elementwise_div_op.cc 7.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
G
gongweibao 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
G
gongweibao 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
G
gongweibao 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
G
gongweibao 已提交
14

W
Wu Yi 已提交
15
#include "paddle/fluid/operators/elementwise/elementwise_div_op.h"
16 17
#include <memory>
#include <string>
18

W
Wu Yi 已提交
19
#include "paddle/fluid/operators/elementwise/elementwise_op.h"
20 21
#include "paddle/fluid/platform/complex128.h"
#include "paddle/fluid/platform/complex64.h"
22 23 24 25

namespace paddle {
namespace operators {

26 27 28 29 30 31 32 33 34 35 36 37
template <typename T>
struct SameDimsElemwiseDiv<
    platform::CPUDeviceContext, T,
    typename std::enable_if<std::is_floating_point<T>::value>::type> {
  void operator()(const framework::ExecutionContext &ctx,
                  const framework::Tensor *x, const framework::Tensor *y,
                  framework::Tensor *z) {
    auto blas = math::GetBlas<platform::CPUDeviceContext, T>(ctx);
    blas.VDIV(x->numel(), x->data<T>(), y->data<T>(), z->data<T>());
  }
};

38 39
// use default div function for int32/int64 type because of divison zero
// checking.
40 41 42 43 44 45 46
template <typename T>
struct SameDimsElemwiseDiv<
    platform::CPUDeviceContext, T,
    typename std::enable_if<!std::is_floating_point<T>::value>::type> {
  void operator()(const framework::ExecutionContext &ctx,
                  const framework::Tensor *x, const framework::Tensor *y,
                  framework::Tensor *z) {
47
    default_elementwise_div<platform::CPUDeviceContext, T>(ctx, x, y, z);
48 49 50
  }
};

51 52 53 54
class ElementwiseDivOpMaker : public ElementwiseOpMaker {
 protected:
  std::string GetName() const override { return "Div"; }
  std::string GetEquation() const override { return "Out = X / Y"; }
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70

  void AddInputX() override {
    AddInput("X",
             "(Variable), Tensor or LoDTensor of any dimensions. Its dtype "
             "should be int32, int64, float32, float64.");
  }

  void AddInputY() override {
    AddInput("Y",
             "(Variable), Tensor or LoDTensor of any dimensions. Its dtype "
             "should be int32, int64, float32, float64.");
  }

  std::string GetOpFuntionality() const override {
    return "Divide two tensors element-wise";
  }
71 72
};

H
hong 已提交
73 74
template <typename T>
class ElementwiseDivGradOpMaker : public framework::SingleGradOpMaker<T> {
75
 public:
H
hong 已提交
76
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
77 78

 protected:
79
  void Apply(GradOpPtr<T> op) const override {
80
    op->SetType("elementwise_div_grad");
81
    op->SetInput("X", this->Input("X"));
H
hong 已提交
82 83 84 85 86 87
    op->SetInput("Y", this->Input("Y"));
    op->SetInput("Out", this->Output("Out"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetOutput(framework::GradVarName("Y"), this->InputGrad("Y"));
    op->SetAttrMap(this->Attrs());
88 89 90
  }
};

H
hong 已提交
91 92
template <typename T>
class ElementwiseDivDoubleGradMaker : public framework::SingleGradOpMaker<T> {
93
 public:
H
hong 已提交
94
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
95 96

 protected:
97
  void Apply(GradOpPtr<T> op) const override {
98
    op->SetType("elementwise_div_grad_grad");
H
hong 已提交
99 100 101 102 103
    op->SetInput("Y", this->Input("Y"));
    op->SetInput("Out", this->Input("Out"));
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetInput("DDY", this->OutputGrad(framework::GradVarName("Y")));
    op->SetInput("DX", this->Output(framework::GradVarName("X")));
104

H
hong 已提交
105
    op->SetAttrMap(this->Attrs());
106

H
hong 已提交
107 108 109
    op->SetOutput(framework::GradVarName("Y"), this->InputGrad("Y"));
    op->SetOutput("DOut", this->InputGrad("Out"));
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
110 111 112
  }
};

113 114 115
}  // namespace operators
}  // namespace paddle

G
gongweibao 已提交
116
namespace ops = paddle::operators;
117

118 119
REGISTER_OPERATOR(elementwise_div, ops::ElementwiseOp,
                  ops::ElementwiseDivOpMaker, ops::ElementwiseOpInferVarType,
H
hong 已提交
120 121 122 123 124 125 126
                  ops::ElementwiseDivGradOpMaker<paddle::framework::OpDesc>,
                  ops::ElementwiseDivGradOpMaker<paddle::imperative::OpBase>);

REGISTER_OPERATOR(
    elementwise_div_grad, ops::ElementwiseOpGrad,
    ops::ElementwiseDivDoubleGradMaker<paddle::framework::OpDesc>,
    ops::ElementwiseDivDoubleGradMaker<paddle::imperative::OpBase>);
127

128
REGISTER_OPERATOR(elementwise_div_grad_grad, ops::ElementwiseDivOpDoubleGrad,
129
                  ops::ElementwiseDoubleGradOpInplaceInferer);
130

G
gongweibao 已提交
131 132
REGISTER_OP_CPU_KERNEL(
    elementwise_div,
Q
QI JUN 已提交
133 134 135
    ops::ElementwiseDivKernel<paddle::platform::CPUDeviceContext, float>,
    ops::ElementwiseDivKernel<paddle::platform::CPUDeviceContext, double>,
    ops::ElementwiseDivKernel<paddle::platform::CPUDeviceContext, int>,
136 137 138 139 140
    ops::ElementwiseDivKernel<paddle::platform::CPUDeviceContext, int64_t>,
    ops::ElementwiseDivKernel<paddle::platform::CPUDeviceContext,
                              paddle::platform::complex64>,
    ops::ElementwiseDivKernel<paddle::platform::CPUDeviceContext,
                              paddle::platform::complex128>);
G
gongweibao 已提交
141 142
REGISTER_OP_CPU_KERNEL(
    elementwise_div_grad,
Q
QI JUN 已提交
143 144 145
    ops::ElementwiseDivGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::ElementwiseDivGradKernel<paddle::platform::CPUDeviceContext, double>,
    ops::ElementwiseDivGradKernel<paddle::platform::CPUDeviceContext, int>,
146 147 148 149 150
    ops::ElementwiseDivGradKernel<paddle::platform::CPUDeviceContext, int64_t>,
    ops::ElementwiseDivGradKernel<paddle::platform::CPUDeviceContext,
                                  paddle::platform::complex64>,
    ops::ElementwiseDivGradKernel<paddle::platform::CPUDeviceContext,
                                  paddle::platform::complex128>);
151 152 153 154 155 156 157 158 159 160

REGISTER_OP_CPU_KERNEL(
    elementwise_div_grad_grad,
    ops::ElementwiseDivDoubleGradKernel<paddle::platform::CPUDeviceContext,
                                        float>,
    ops::ElementwiseDivDoubleGradKernel<paddle::platform::CPUDeviceContext,
                                        double>,
    ops::ElementwiseDivDoubleGradKernel<paddle::platform::CPUDeviceContext,
                                        int>,
    ops::ElementwiseDivDoubleGradKernel<paddle::platform::CPUDeviceContext,
161 162 163 164 165
                                        int64_t>,
    ops::ElementwiseDivDoubleGradKernel<paddle::platform::CPUDeviceContext,
                                        paddle::platform::complex64>,
    ops::ElementwiseDivDoubleGradKernel<paddle::platform::CPUDeviceContext,
                                        paddle::platform::complex128>);
166 167 168 169 170 171 172 173 174

REGISTER_OP_VERSION(elementwise_div)
    .AddCheckpoint(
        R"ROC(Register elementwise_div for adding the attribute of Scale_y)ROC",
        paddle::framework::compatible::OpVersionDesc().NewAttr(
            "Scale_y",
            "In order to support the function of scaling the input Y when "
            "using the operator of elementwise_div.",
            1.0f));