", OutputGrad("Out"));
    op->SetOutput("Out", InputGrad("X"));
Y
Yu Yang 已提交
143
    return std::unique_ptr<framework::OpDesc>(op);
Y
Yu Yang 已提交
144 145 146
  }
};

147 148
DECLARE_INPLACE_OP_INFERER(AssignOpInplaceInferer, {"X", "Out"});

Y
Yu Yang 已提交
149 150 151 152 153
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(assign, ops::AssignOp, ops::AssignGradMaker,
154
                  ops::AssignOpProtoMaker, ops::AssignOpInplaceInferer);
155 156 157 158 159 160 161 162 163
REGISTER_OP_CPU_KERNEL_FUNCTOR(assign, float, ops::AssignKernel, double,
                               ops::AssignKernel, int, ops::AssignKernel,
                               int64_t, ops::AssignKernel);

#ifdef PADDLE_WITH_CUDA
REGISTER_OP_CUDA_KERNEL_FUNCTOR(assign, float, ops::AssignKernel, double,
                                ops::AssignKernel, int, ops::AssignKernel,
                                int64_t, ops::AssignKernel);
#endif