activation_op.cc 55.9 KB
Newer Older
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Q
qijun 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Q
qijun 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Q
qijun 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Q
qijun 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/activation_op.h"
16

T
tink2123 已提交
17
#include <memory>
D
dzhwinter 已提交
18
#include <string>
19
#include <type_traits>
T
tink2123 已提交
20
#include <unordered_map>
21
#include <vector>
22

23
#include "paddle/fluid/framework/op_version_registry.h"
24
#include "paddle/fluid/operators/common_infer_shape_functions.h"
25
#include "paddle/fluid/operators/mkldnn/mkldnn_activation_op.h"
D
dzhwinter 已提交
26
#include "paddle/fluid/platform/port.h"
Q
qijun 已提交
27

A
Adam 已提交
28 29
DECLARE_bool(use_mkldnn);

Q
qijun 已提交
30 31 32
namespace paddle {
namespace operators {

33 34
using paddle::framework::Tensor;

35 36 37 38 39
template <typename GradFunctor>
static constexpr bool CanInplaceAct() {
  return GradFunctor::FwdDeps() == kDepOut || GradFunctor::FwdDeps() == kNoDeps;
}

40 41 42 43 44
#define REGISTER_ACTIVATION_OP_MAKER(OP_NAME, OP_COMMENT)                    \
  class OP_NAME##OpMaker                                                     \
      : public ::paddle::framework::OpProtoAndCheckerMaker {                 \
   public:                                                                   \
    void Make() override {                                                   \
45 46 47 48 49
      AddInput("X", "Input of " #OP_NAME                                     \
                    " operator, an N-D Tensor, with data type float32, "     \
                    "float64 or float16.");                                  \
      AddOutput("Out", "Output of " #OP_NAME                                 \
                       " operator, a Tensor with shape same as input.");     \
50 51
      AddAttr<bool>("use_mkldnn",                                            \
                    "(bool, default false) Only used in mkldnn kernel")      \
52 53
          .SetDefault(false)                                                 \
          .AsExtra();                                                        \
54 55 56
      AddAttr<bool>("use_cudnn",                                             \
                    "(bool, default false) Only used in cudnn kernel, need " \
                    "install cudnn")                                         \
57 58
          .SetDefault(false)                                                 \
          .AsExtra();                                                        \
59 60
      AddComment(OP_COMMENT);                                                \
    }                                                                        \
D
dzhwinter 已提交
61
  }
D
dzhwinter 已提交
62

H
hong 已提交
63 64
template <ActBwdOpFwdDeps kDepValue, typename T>
class ActivationGradOpMaker : public framework::SingleGradOpMaker<T> {
65
 public:
H
hong 已提交
66
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
67 68

 protected:
69
  void Apply(GradOpPtr<T> op) const override {
H
hong 已提交
70 71 72 73
    op->SetType(this->ForwardOpType() + "_grad");
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetAttrMap(this->Attrs());
74

A
Adam 已提交
75 76
    if ((static_cast<int>(kDepValue) &
         static_cast<int>(ActBwdOpFwdDeps::kDepX)) ||
77 78 79
        FLAGS_use_mkldnn ||
        (op->HasAttr("use_mkldnn") &&
         BOOST_GET_CONST(bool, op->GetAttr("use_mkldnn")))) {
H
hong 已提交
80
      op->SetInput("X", this->Input("X"));
81 82 83 84
    }

    if (static_cast<int>(kDepValue) &
        static_cast<int>(ActBwdOpFwdDeps::kDepOut)) {
H
hong 已提交
85
      op->SetInput("Out", this->Output("Out"));
86
    }
D
dzhwinter 已提交
87
  }
88
};
D
dzhwinter 已提交
89

90 91 92 93
framework::OpKernelType GetKernelType(const framework::ExecutionContext& ctx,
                                      const framework::OperatorWithKernel& oper,
                                      const std::string& name) {
  framework::LibraryType library{framework::LibraryType::kPlain};
M
mozga-intel 已提交
94
  framework::DataLayout layout = framework::DataLayout::kAnyLayout;
95
  auto data_type = oper.IndicateVarDataType(ctx, name);
96 97 98 99 100 101 102 103 104 105
// FIXME(liuwei1031) temporarily disable the code to unblock users
// TODO(liuwei1031) figure out the reason behind
// https://github.com/PaddlePaddle/Paddle/issues/16096
// and re-enable this in the future
// #ifdef PADDLE_WITH_CUDA
//   auto it1 = oper.Attrs().find("use_cudnn");
//   if (it1 != oper.Attrs().end() && platform::CanCUDNNBeUsed(ctx)) {
//     library = framework::LibraryType::kCUDNN;
//   }
// #endif
106 107 108
#ifdef PADDLE_WITH_MKLDNN
  auto it = oper.Attrs().find("use_mkldnn");
  if (library == framework::LibraryType::kPlain && it != oper.Attrs().end() &&
109
      oper.CanMKLDNNBeUsed(ctx, data_type)) {
110
    library = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
111
    layout = framework::DataLayout::kMKLDNN;
112 113
  }
#endif
114
  return framework::OpKernelType(data_type, ctx.GetPlace(), layout, library);
115 116
}

Q
qijun 已提交
117 118 119 120
class ActivationOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

121
  void InferShape(framework::InferShapeContext* ctx) const override {
122
    ctx->ShareDim("X", /*->*/ "Out");
F
fengjiayi 已提交
123
    ctx->ShareLoD("X", /*->*/ "Out");
Q
qijun 已提交
124
  }
125

126
 protected:
127 128 129 130
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return GetKernelType(ctx, *this, "X");
  }
Q
qijun 已提交
131 132
};

C
chengduo 已提交
133 134 135
class ActivationOpInferVarType
    : public framework::PassInDtypeAndVarTypeToOutput {
 protected:
136
  std::unordered_map<std::string, std::string>& GetInputOutputWithSameType()
C
chengduo 已提交
137
      const override {
138 139
    static std::unordered_map<std::string, std::string> m{{"X", /*->*/ "Out"}};
    return m;
140 141 142
  }
};

Q
qijun 已提交
143 144 145 146
class ActivationOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

147
  void InferShape(framework::InferShapeContext* ctx) const override {
148 149 150
    auto out_grad_name = framework::GradVarName("Out");
    ctx->ShareDim(out_grad_name, framework::GradVarName("X"));
    ctx->ShareLoD(out_grad_name, framework::GradVarName("X"));
Q
qijun 已提交
151
  }
152

153
 protected:
154 155
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
156
    return GetKernelType(ctx, *this, framework::GradVarName("Out"));
157
  }
Q
qijun 已提交
158 159
};

D
dzhwinter 已提交
160
UNUSED constexpr char SigmoidDoc[] = R"DOC(
161
Sigmoid Activation Operator
K
Kexin Zhao 已提交
162

163
$$out = \\frac{1}{1 + e^{-x}}$$
K
Kexin Zhao 已提交
164

D
dzhwinter 已提交
165
)DOC";
Q
qijun 已提交
166

M
minghaoBD 已提交
167 168 169 170 171 172
UNUSED constexpr char SiluDoc[] = R"DOC(
Silu Activation Operator

$$out = x * \\frac{1}{1 + e^{-x}}$$
)DOC";

D
dzhwinter 已提交
173
UNUSED constexpr char LogSigmoidDoc[] = R"DOC(
174
Logsigmoid Activation Operator
K
Kexin Zhao 已提交
175

176
$$out = \\log \\frac{1}{1 + e^{-x}}$$
K
Kexin Zhao 已提交
177

D
dzhwinter 已提交
178
)DOC";
179

D
dzhwinter 已提交
180
UNUSED constexpr char ExpDoc[] = R"DOC(
181
Exp Operator. Computes exp of x element-wise with a natural number :math:`e` as the base.
K
Kexin Zhao 已提交
182

183
$$out = e^x$$
K
Kexin Zhao 已提交
184

D
dzhwinter 已提交
185
)DOC";
Q
qijun 已提交
186

R
ronnywang 已提交
187 188 189 190 191 192 193
UNUSED constexpr char Expm1Doc[] = R"DOC(
Expm1 Operator. Computes expm1 of x element-wise with a natural number :math:`e` as the base.

$$out = e^x - 1$$

)DOC";

D
dzhwinter 已提交
194
UNUSED constexpr char ReluDoc[] = R"DOC(
K
kexinzhao 已提交
195
Relu Activation Operator.
K
Kexin Zhao 已提交
196

197
$$out = \max(x, 0)$$
K
Kexin Zhao 已提交
198

D
dzhwinter 已提交
199
)DOC";
K
Kexin Zhao 已提交
200

D
dzhwinter 已提交
201
UNUSED constexpr char TanhDoc[] = R"DOC(
K
kexinzhao 已提交
202
Tanh Activation Operator.
K
Kexin Zhao 已提交
203

Q
update  
qiaolongfei 已提交
204
$$out = \\frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$
K
Kexin Zhao 已提交
205

D
dzhwinter 已提交
206
)DOC";
207

D
dzhwinter 已提交
208
UNUSED constexpr char TanhShrinkDoc[] = R"DOC(
K
kexinzhao 已提交
209
TanhShrink Activation Operator.
K
Kexin Zhao 已提交
210

Y
Yan Chunwei 已提交
211
$$out = x - \\frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$
K
Kexin Zhao 已提交
212

D
dzhwinter 已提交
213
)DOC";
K
Kexin Zhao 已提交
214

D
dzhwinter 已提交
215
UNUSED constexpr char SqrtDoc[] = R"DOC(
K
kexinzhao 已提交
216
Sqrt Activation Operator.
K
Kexin Zhao 已提交
217

N
Noel 已提交
218
$$out=\\sqrt{x}=x^{1/2}$$
219

220 221
**Note**:
  input value must be greater than or equal to zero.
K
Kexin Zhao 已提交
222

D
dzhwinter 已提交
223
)DOC";
224

Z
zhoukunsheng 已提交
225 226 227 228 229
UNUSED constexpr char RsqrtDoc[] = R"DOC(
Rsqrt Activation Operator.

Please make sure input is legal in case of numeric errors.

230
$$out = \\frac{1}{\\sqrt{x}}$$
Z
zhoukunsheng 已提交
231 232 233

)DOC";

D
dzhwinter 已提交
234
UNUSED constexpr char CeilDoc[] = R"DOC(
235
Ceil Operator. Computes ceil of x element-wise.
D
dzhwinter 已提交
236

N
Noel 已提交
237
$$out = \\lceil x \\rceil$$
D
dzhwinter 已提交
238

D
dzhwinter 已提交
239
)DOC";
D
dzhwinter 已提交
240

D
dzhwinter 已提交
241
UNUSED constexpr char FloorDoc[] = R"DOC(
242
Floor Activation Operator. Computes floor of x element-wise.
D
dzhwinter 已提交
243

N
Noel 已提交
244
$$out = \\lfloor x \\rfloor$$
D
dzhwinter 已提交
245

D
dzhwinter 已提交
246
)DOC";
D
dzhwinter 已提交
247

D
dzhwinter 已提交
248
UNUSED constexpr char CosDoc[] = R"DOC(
249
Cosine Operator. Computes cosine of x element-wise.
C
add cos  
chengduoZH 已提交
250

Y
Yang Zhang 已提交
251 252
Input range is `(-inf, inf)` and output range is `[-1,1]`.

253
$$out = cos(x)$$
C
add cos  
chengduoZH 已提交
254

D
dzhwinter 已提交
255
)DOC";
C
add cos  
chengduoZH 已提交
256

J
joejiong 已提交
257 258 259 260 261 262 263 264 265
UNUSED constexpr char TanDoc[] = R"DOC(
Tangent Operator. Computes tangent of x element-wise.

Input range is `(k*pi-pi/2, k*pi+pi/2)` and output range is `(-inf, inf)`.

$$out = tan(x)$$

)DOC";

D
dzhwinter 已提交
266
UNUSED constexpr char SinDoc[] = R"DOC(
C
add sin  
chengduoZH 已提交
267 268
Sine Activation Operator.

269
$$out = sin(x)$$
C
add sin  
chengduoZH 已提交
270

D
dzhwinter 已提交
271
)DOC";
C
add sin  
chengduoZH 已提交
272

273 274 275 276 277 278 279 280 281 282 283 284 285 286
UNUSED constexpr char SinhDoc[] = R"DOC(
Sinh Activation Operator.

$$out = sinh(x)$$

)DOC";

UNUSED constexpr char CoshDoc[] = R"DOC(
Cosh Activation Operator.

$$out = cosh(x)$$

)DOC";

D
dzhwinter 已提交
287
UNUSED constexpr char RoundDoc[] = R"DOC(
288
The OP rounds the values in the input to the nearest integer value.
D
dzhwinter 已提交
289

N
Noel 已提交
290
.. code-block:: text
291 292 293 294 295 296 297 298

  input:
    x.shape = [4]
    x.data = [1.2, -0.9, 3.4, 0.9]

  output:
    out.shape = [4]
    out.data = [1., -1., 3., 1.]
D
dzhwinter 已提交
299

D
dzhwinter 已提交
300
)DOC";
D
dzhwinter 已提交
301

D
dzhwinter 已提交
302
UNUSED constexpr char ReciprocalDoc[] = R"DOC(
K
kexinzhao 已提交
303
Reciprocal Activation Operator.
K
Kexin Zhao 已提交
304

305
$$out = \\frac{1}{x}$$
K
Kexin Zhao 已提交
306

D
dzhwinter 已提交
307
)DOC";
308

D
dzhwinter 已提交
309
UNUSED constexpr char LogDoc[] = R"DOC(
K
kexinzhao 已提交
310
Log Activation Operator.
K
Kexin Zhao 已提交
311

312
$$out = \ln(x)$$
K
Kexin Zhao 已提交
313 314 315

Natural logarithm of x.

D
dzhwinter 已提交
316 317
)DOC";

J
joejiong 已提交
318 319 320 321 322 323 324 325 326
UNUSED constexpr char Log2Doc[] = R"DOC(
Log2 Activation Operator.

$$out = \log_2x$$

logarithm of x base to 2.

)DOC";

J
joejiong 已提交
327 328 329 330 331 332 333 334 335
UNUSED constexpr char Log10Doc[] = R"DOC(
Log10 Activation Operator.

$$out = \log_10_x$$

logarithm of x base to 10.

)DOC";

336 337 338 339 340 341 342 343 344
UNUSED constexpr char Log1pDoc[] = R"DOC(
Log Activation Operator.

$out = \ln(x+1)$

Natural logarithm of x.

)DOC";

D
dzhwinter 已提交
345
UNUSED constexpr char SquareDoc[] = R"DOC(
346
The OP square each elements of the inputs.
D
dzhwinter 已提交
347

348
$$out = x^2$$
349

D
dzhwinter 已提交
350 351
)DOC";

D
dzhwinter 已提交
352
UNUSED constexpr char SoftsignDoc[] = R"DOC(
D
dzhwinter 已提交
353 354
Softsign Activation Operator.

355
$$out = \\frac{x}{1 + \|x\|}$$
D
dzhwinter 已提交
356 357 358

)DOC";

T
tink2123 已提交
359 360 361 362 363 364
class AcosOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "Input of acos operator");
    AddOutput("Out", "Output of acos operator");
    AddComment(R"DOC(
365
Arccosine Operator.
366

T
tink2123 已提交
367
$$out = \cos^{-1}(x)$$
368

T
tink2123 已提交
369 370 371
)DOC");
  }
};
372

T
tink2123 已提交
373 374 375
class AsinOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
W
wawltor 已提交
376 377 378
    AddInput("X",
             "Input of asin operator, an N-D Tensor, with data type float32, "
             "float64 or float16.");
T
tink2123 已提交
379 380
    AddOutput("Out", "Output of asin operator");
    AddComment(R"DOC(
381
Arcsine Operator.
382

T
tink2123 已提交
383
$$out = \sin^{-1}(x)$$
384

T
tink2123 已提交
385 386 387
)DOC");
  }
};
388

T
tink2123 已提交
389 390 391
class AtanOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
W
wawltor 已提交
392 393 394
    AddInput("X",
             "Input of atan operator, an N-D Tensor, with data type float32, "
             "float64 or float16.");
T
tink2123 已提交
395 396
    AddOutput("Out", "Output of atan operator");
    AddComment(R"DOC(
397
Arctangent Operator.
398

399
$$out = \tan^{-1}(x)$$
400

T
tink2123 已提交
401 402 403
)DOC");
  }
};
404

D
dzhwinter 已提交
405
class LeakyReluOpMaker : public framework::OpProtoAndCheckerMaker {
406
 public:
Y
Yu Yang 已提交
407
  void Make() override {
W
Wilber 已提交
408 409 410 411 412 413 414 415
    AddInput("X",
             "A LoDTensor or Tensor representing preactivation values. Must be "
             "one of the following types: float32, float64.");
    AddOutput(
        "Out",
        "A LoDTensor or Tensor with the same type and size as that of x.");
    AddAttr<float>("alpha", "Slope of the activation function at x < 0.")
        .SetDefault(0.02f);
A
Adam 已提交
416 417
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
418 419
        .SetDefault(false)
        .AsExtra();
K
Kexin Zhao 已提交
420
    AddComment(R"DOC(
D
dzhwinter 已提交
421
LeakyRelu Activation Operator.
K
Kexin Zhao 已提交
422

W
Wilber 已提交
423
$$out = \max(x, \alpha * x)$$
K
Kexin Zhao 已提交
424 425

)DOC");
426 427 428
  }
};

429 430 431 432 433 434 435 436 437 438 439 440 441 442
class SoftplusOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X",
             "Input of Softplus operator, an N-D Tensor, with data type "
             "float32, float64 or float16.");
    AddOutput(
        "Out",
        "Output of Softplus operator, a Tensor with shape same as input.");
    AddAttr<float>("beta", "The value of beta for Softplus.").SetDefault(1.0f);
    AddAttr<float>("threshold", "The value of threshold for Softplus.")
        .SetDefault(20.0f);
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel.")
443 444
        .SetDefault(false)
        .AsExtra();
445 446 447
    AddAttr<bool>(
        "use_cudnn",
        "(bool, default false) Only used in cudnn kernel, need install cudnn.")
448 449
        .SetDefault(false)
        .AsExtra();
450 451 452 453 454 455 456 457 458 459 460
    AddComment(R"DOC(
:strong:`Softplus Activation Operator`

..  math::
    out = \frac{1}{\beta} * \log(1 + \exp(\beta * x)) \\
    \text{For numerical stability, the implementation reverts to the linear function when :}\,x \times \beta > threshold.

)DOC");
  }
};

D
dzhwinter 已提交
461
class SoftShrinkOpMaker : public framework::OpProtoAndCheckerMaker {
K
kexinzhao 已提交
462
 public:
Y
Yu Yang 已提交
463
  void Make() override {
D
dzhwinter 已提交
464 465 466
    AddInput("X", "Input of Softshrink operator");
    AddOutput("Out", "Output of Softshrink operator");
    AddAttr<float>("lambda", "non-negative offset").SetDefault(0.5f);
K
Kexin Zhao 已提交
467
    AddComment(R"DOC(
468 469 470
:strong:`Softshrink Activation Operator`

..  math::
471
    out = \begin{cases}
472 473 474 475
         x - \lambda, \text{if } x > \lambda \\
         x + \lambda, \text{if } x < -\lambda \\
         0,  \text{otherwise}
         \end{cases}
K
Kexin Zhao 已提交
476 477

)DOC");
K
kexinzhao 已提交
478 479 480
  }
};

D
dzhwinter 已提交
481
class HardShrinkOpMaker : public framework::OpProtoAndCheckerMaker {
482
 public:
Y
Yu Yang 已提交
483
  void Make() override {
D
dzhwinter 已提交
484 485
    AddInput("X", "Input of HardShrink operator");
    AddOutput("Out", "Output of HardShrink operator");
Y
yuyang18 已提交
486 487
    AddAttr<float>("threshold",
                   "The value of threshold for HardShrink. [default: 0.5]")
D
dzhwinter 已提交
488
        .SetDefault(0.5f);
K
Kexin Zhao 已提交
489
    AddComment(R"DOC(
Y
yuyang18 已提交
490
:strong:`HardShrink activation operator`
K
Kexin Zhao 已提交
491

Y
yuyang18 已提交
492 493 494 495 496 497
..  math::
    out = \begin{cases}
            x, \text{if } x > \lambda \\
            x, \text{if } x < -\lambda \\
            0,  \text{otherwise}
          \end{cases}
K
Kexin Zhao 已提交
498 499

)DOC");
500 501 502
  }
};

503 504
class BReluOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
505
  void Make() override {
506 507 508 509 510 511
    AddInput("X",
             "The input is a multi-dimensional Tensor. The data type is "
             "float32, float64.");
    AddOutput("Out",
              "The output is a multi-dimensional Tensor which has same "
              "dimension and data type as the ``X``.");
512 513 514 515
    AddAttr<float>("t_min", "The min marginal value of BRelu")
        .SetDefault(static_cast<float>(0));
    AddAttr<float>("t_max", "The max marginal value of BRelu")
        .SetDefault(static_cast<float>(24));
K
Kexin Zhao 已提交
516
    AddComment(R"DOC(
K
kexinzhao 已提交
517
BRelu Activation Operator.
K
Kexin Zhao 已提交
518

519
$$out = \min(\max(x, t_{min}), t_{max})$$
K
Kexin Zhao 已提交
520 521

)DOC");
522 523 524 525 526
  }
};

class SoftReluOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
527
  void Make() override {
528
    AddInput("X", "Input of SoftRelu operator");
F
fengjiayi 已提交
529
    AddOutput("Out", "Output of SoftRelu operator");
530 531
    AddAttr<float>("threshold", "The threshold value of SoftRelu")
        .SetDefault(40.0f);
K
Kexin Zhao 已提交
532
    AddComment(R"DOC(
K
kexinzhao 已提交
533
SoftRelu Activation Operator.
K
Kexin Zhao 已提交
534

535
$$out = \ln(1 + \exp(\max(\min(x, threshold), -threshold)))$$
K
Kexin Zhao 已提交
536 537

)DOC");
538 539 540
  }
};

541 542
class ELUOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
543
  void Make() override {
544 545 546 547 548 549
    AddInput("X",
             "The input is a multi-dimensional Tensor. The data type is "
             "float32 or float64.");
    AddOutput("Out",
              "The output is a multi-dimensional Tensor which has same "
              "dimension and data type as the ``x``.");
550
    AddAttr<float>("alpha", "The alpha value of ELU").SetDefault(1.0f);
551
    AddComment(R"DOC(
K
kexinzhao 已提交
552
ELU Activation Operator.
K
Kexin Zhao 已提交
553 554 555 556

Applies the following element-wise computation on the input according to
https://arxiv.org/abs/1511.07289.

557
$$out = \max(0, x) + \min(0, \alpha * (e^x - 1))$$
K
Kexin Zhao 已提交
558 559

)DOC");
560 561 562
  }
};

563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578
template <typename T>
class ELUGradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    op->SetType("elu_grad");
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetInput("Out", this->Output("Out"));
    op->SetInput("X", this->Input("X"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetAttrMap(this->Attrs());
  }
};

579 580
class Relu6OpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
581
  void Make() override {
Z
zhupengyang 已提交
582 583 584 585 586 587 588 589
    AddInput("X",
             "Input of relu6 operator, an N-D Tensor, "
             "with data type float32, float64.");
    AddOutput(
        "Out",
        "Output of relu6 operator, a Tensor with the same shape as input.");
    AddAttr<float>("threshold",
                   "The threshold value of Relu6. Default is 6.0. ")
590
        .SetDefault(6.0f);
A
Adam 已提交
591 592
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
593 594
        .SetDefault(false)
        .AsExtra();
K
Kexin Zhao 已提交
595
    AddComment(R"DOC(
K
kexinzhao 已提交
596
Relu6 Activation Operator.
K
Kexin Zhao 已提交
597

598
$$out = \min(\max(0, x), threshold)$$
K
Kexin Zhao 已提交
599 600

)DOC");
601 602 603
  }
};

604 605
class PowOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
606
  void Make() override {
607
    AddInput("X", "Input of Pow operator");
608 609 610 611 612
    AddInput("FactorTensor",
             "(Tensor<float>, optional). If provided, pow will use this"
             "The shape of FactorTensor MUST BE [1]."
             "it has higher priority than attr(factor).")
        .AsDispensable();
F
fengjiayi 已提交
613
    AddOutput("Out", "Output of Pow operator");
614
    AddAttr<float>("factor", "The exponential factor of Pow").SetDefault(1.0f);
K
Kexin Zhao 已提交
615
    AddComment(R"DOC(
K
kexinzhao 已提交
616
Pow Activation Operator.
K
Kexin Zhao 已提交
617

618
$$out = x^{factor}$$
K
Kexin Zhao 已提交
619 620

)DOC");
621 622 623 624 625
  }
};

class STanhOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
626
  void Make() override {
627 628
    AddInput("X",
             "Input of STanh operator."
N
Noel 已提交
629
             " A Tensor with type float32, float64.");
630 631 632
    AddOutput("Out", "Output of STanh operator. A Tensor with type float32.");
    AddAttr<float>("scale_a", "The scale parameter of a for the input. ")
        .SetDefault(0.67f);
633 634
    AddAttr<float>("scale_b", "The scale parameter of b for the input")
        .SetDefault(1.7159f);
K
Kexin Zhao 已提交
635
    AddComment(R"DOC(
K
kexinzhao 已提交
636
STanh Activation Operator.
K
Kexin Zhao 已提交
637

Y
Yan Chunwei 已提交
638
$$out = b * \\frac{e^{a * x} - e^{-a * x}}{e^{a * x} + e^{-a * x}}$$
K
Kexin Zhao 已提交
639 640

)DOC");
Q
qijun 已提交
641 642 643
  }
};

644 645
class ThresholdedReluOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
646
  void Make() override {
647
    AddInput("X", "Input of ThresholdedRelu operator");
F
fengjiayi 已提交
648
    AddOutput("Out", "Output of ThresholdedRelu operator");
Y
yuyang18 已提交
649 650
    AddAttr<float>("threshold",
                   "The threshold location of activation. [default 1.0].")
651
        .SetDefault(1.0f);
K
Kexin Zhao 已提交
652
    AddComment(R"DOC(
Y
yuyang18 已提交
653
:strong:`ThresholdedRelu activation operator`
K
Kexin Zhao 已提交
654

Y
yuyang18 已提交
655
..  math::
K
Kexin Zhao 已提交
656

Y
yuyang18 已提交
657
    out = \begin{cases}
Y
yuyang18 已提交
658
             x,  \text{if } x > threshold \\
Y
yuyang18 已提交
659 660
             0,  \text{otherwise}
          \end{cases}
K
Kexin Zhao 已提交
661
)DOC");
662 663 664
  }
};

665 666
class HardSigmoidOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
667
  void Make() override {
668 669 670 671 672
    AddInput("X", "An N-D Tensor with data type float32, float64. ");
    AddOutput("Out", "A Tensor with the same shape as input. ");
    AddAttr<float>("slope",
                   "The slope of the linear approximation of sigmoid. Its "
                   "value MUST BE positive. Default is 0.2. ")
673
        .SetDefault(0.2f);
674 675 676
    AddAttr<float>(
        "offset",
        "The offset of the linear approximation of sigmoid. Default is 0.5. ")
677
        .SetDefault(0.5f);
678
    AddComment(R"DOC(
K
kexinzhao 已提交
679
HardSigmoid Activation Operator.
680

681
A 3-part piecewise linear approximation of sigmoid(https://arxiv.org/abs/1603.00391),
K
Kexin Zhao 已提交
682
which is much faster than sigmoid.
683

684
$$out = \max(0, \min(1, slope * x + offset))$$
685

K
Kexin Zhao 已提交
686
)DOC");
687 688 689
  }
};

A
Abhinav Arora 已提交
690 691
class SwishOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
692
  void Make() override {
A
Abhinav Arora 已提交
693
    AddInput("X", "Input of Swish operator");
F
fengjiayi 已提交
694
    AddOutput("Out", "Output of Swish operator");
A
Abhinav Arora 已提交
695
    AddAttr<float>("beta", "Constant beta of swish operator").SetDefault(1.0f);
696 697
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
S
Shang Zhizhou 已提交
698 699
        .SetDefault(false)
        .AsExtra();
A
Abhinav Arora 已提交
700 701 702
    AddComment(R"DOC(
Swish Activation Operator.

703
$$out = \\frac{x}{1 + e^{- \beta \ x}}$$
A
Abhinav Arora 已提交
704 705 706 707 708

)DOC");
  }
};

H
huangjun12 已提交
709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724
class HardSwishOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "Input of HardSwish operator");
    AddOutput("Out", "Output of HardSwish operator");
    AddAttr<float>("threshold", "The threshold parameter of HardSwish operator")
        .SetDefault(6.0f);
    AddAttr<float>("scale", "The scale parameter of HardSwish operator")
        .SetDefault(6.0f);
    AddAttr<float>("offset", "The offset parameter of HardSwish operator")
        .SetDefault(3.0f);
    AddComment(R"DOC(
HardSwish Activation Operator.

The hard version of swish(https://arxiv.org/pdf/1905.02244.pdf).

725
$$out = \frac{x * (min(max(0, x+offset), threshold))}{scale}$$
H
huangjun12 已提交
726 727 728 729 730 731 732 733 734

The threshold and scale should be positive. The offset can be either positive or negative.
The default parameters are set according to the above reference.
It is recommended to use the defaults for this activation.

)DOC");
  }
};

D
dzhwinter 已提交
735
REGISTER_ACTIVATION_OP_MAKER(Sigmoid, SigmoidDoc);
M
minghaoBD 已提交
736
REGISTER_ACTIVATION_OP_MAKER(Silu, SiluDoc);
D
dzhwinter 已提交
737 738
REGISTER_ACTIVATION_OP_MAKER(LogSigmoid, LogSigmoidDoc);
REGISTER_ACTIVATION_OP_MAKER(Exp, ExpDoc);
R
ronnywang 已提交
739
REGISTER_ACTIVATION_OP_MAKER(Expm1, Expm1Doc);
D
dzhwinter 已提交
740 741 742 743
REGISTER_ACTIVATION_OP_MAKER(Relu, ReluDoc);
REGISTER_ACTIVATION_OP_MAKER(Tanh, TanhDoc);
REGISTER_ACTIVATION_OP_MAKER(TanhShrink, TanhShrinkDoc);
REGISTER_ACTIVATION_OP_MAKER(Sqrt, SqrtDoc);
Z
zhoukunsheng 已提交
744
REGISTER_ACTIVATION_OP_MAKER(Rsqrt, RsqrtDoc);
D
dzhwinter 已提交
745 746 747
REGISTER_ACTIVATION_OP_MAKER(Ceil, CeilDoc);
REGISTER_ACTIVATION_OP_MAKER(Floor, FloorDoc);
REGISTER_ACTIVATION_OP_MAKER(Cos, CosDoc);
J
joejiong 已提交
748
REGISTER_ACTIVATION_OP_MAKER(Tan, TanDoc);
D
dzhwinter 已提交
749
REGISTER_ACTIVATION_OP_MAKER(Sin, SinDoc);
750 751
REGISTER_ACTIVATION_OP_MAKER(Sinh, SinhDoc);
REGISTER_ACTIVATION_OP_MAKER(Cosh, CoshDoc);
D
dzhwinter 已提交
752 753 754
REGISTER_ACTIVATION_OP_MAKER(Round, RoundDoc);
REGISTER_ACTIVATION_OP_MAKER(Reciprocal, ReciprocalDoc);
REGISTER_ACTIVATION_OP_MAKER(Log, LogDoc);
J
joejiong 已提交
755
REGISTER_ACTIVATION_OP_MAKER(Log2, Log2Doc);
J
joejiong 已提交
756
REGISTER_ACTIVATION_OP_MAKER(Log10, Log10Doc);
757
REGISTER_ACTIVATION_OP_MAKER(Log1p, Log1pDoc);
D
dzhwinter 已提交
758 759 760
REGISTER_ACTIVATION_OP_MAKER(Square, SquareDoc);
REGISTER_ACTIVATION_OP_MAKER(Softsign, SoftsignDoc);

761
template <ActBwdOpFwdDeps kDepValue>
762 763 764 765 766
class ActivationOpDoubleGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
767
    if (static_cast<int>(kDepValue) & static_cast<int>(kDepX)) {
768
      if (ctx->HasOutput("DX")) {
769 770 771
        ctx->ShareDim("X", "DX");
        ctx->ShareLoD("X", "DX");
      }
772
      if (ctx->HasOutput("DDOut")) {
773 774 775
        ctx->ShareDim("X", "DDOut");
        ctx->ShareLoD("X", "DDOut");
      }
776
    }
777
    if (static_cast<int>(kDepValue) & static_cast<int>(kDepOut)) {
778
      if (ctx->HasOutput("DOut")) {
779 780 781
        ctx->ShareDim("Out", "DOut");
        ctx->ShareLoD("Out", "DOut");
      }
782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809
      if (ctx->HasOutput("DDOut")) {
        ctx->ShareDim("Out", "DDOut");
        ctx->ShareLoD("Out", "DDOut");
      }
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return GetKernelType(ctx, *this, "DDX");
  }
};

template <ActBwdOpFwdDeps kDepValue>
class ActivationOpDoubleGrad2 : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    if (static_cast<int>(kDepValue) & static_cast<int>(kDepX)) {
      if (ctx->HasOutput("DDOut")) {
        ctx->ShareDim("X", "DDOut");
        ctx->ShareLoD("X", "DDOut");
      }
    }
    if (static_cast<int>(kDepValue) & static_cast<int>(kDepOut)) {
      if (ctx->HasOutput("DDOut")) {
810 811 812
        ctx->ShareDim("Out", "DDOut");
        ctx->ShareLoD("Out", "DDOut");
      }
813 814 815 816 817 818 819 820 821 822
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return GetKernelType(ctx, *this, "DDX");
  }
};

823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843
template <typename T>
class SigmoidDoubleGradMaker
    : public ::paddle::framework::SingleGradOpMaker<T> {
 public:
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    op->SetType("sigmoid_grad_grad");
    // input1: Out
    op->SetInput("Out", this->Input("Out"));
    // input2: ddx
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetInput("DOut", this->Input(framework::GradVarName("Out")));
    op->SetAttrMap(this->Attrs());
    // output: ddy
    op->SetOutput("DOutNew", this->InputGrad("Out"));
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
  }
};

844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863
template <typename T>
class TanhDoubleGradMaker : public ::paddle::framework::SingleGradOpMaker<T> {
 public:
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    op->SetType("tanh_grad_grad");
    // input1: Out
    op->SetInput("Out", this->Input("Out"));
    // input2: ddx
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetInput("DOut", this->Input(framework::GradVarName("Out")));
    op->SetAttrMap(this->Attrs());
    // output: ddy
    op->SetOutput("DOutNew", this->InputGrad("Out"));
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
  }
};

864 865
// ReluGrad: dx = dy if y >= 0 else 0
// ReluGradGrad: ddy = ddx if y >= 0 else 0
H
hong 已提交
866 867
template <typename T>
class ReluDoubleGradMaker : public ::paddle::framework::SingleGradOpMaker<T> {
868
 public:
H
hong 已提交
869
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;
870 871

 protected:
872
  void Apply(GradOpPtr<T> op) const override {
873 874
    op->SetType("relu_grad_grad");
    // input1: Out
H
hong 已提交
875
    op->SetInput("Out", this->Input("Out"));
Q
qingqing01 已提交
876
    // input2: ddx
H
hong 已提交
877 878
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetAttrMap(this->Attrs());
879
    // output: ddy
H
hong 已提交
880
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
881 882 883
  }
};

884 885
// leaky_relu Grad: dx=dy if x>=0 else alpha * dy
// leaky_relu GradGrad: ddy=ddx if x>=0 else alpha * ddx
H
hong 已提交
886
template <typename T>
887
class LeakyReluDoubleGradMaker
H
hong 已提交
888
    : public ::paddle::framework::SingleGradOpMaker<T> {
889
 public:
H
hong 已提交
890
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;
891 892

 protected:
893
  void Apply(GradOpPtr<T> op) const override {
894
    op->SetType("leaky_relu_grad_grad");
895 896
    // input1: X
    op->SetInput("X", this->Input("X"));
897
    // X@GRAD@GRAD: ddx
H
hong 已提交
898 899
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetAttrMap(this->Attrs());
900
    // Out@GRAD@GRAD: ddy
H
hong 已提交
901
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
902 903 904
  }
};

D
Double_V 已提交
905 906 907 908 909 910 911 912
// elu grad: dx=dy if y>0 else alpha*dy*x.exp()
// elu gradgrad: ddx=ddy if y>0 else alpha*ddy*x.exp()
template <typename T>
class ELUDoubleGradMaker : public ::paddle::framework::SingleGradOpMaker<T> {
 public:
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
913
  void Apply(GradOpPtr<T> op) const override {
D
Double_V 已提交
914 915 916 917 918 919 920 921 922 923 924 925 926 927
    op->SetType("elu_grad_grad");

    op->SetInput("X", this->Input("X"));
    op->SetInput("DOut", this->Input(framework::GradVarName("Out")));
    // X@GRAD@GRAD: ddx
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetAttrMap(this->Attrs());

    // Out@GRAD@GRAD: ddy
    op->SetOutput("DX", this->InputGrad("X"));
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
  }
};

L
lvmengsi 已提交
928 929
// sqrt Grad: dx = 0.5 * dy / y
// sqrt GradGrad: ddy = 0.5 * ddx / y, dy = -1 * dx * ddx
H
hong 已提交
930 931
template <typename T>
class SqrtDoubleGradMaker : public ::paddle::framework::SingleGradOpMaker<T> {
L
lvmengsi 已提交
932
 public:
H
hong 已提交
933
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;
L
lvmengsi 已提交
934 935

 protected:
936
  void Apply(GradOpPtr<T> op) const override {
L
lvmengsi 已提交
937
    op->SetType("sqrt_grad_grad");
H
hong 已提交
938 939 940 941 942 943
    op->SetInput("Out", this->Input("Out"));
    op->SetInput("DX", this->Output(framework::GradVarName("X")));
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetAttrMap(this->Attrs());
    op->SetOutput("DOut", this->InputGrad("Out"));
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
L
lvmengsi 已提交
944 945 946
  }
};

W
whs 已提交
947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965
// rsqrt Grad: dx = -0.5 * dy * y * y * y
// rsqrt GradGrad: ddy = -0.5 * ddx * y * y * y, dy = (3/y) * ddx
template <typename T>
class RsqrtDoubleGradMaker : public ::paddle::framework::SingleGradOpMaker<T> {
 public:
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    op->SetType("rsqrt_grad_grad");
    op->SetInput("Out", this->Input("Out"));
    op->SetInput("DX", this->Output(framework::GradVarName("X")));
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetAttrMap(this->Attrs());
    op->SetOutput("DOut", this->InputGrad("Out"));
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
  }
};

966 967
// square Grad: dx=2x*dy
// square GradGrad: ddy=2x*ddx, dx=2dy*ddx
H
hong 已提交
968 969
template <typename T>
class SquareDoubleGradMaker : public ::paddle::framework::SingleGradOpMaker<T> {
970
 public:
H
hong 已提交
971
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;
972 973

 protected:
974
  void Apply(GradOpPtr<T> op) const override {
975
    op->SetType("square_grad_grad");
H
hong 已提交
976
    op->SetInput("X", this->Input("X"));
977
    // Out@GRAD: dy
H
hong 已提交
978
    op->SetInput("DOut", this->Input(framework::GradVarName("Out")));
979
    // X@GRAD@GRAD: ddx
H
hong 已提交
980
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
981

H
hong 已提交
982
    op->SetAttrMap(this->Attrs());
983 984

    // X@GRAD: dx
H
hong 已提交
985
    op->SetOutput("DX", this->InputGrad("X"));
986
    // Out@GRAD@GRAD: ddy
H
hong 已提交
987
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
988 989 990
  }
};

991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
// log Grad: dx = dout / x
// log Grad Grad: ddout = ddx / x; dx = -(dout / x) * (ddx / x)
template <typename T>
class LogDoubleGradMaker : public ::paddle::framework::SingleGradOpMaker<T> {
 public:
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    op->SetType("log_grad_grad");
    op->SetInput("X", this->Input("X"));
    // X@GRAD@GRAD: ddx
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetInput("DOut", this->Input(framework::GradVarName("Out")));
    op->SetAttrMap(this->Attrs());
    // X@GRAD: dx
    op->SetOutput("DX", this->InputGrad("X"));
    // Out@GRAD@GRAD: ddy
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
  }
};

1013
DECLARE_INPLACE_OP_INFERER(ActivationGradOpInplaceInferer,
1014 1015
                           {framework::GradVarName("Out"),
                            framework::GradVarName("X")});
1016
DECLARE_INPLACE_OP_INFERER(ActivationDoubleGradOpInplaceInferer,
1017
                           {"DDX", "DDOut"});
1018

H
hong 已提交
1019 1020
template <typename T>
class PowGradOpMaker : public framework::SingleGradOpMaker<T> {
1021
 public:
H
hong 已提交
1022
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
1023 1024

 protected:
1025
  void Apply(GradOpPtr<T> op) const override {
1026
    op->SetType("pow_grad");
H
hong 已提交
1027 1028 1029 1030 1031
    op->SetInput("X", this->Input("X"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetInput("FactorTensor", this->Input("FactorTensor"));
    op->SetAttrMap(this->Attrs());
1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
  }
};
class PowOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    ctx->ShareDim("X", /*->*/ "Out");
    ctx->ShareLoD("X", /*->*/ "Out");
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return GetKernelType(ctx, *this, "X");
  }

  framework::OpKernelType GetKernelTypeForVar(
      const std::string& var_name, const Tensor& tensor,
      const framework::OpKernelType& expected_kernel_type) const override {
    if (var_name == "FactorTensor") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
  }
};

class PowOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    auto out_grad_name = framework::GradVarName("Out");
    ctx->ShareDim(out_grad_name, framework::GradVarName("X"));
    ctx->ShareLoD(out_grad_name, framework::GradVarName("X"));
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return GetKernelType(ctx, *this, framework::GradVarName("Out"));
  }

  framework::OpKernelType GetKernelTypeForVar(
      const std::string& var_name, const Tensor& tensor,
      const framework::OpKernelType& expected_kernel_type) const override {
    if (var_name == "FactorTensor") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
  }
};
1086
DECLARE_INPLACE_OP_INFERER(ActFwdInplaceInferer, {"X", "Out"});
Q
qijun 已提交
1087 1088 1089 1090
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
1091
namespace plat = paddle::platform;
1092

1093 1094 1095 1096
#define REGISTER_ACTIVATION_OP(KERNEL_TYPE, OP_NAME, functor, grad_functor) \
  REGISTER_OPERATOR(                                                        \
      KERNEL_TYPE, ops::ActivationOp, ops::OP_NAME##OpMaker,                \
      ops::ActivationOpInferVarType,                                        \
H
hong 已提交
1097 1098 1099 1100
      ops::ActivationGradOpMaker<ops::grad_functor<float>::FwdDeps(),       \
                                 paddle::framework::OpDesc>,                \
      ops::ActivationGradOpMaker<ops::grad_functor<float>::FwdDeps(),       \
                                 paddle::imperative::OpBase>,               \
1101
      std::conditional<ops::CanInplaceAct<ops::grad_functor<float>>(),      \
1102
                       ops::ActFwdInplaceInferer, void>::type);             \
1103
  REGISTER_OPERATOR(KERNEL_TYPE##_grad, ops::ActivationOpGrad,              \
1104
                    ops::ActivationGradOpInplaceInferer);
1105 1106 1107

#define REGISTER_ACTIVATION_CPU_KERNEL(act_type, op_name, functor,        \
                                       grad_functor)                      \
Q
QI JUN 已提交
1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
  REGISTER_OP_CPU_KERNEL(                                                 \
      act_type, ops::ActivationKernel<paddle::platform::CPUDeviceContext, \
                                      ops::functor<float>>,               \
      ops::ActivationKernel<paddle::platform::CPUDeviceContext,           \
                            ops::functor<double>>);                       \
  REGISTER_OP_CPU_KERNEL(                                                 \
      act_type##_grad,                                                    \
      ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,       \
                                ops::grad_functor<float>>,                \
      ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,       \
Y
Yu Yang 已提交
1118
                                ops::grad_functor<double>>);
1119

1120 1121
FOR_EACH_ACTIVATION_OP(REGISTER_ACTIVATION_OP);
FOR_EACH_ACTIVATION_OP(REGISTER_ACTIVATION_CPU_KERNEL);
1122

1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
/* ==========================    sigmoid register  =============================
 */
// 1. Register Sigmoid Operator
REGISTER_OPERATOR(
    sigmoid, ops::ActivationOp, ops::SigmoidOpMaker,
    ops::ActivationOpInferVarType,
    ops::ActivationGradOpMaker<ops::SigmoidGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::SigmoidGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
    std::conditional<ops::CanInplaceAct<ops::SigmoidGradFunctor<float>>(),
                     ops::ActFwdInplaceInferer, void>::type);

// 2. Register Sigmoid Grad Operator
REGISTER_OPERATOR(sigmoid_grad, ops::ActivationOpGrad,
                  ops::ActivationGradOpInplaceInferer,
                  ops::SigmoidDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::SigmoidDoubleGradMaker<paddle::imperative::OpBase>)

// 3. Register Sigmoid DoubleGrad Operator
REGISTER_OPERATOR(
    sigmoid_grad_grad,
    ops::ActivationOpDoubleGrad<ops::SigmoidGradFunctor<float>::FwdDeps()>,
    ops::ActivationDoubleGradOpInplaceInferer);

// Register Sigmoid/GradSigmoid Kernels
REGISTER_ACTIVATION_CPU_KERNEL(sigmoid, Sigmoid, SigmoidFunctor,
                               SigmoidGradFunctor);

// Register DoubleGrad Kernel
REGISTER_OP_CPU_KERNEL(
    sigmoid_grad_grad,
    ops::SigmoidDoubleGradKernel<plat::CPUDeviceContext,
                                 ops::SigmoidGradGradFunctor<float>>,
    ops::SigmoidDoubleGradKernel<plat::CPUDeviceContext,
                                 ops::SigmoidGradGradFunctor<double>>,
    ops::SigmoidDoubleGradKernel<plat::CPUDeviceContext,
                                 ops::SigmoidGradGradFunctor<plat::float16>>);

/* ========================================================================== */

1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
/* ==========================    tanh register  ============================= */
REGISTER_OPERATOR(
    tanh, ops::ActivationOp, ops::TanhOpMaker, ops::ActivationOpInferVarType,
    ops::ActivationGradOpMaker<ops::TanhGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::TanhGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
    std::conditional<ops::CanInplaceAct<ops::TanhGradFunctor<float>>(),
                     ops::ActFwdInplaceInferer, void>::type);
REGISTER_OPERATOR(tanh_grad, ops::ActivationOpGrad,
                  ops::ActivationGradOpInplaceInferer,
                  ops::TanhDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::TanhDoubleGradMaker<paddle::imperative::OpBase>)
REGISTER_OPERATOR(
    tanh_grad_grad,
    ops::ActivationOpDoubleGrad<ops::TanhGradFunctor<float>::FwdDeps()>,
    ops::ActivationDoubleGradOpInplaceInferer);

REGISTER_ACTIVATION_CPU_KERNEL(tanh, Tanh, TanhFunctor, TanhGradFunctor);
REGISTER_OP_CPU_KERNEL(
    tanh_grad_grad, ops::TanhDoubleGradKernel<plat::CPUDeviceContext,
                                              ops::TanhGradGradFunctor<float>>,
    ops::TanhDoubleGradKernel<plat::CPUDeviceContext,
                              ops::TanhGradGradFunctor<double>>,
    ops::TanhDoubleGradKernel<plat::CPUDeviceContext,
                              ops::TanhGradGradFunctor<plat::float16>>);
/* ========================================================================== */

1192
/* ==========================    relu register  ============================= */
1193 1194
REGISTER_OPERATOR(
    relu, ops::ActivationOp, ops::ReluOpMaker, ops::ActivationOpInferVarType,
H
hong 已提交
1195 1196 1197 1198
    ops::ActivationGradOpMaker<ops::ReluGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::ReluGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
1199
    ops::ActFwdInplaceInferer);
1200
REGISTER_OPERATOR(relu_grad, ops::ActivationOpGrad,
1201
                  ops::ActivationGradOpInplaceInferer,
H
hong 已提交
1202 1203
                  ops::ReluDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::ReluDoubleGradMaker<paddle::imperative::OpBase>);
1204 1205
REGISTER_OPERATOR(
    relu_grad_grad,
1206
    ops::ActivationOpDoubleGrad2<ops::ReluGradFunctor<float>::FwdDeps()>,
1207
    ops::ActivationDoubleGradOpInplaceInferer);
1208

1209
REGISTER_ACTIVATION_CPU_KERNEL(relu, Relu, ReluCPUFunctor, ReluGradFunctor);
1210 1211 1212 1213 1214 1215 1216 1217 1218

REGISTER_OP_CPU_KERNEL(
    relu_grad_grad,
    ops::ActivationDoubleGradKernel<plat::CPUDeviceContext,
                                    ops::ReluGradGradFunctor<float>>,
    ops::ActivationDoubleGradKernel<plat::CPUDeviceContext,
                                    ops::ReluGradGradFunctor<double>>,
    ops::ActivationDoubleGradKernel<plat::CPUDeviceContext,
                                    ops::ReluGradGradFunctor<plat::float16>>);
1219
/* ========================================================================== */
1220

1221
/* ======================== leaky relu register  ============================ */
1222 1223 1224
REGISTER_OPERATOR(
    leaky_relu, ops::ActivationOp, ops::LeakyReluOpMaker,
    ops::ActivationOpInferVarType,
H
hong 已提交
1225 1226 1227 1228
    ops::ActivationGradOpMaker<ops::LeakyReluGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::LeakyReluGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
1229
    ops::ActFwdInplaceInferer);
1230
REGISTER_OPERATOR(leaky_relu_grad, ops::ActivationOpGrad,
1231
                  ops::ActivationGradOpInplaceInferer,
H
hong 已提交
1232 1233
                  ops::LeakyReluDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::LeakyReluDoubleGradMaker<paddle::imperative::OpBase>);
1234 1235
REGISTER_OPERATOR(
    leaky_relu_grad_grad,
1236
    ops::ActivationOpDoubleGrad2<ops::LeakyReluGradFunctor<float>::FwdDeps()>,
1237
    ops::ActivationDoubleGradOpInplaceInferer);
1238

1239 1240 1241 1242 1243 1244 1245 1246 1247 1248
REGISTER_ACTIVATION_CPU_KERNEL(leaky_relu, LeakyRelu, LeakyReluFunctor,
                               LeakyReluGradFunctor);
REGISTER_OP_CPU_KERNEL(
    leaky_relu_grad_grad,
    ops::ActivationDoubleGradKernel<plat::CPUDeviceContext,
                                    ops::LeakyReluGradGradFunctor<float>>,
    ops::ActivationDoubleGradKernel<plat::CPUDeviceContext,
                                    ops::LeakyReluGradGradFunctor<double>>,
    ops::ActivationDoubleGradKernel<
        plat::CPUDeviceContext, ops::LeakyReluGradGradFunctor<plat::float16>>);
1249 1250
/* ========================================================================== */

D
Double_V 已提交
1251
/* ========================    elu  register     ============================ */
1252 1253 1254 1255 1256
REGISTER_OPERATOR(elu, ops::ActivationOp, ops::ELUOpMaker,
                  ops::ActivationOpInferVarType,
                  ops::ELUGradOpMaker<paddle::framework::OpDesc>,
                  ops::ELUGradOpMaker<paddle::imperative::OpBase>,
                  ops::ActFwdInplaceInferer);
D
Double_V 已提交
1257
REGISTER_OPERATOR(elu_grad, ops::ActivationOpGrad,
1258
                  ops::ActivationGradOpInplaceInferer,
D
Double_V 已提交
1259 1260 1261 1262 1263
                  ops::ELUDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::ELUDoubleGradMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(
    elu_grad_grad,
    ops::ActivationOpDoubleGrad<ops::ELUGradFunctor<float>::FwdDeps()>,
1264
    ops::ActivationDoubleGradOpInplaceInferer);
D
Double_V 已提交
1265

1266 1267 1268 1269 1270 1271 1272 1273
REGISTER_OP_CPU_KERNEL(elu,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::ELUFunctor<float>>,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::ELUFunctor<double>>);
REGISTER_OP_CPU_KERNEL(
    elu_grad, ops::ELUGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::ELUGradKernel<paddle::platform::CPUDeviceContext, double>);
D
Double_V 已提交
1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
REGISTER_OP_CPU_KERNEL(
    elu_grad_grad, ops::ELUDoubleGradKernel<plat::CPUDeviceContext,
                                            ops::ELUGradGradFunctor<float>>,
    ops::ELUDoubleGradKernel<plat::CPUDeviceContext,
                             ops::ELUGradGradFunctor<double>>,
    ops::ELUDoubleGradKernel<plat::CPUDeviceContext,
                             ops::ELUGradGradFunctor<plat::float16>>);

/* ========================================================================== */

L
lvmengsi 已提交
1284 1285 1286
/* ===========================   sqrt register  ============================= */
REGISTER_OPERATOR(
    sqrt, ops::ActivationOp, ops::SqrtOpMaker, ops::ActivationOpInferVarType,
H
hong 已提交
1287 1288 1289 1290
    ops::ActivationGradOpMaker<ops::SqrtGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::SqrtGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
1291
    ops::ActFwdInplaceInferer);
L
lvmengsi 已提交
1292
REGISTER_OPERATOR(sqrt_grad, ops::ActivationOpGrad,
1293
                  ops::ActivationGradOpInplaceInferer,
H
hong 已提交
1294 1295
                  ops::SqrtDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::SqrtDoubleGradMaker<paddle::imperative::OpBase>);
L
lvmengsi 已提交
1296 1297
REGISTER_OPERATOR(
    sqrt_grad_grad,
1298
    ops::ActivationOpDoubleGrad<ops::SqrtGradGradFunctor<float>::FwdDeps()>,
1299
    ops::ActivationDoubleGradOpInplaceInferer);
1300

L
lvmengsi 已提交
1301 1302 1303 1304 1305 1306 1307 1308 1309 1310
REGISTER_ACTIVATION_CPU_KERNEL(sqrt, Sqrt, SqrtFunctor, SqrtGradFunctor);
REGISTER_OP_CPU_KERNEL(
    sqrt_grad_grad, ops::SqrtDoubleGradKernel<plat::CPUDeviceContext,
                                              ops::SqrtGradGradFunctor<float>>,
    ops::SqrtDoubleGradKernel<plat::CPUDeviceContext,
                              ops::SqrtGradGradFunctor<double>>,
    ops::SqrtDoubleGradKernel<plat::CPUDeviceContext,
                              ops::SqrtGradGradFunctor<plat::float16>>);
/* ========================================================================== */

W
whs 已提交
1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339
/* ===========================   rsqrt register  =============================
 */
REGISTER_OPERATOR(
    rsqrt, ops::ActivationOp, ops::RsqrtOpMaker, ops::ActivationOpInferVarType,
    ops::ActivationGradOpMaker<ops::RsqrtGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::RsqrtGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
    ops::ActFwdInplaceInferer);
REGISTER_OPERATOR(rsqrt_grad, ops::ActivationOpGrad,
                  ops::ActivationGradOpInplaceInferer,
                  ops::RsqrtDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::RsqrtDoubleGradMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(
    rsqrt_grad_grad,
    ops::ActivationOpDoubleGrad<ops::RsqrtGradGradFunctor<float>::FwdDeps()>,
    ops::ActivationDoubleGradOpInplaceInferer);

REGISTER_ACTIVATION_CPU_KERNEL(rsqrt, Rsqrt, RsqrtFunctor, RsqrtGradFunctor);
REGISTER_OP_CPU_KERNEL(
    rsqrt_grad_grad,
    ops::RsqrtDoubleGradKernel<plat::CPUDeviceContext,
                               ops::RsqrtGradGradFunctor<float>>,
    ops::RsqrtDoubleGradKernel<plat::CPUDeviceContext,
                               ops::RsqrtGradGradFunctor<double>>,
    ops::RsqrtDoubleGradKernel<plat::CPUDeviceContext,
                               ops::RsqrtGradGradFunctor<plat::float16>>);
/* ========================================================================== */

1340 1341 1342 1343
/* ==========================   square register  ============================ */
REGISTER_OPERATOR(
    square, ops::ActivationOp, ops::SquareOpMaker,
    ops::ActivationOpInferVarType,
H
hong 已提交
1344 1345 1346 1347
    ops::ActivationGradOpMaker<ops::SquareGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::SquareGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
1348
    ops::ActFwdInplaceInferer);
1349
REGISTER_OPERATOR(square_grad, ops::ActivationOpGrad,
1350
                  ops::ActivationGradOpInplaceInferer,
H
hong 已提交
1351 1352
                  ops::SquareDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::SquareDoubleGradMaker<paddle::imperative::OpBase>);
1353 1354
REGISTER_OPERATOR(
    square_grad_grad,
1355
    ops::ActivationOpDoubleGrad<ops::SquareGradGradFunctor<float>::FwdDeps()>,
1356
    ops::ActivationDoubleGradOpInplaceInferer);
1357

1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
REGISTER_OP_CPU_KERNEL(square,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::SquareFunctor<float>>,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::SquareFunctor<double>>,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::SquareFunctor<int>>,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::SquareFunctor<int64_t>>);
REGISTER_OP_CPU_KERNEL(
    square_grad, ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                                           ops::SquareGradFunctor<float>>,
    ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                              ops::SquareGradFunctor<double>>,
    ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                              ops::SquareGradFunctor<int>>,
    ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                              ops::SquareGradFunctor<int64_t>>);
1376 1377 1378 1379 1380 1381 1382 1383

REGISTER_OP_CPU_KERNEL(
    square_grad_grad,
    ops::SquareDoubleGradKernel<plat::CPUDeviceContext,
                                ops::SquareGradGradFunctor<float>>,
    ops::SquareDoubleGradKernel<plat::CPUDeviceContext,
                                ops::SquareGradGradFunctor<double>>,
    ops::SquareDoubleGradKernel<plat::CPUDeviceContext,
1384 1385 1386 1387 1388
                                ops::SquareGradGradFunctor<plat::float16>>,
    ops::SquareDoubleGradKernel<plat::CPUDeviceContext,
                                ops::SquareGradGradFunctor<int>>,
    ops::SquareDoubleGradKernel<plat::CPUDeviceContext,
                                ops::SquareGradGradFunctor<int64_t>>);
1389
/* ========================================================================== */
1390 1391 1392 1393 1394

/* ==========================   pow register  ============================ */

REGISTER_OPERATOR(
    pow, ops::PowOp, ops::PowOpMaker, ops::ActivationOpInferVarType,
H
hong 已提交
1395 1396
    ops::PowGradOpMaker<paddle::framework::OpDesc>,
    ops::PowGradOpMaker<paddle::imperative::OpBase>,
1397
    std::conditional<ops::CanInplaceAct<ops::PowGradFunctor<float>>(),
1398
                     ops::ActFwdInplaceInferer, void>::type);
1399
REGISTER_OPERATOR(pow_grad, ops::PowOpGrad,
1400
                  ops::ActivationGradOpInplaceInferer);
1401 1402 1403

REGISTER_OP_CPU_KERNEL(
    pow, ops::PowKernel<plat::CPUDeviceContext, ops::PowFunctor<float>>,
1404 1405 1406
    ops::PowKernel<plat::CPUDeviceContext, ops::PowFunctor<double>>,
    ops::PowKernel<plat::CPUDeviceContext, ops::PowFunctor<int>>,
    ops::PowKernel<plat::CPUDeviceContext, ops::PowFunctor<int64_t>>);
1407 1408 1409
REGISTER_OP_CPU_KERNEL(
    pow_grad,
    ops::PowGradKernel<plat::CPUDeviceContext, ops::PowGradFunctor<float>>,
1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424
    ops::PowGradKernel<plat::CPUDeviceContext, ops::PowGradFunctor<double>>,
    ops::PowGradKernel<plat::CPUDeviceContext, ops::PowGradFunctor<int>>,
    ops::PowGradKernel<plat::CPUDeviceContext, ops::PowGradFunctor<int64_t>>);
/* ========================================================================== */

/* ==========================   exp register  ============================ */
REGISTER_OPERATOR(
    exp, ops::ActivationOp, ops::ExpOpMaker, ops::ActivationOpInferVarType,
    ops::ActivationGradOpMaker<ops::ExpGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::ExpGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
    std::conditional<ops::CanInplaceAct<ops::ExpGradFunctor<float>>(),
                     ops::ActFwdInplaceInferer, void>::type);
REGISTER_OPERATOR(exp_grad, ops::ActivationOpGrad,
1425
                  ops::ActivationGradOpInplaceInferer);
1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445

REGISTER_OP_CPU_KERNEL(exp,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::ExpFunctor<float>>,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::ExpFunctor<double>>,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::ExpFunctor<int>>,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::ExpFunctor<int64_t>>);
REGISTER_OP_CPU_KERNEL(
    exp_grad, ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                                        ops::ExpGradFunctor<float>>,
    ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                              ops::ExpGradFunctor<double>>,
    ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                              ops::ExpGradFunctor<int>>,
    ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                              ops::ExpGradFunctor<int64_t>>);
/* ========================================================================== */
R
ronnywang 已提交
1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473

/* ==========================   expm1 register  ============================ */
REGISTER_OPERATOR(
    expm1, ops::ActivationOp, ops::Expm1OpMaker, ops::ActivationOpInferVarType,
    ops::ActivationGradOpMaker<ops::Expm1GradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::Expm1GradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
    std::conditional<ops::CanInplaceAct<ops::Expm1GradFunctor<float>>(),
                     ops::ActFwdInplaceInferer, void>::type);
REGISTER_OPERATOR(expm1_grad, ops::ActivationOpGrad,
                  ops::ActivationGradOpInplaceInferer);

REGISTER_OP_CPU_KERNEL(expm1,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::Expm1Functor<float>>,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::Expm1Functor<double>>,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::Expm1Functor<plat::float16>>);
REGISTER_OP_CPU_KERNEL(
    expm1_grad, ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                                          ops::Expm1GradFunctor<float>>,
    ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                              ops::Expm1GradFunctor<double>>,
    ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                              ops::Expm1GradFunctor<plat::float16>>);
/* ========================================================================== */
1474

1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
/* ==========================  Log register ==================================*/
REGISTER_OPERATOR(
    log, ops::ActivationOp, ops::LogOpMaker, ops::ActivationOpInferVarType,
    ops::ActivationGradOpMaker<ops::LogGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::LogGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
    ops::ActFwdInplaceInferer);
REGISTER_OPERATOR(log_grad, ops::ActivationOpGrad,
                  ops::ActivationGradOpInplaceInferer,
                  ops::LogDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::LogDoubleGradMaker<paddle::imperative::OpBase>);

REGISTER_OPERATOR(
    log_grad_grad,
    ops::ActivationOpDoubleGrad<ops::LogGradGradFunctor<float>::FwdDeps()>,
    ops::ActivationDoubleGradOpInplaceInferer);

REGISTER_ACTIVATION_CPU_KERNEL(log, Log, LogFunctor, LogGradFunctor);

REGISTER_OP_CPU_KERNEL(
    log_grad_grad, ops::LogDoubleGradKernel<plat::CPUDeviceContext,
                                            ops::LogGradGradFunctor<float>>,
    ops::LogDoubleGradKernel<plat::CPUDeviceContext,
                             ops::LogGradGradFunctor<double>>,
    ops::LogDoubleGradKernel<plat::CPUDeviceContext,
                             ops::LogGradGradFunctor<plat::float16>>);
/* ========================================================================== */

1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522
/* ==========================  register checkpoint ===========================*/
REGISTER_OP_VERSION(leaky_relu)
    .AddCheckpoint(
        R"ROC(fix leaky_relu, bahavior changed when alpha < 0 or alpha > 1)ROC",
        paddle::framework::compatible::OpVersionDesc()
            .BugfixWithBehaviorChanged(
                "leaky_relu calculate formula before checkponit: out = max(x, "
                "alpha * x); after checkpoint: out = x if x > 0 else alpha * "
                "x"));

REGISTER_OP_VERSION(hard_shrink)
    .AddCheckpoint(
        R"ROC(fix hard_shrink, bahavior changed when threshold<0)ROC",
        paddle::framework::compatible::OpVersionDesc()
            .BugfixWithBehaviorChanged(
                "hard_shrink calculate formula before checkponit: out = x * "
                "((x < -threshold) + (x > threshold)); after checkpoint: out = "
                "x * (((x < -threshold) + (x > threshold)) > 0)"));

1523 1524 1525 1526 1527 1528 1529 1530 1531 1532
REGISTER_OP_VERSION(softplus)
    .AddCheckpoint(
        R"ROC(add new attributes [beta] and [threshold], and the formula is changed to "
         " softplus(x) = \\frac{1}{beta} * \\log(1 + e^{beta * x}) \\\\ \\text{For numerical"
         " stability, the implementation reverts to the linear function when: beta * x > threshold.})ROC",
        paddle::framework::compatible::OpVersionDesc()
            .NewAttr("beta", "The beta value of the new formula", 1.0f)
            .NewAttr("threshold", "The threshold value of the new formula",
                     20.0f));

1533
/* ========================================================================== */