Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
5cef7a2f
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
5cef7a2f
编写于
9月 27, 2019
作者:
D
danleifeng
提交者:
gongweibao
9月 27, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Polish English docs of elementwise_add/sub/mul/div (#20027)
Polish English docs of elementwise_add/sub/mul/div
上级
b9163350
变更
7
隐藏空白更改
内联
并排
Showing
7 changed file
with
390 addition
and
29 deletion
+390
-29
paddle/fluid/API.spec
paddle/fluid/API.spec
+4
-4
paddle/fluid/operators/elementwise/elementwise_add_op.cc
paddle/fluid/operators/elementwise/elementwise_add_op.cc
+24
-2
paddle/fluid/operators/elementwise/elementwise_div_op.cc
paddle/fluid/operators/elementwise/elementwise_div_op.cc
+16
-0
paddle/fluid/operators/elementwise/elementwise_mul_op.cc
paddle/fluid/operators/elementwise/elementwise_mul_op.cc
+22
-6
paddle/fluid/operators/elementwise/elementwise_op.h
paddle/fluid/operators/elementwise/elementwise_op.h
+5
-11
paddle/fluid/operators/elementwise/elementwise_sub_op.cc
paddle/fluid/operators/elementwise/elementwise_sub_op.cc
+23
-2
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+296
-4
未找到文件。
paddle/fluid/API.spec
浏览文件 @
5cef7a2f
...
...
@@ -236,10 +236,10 @@ paddle.fluid.layers.unique_with_counts (ArgSpec(args=['x', 'dtype'], varargs=Non
paddle.fluid.layers.expand (ArgSpec(args=['x', 'expand_times', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '7b97042c3ba55fb5fec6a06308523b73'))
paddle.fluid.layers.sequence_concat (ArgSpec(args=['input', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', 'b992616c1afbd6b0c2a897ac23036381'))
paddle.fluid.layers.scale (ArgSpec(args=['x', 'scale', 'bias', 'bias_after_scale', 'act', 'name'], varargs=None, keywords=None, defaults=(1.0, 0.0, True, None, None)), ('document', '463e4713806e5adaa4d20a41e2218453'))
paddle.fluid.layers.elementwise_add (ArgSpec(args=['x', 'y', 'axis', 'act', 'name'], varargs=None, keywords=None, defaults=(-1, None, None)), ('document', '7
fa4f12d3dad010f3862df271b31e4de
'))
paddle.fluid.layers.elementwise_div (ArgSpec(args=['x', 'y', 'axis', 'act', 'name'], varargs=None, keywords=None, defaults=(-1, None, None)), ('document', '
39ee2e90c1ede44e47f279fc466f3151
'))
paddle.fluid.layers.elementwise_sub (ArgSpec(args=['x', 'y', 'axis', 'act', 'name'], varargs=None, keywords=None, defaults=(-1, None, None)), ('document', '
890017540bd2f982f80da81a98832609
'))
paddle.fluid.layers.elementwise_mul (ArgSpec(args=['x', 'y', 'axis', 'act', 'name'], varargs=None, keywords=None, defaults=(-1, None, None)), ('document', '
7994818219805a2ec34a37cd9baceeb7
'))
paddle.fluid.layers.elementwise_add (ArgSpec(args=['x', 'y', 'axis', 'act', 'name'], varargs=None, keywords=None, defaults=(-1, None, None)), ('document', '7
7ab8a79746ce9b96625c6195c27dfbd
'))
paddle.fluid.layers.elementwise_div (ArgSpec(args=['x', 'y', 'axis', 'act', 'name'], varargs=None, keywords=None, defaults=(-1, None, None)), ('document', '
128d140ac78c610c35fc38663baf9654
'))
paddle.fluid.layers.elementwise_sub (ArgSpec(args=['x', 'y', 'axis', 'act', 'name'], varargs=None, keywords=None, defaults=(-1, None, None)), ('document', '
061219cf5a710c090eb5b31d0a0d841d
'))
paddle.fluid.layers.elementwise_mul (ArgSpec(args=['x', 'y', 'axis', 'act', 'name'], varargs=None, keywords=None, defaults=(-1, None, None)), ('document', '
57d99bd329b8ea842802a7ea52724163
'))
paddle.fluid.layers.elementwise_max (ArgSpec(args=['x', 'y', 'axis', 'act', 'name'], varargs=None, keywords=None, defaults=(-1, None, None)), ('document', '3b3c2e528712552f6f44aef88796321d'))
paddle.fluid.layers.elementwise_min (ArgSpec(args=['x', 'y', 'axis', 'act', 'name'], varargs=None, keywords=None, defaults=(-1, None, None)), ('document', '817e8ce2b39de9b4a94b1b6d592144e0'))
paddle.fluid.layers.elementwise_pow (ArgSpec(args=['x', 'y', 'axis', 'act', 'name'], varargs=None, keywords=None, defaults=(-1, None, None)), ('document', 'b5e3964c8711058634cf5b57b4884258'))
...
...
paddle/fluid/operators/elementwise/elementwise_add_op.cc
浏览文件 @
5cef7a2f
...
...
@@ -20,6 +20,28 @@ limitations under the License. */
namespace
paddle
{
namespace
operators
{
class
ElementwiseAddOpMaker
:
public
ElementwiseOpMaker
{
protected:
std
::
string
GetName
()
const
override
{
return
"Add"
;
}
std
::
string
GetEquation
()
const
override
{
return
"Out = X + Y"
;
}
void
AddInputX
()
override
{
AddInput
(
"X"
,
"(Variable), Tensor or LoDTensor of any dimensions. Its dtype "
"should be int32, int64, float32, float64."
);
}
void
AddInputY
()
override
{
AddInput
(
"Y"
,
"(Variable), Tensor or LoDTensor of any dimensions. Its dtype "
"should be int32, int64, float32, float64."
);
}
std
::
string
GetOpFuntionality
()
const
override
{
return
"Add two tensors element-wise"
;
}
};
class
ElementwiseAddDoubleGradDescMaker
:
public
framework
::
SingleGradOpDescMaker
{
public:
...
...
@@ -45,10 +67,10 @@ class ElementwiseAddDoubleGradDescMaker
}
// namespace paddle
REGISTER_ELEMWISE_GRAD_MAKER
(
elementwise_add
,
Add
);
REGISTER_ELEMWISE_EXPLICIT_OP_WITHOUT_GRAD
(
elementwise_add
,
"Add"
,
"Out = X + Y"
);
REGISTER_ELEMWISE_EXPLICIT_OP_WITHOUT_GRAD
(
elementwise_add
,
Add
);
namespace
ops
=
paddle
::
operators
;
REGISTER_OPERATOR
(
elementwise_add_grad
,
ops
::
ElementwiseOpExplicitGrad
,
ops
::
ElementwiseGradOpInplace
,
ops
::
ElementwiseGradNoBufVarsInference
,
...
...
paddle/fluid/operators/elementwise/elementwise_div_op.cc
浏览文件 @
5cef7a2f
...
...
@@ -24,6 +24,22 @@ class ElementwiseDivOpMaker : public ElementwiseOpMaker {
protected:
std
::
string
GetName
()
const
override
{
return
"Div"
;
}
std
::
string
GetEquation
()
const
override
{
return
"Out = X / Y"
;
}
void
AddInputX
()
override
{
AddInput
(
"X"
,
"(Variable), Tensor or LoDTensor of any dimensions. Its dtype "
"should be int32, int64, float32, float64."
);
}
void
AddInputY
()
override
{
AddInput
(
"Y"
,
"(Variable), Tensor or LoDTensor of any dimensions. Its dtype "
"should be int32, int64, float32, float64."
);
}
std
::
string
GetOpFuntionality
()
const
override
{
return
"Divide two tensors element-wise"
;
}
};
class
ElementwiseDivGradOpDescMaker
:
public
framework
::
SingleGradOpDescMaker
{
...
...
paddle/fluid/operators/elementwise/elementwise_mul_op.cc
浏览文件 @
5cef7a2f
...
...
@@ -20,6 +20,28 @@ limitations under the License. */
namespace
paddle
{
namespace
operators
{
class
ElementwiseMulOpMaker
:
public
ElementwiseOpMaker
{
protected:
std
::
string
GetName
()
const
override
{
return
"Mul"
;
}
std
::
string
GetEquation
()
const
override
{
return
"Out = X
\\\\
odot Y"
;
}
void
AddInputX
()
override
{
AddInput
(
"X"
,
"(Variable), Tensor or LoDTensor of any dimensions. Its dtype "
"should be int32, int64, float32, float64."
);
}
void
AddInputY
()
override
{
AddInput
(
"Y"
,
"(Variable), Tensor or LoDTensor of any dimensions. Its dtype "
"should be int32, int64, float32, float64."
);
}
std
::
string
GetOpFuntionality
()
const
override
{
return
"Multiply two tensors element-wise"
;
}
};
class
ElementwiseMulOpGradDescMaker
:
public
framework
::
SingleGradOpDescMaker
{
public:
using
framework
::
SingleGradOpDescMaker
::
SingleGradOpDescMaker
;
...
...
@@ -38,12 +60,6 @@ class ElementwiseMulOpGradDescMaker : public framework::SingleGradOpDescMaker {
}
};
class
ElementwiseMulOpMaker
:
public
ElementwiseOpMaker
{
protected:
virtual
std
::
string
GetName
()
const
{
return
"Mul"
;
}
virtual
std
::
string
GetEquation
()
const
{
return
"Out = X
\\\\
odot Y"
;
}
};
class
ElementwiseMulDoubleGradDescMaker
:
public
framework
::
SingleGradOpDescMaker
{
public:
...
...
paddle/fluid/operators/elementwise/elementwise_op.h
浏览文件 @
5cef7a2f
...
...
@@ -413,15 +413,9 @@ DECLARE_NO_NEED_BUFFER_VARS_INFERENCE(ElementwiseDoubleGradNoBufVarsInference,
::paddle::operators::ElementwiseGradOpInplace, \
::paddle::operators::ElementwiseGradNoBufVarsInference)
#define REGISTER_ELEMWISE_EXPLICIT_OP_WITHOUT_GRAD(op_type, op_name, equation) \
class __ElemwiseOp##op_type##Maker__ \
: public ::paddle::operators::ElementwiseOpMaker { \
protected: \
virtual std::string GetName() const { return op_name; } \
virtual std::string GetEquation() const { return equation; } \
}; \
REGISTER_OPERATOR(op_type, ::paddle::operators::ElementwiseOp, \
__ElemwiseOp##op_type##Maker__, \
::paddle::operators::ElementwiseOpInferVarType, \
op_type##GradMaker, \
#define REGISTER_ELEMWISE_EXPLICIT_OP_WITHOUT_GRAD(op_type, op_name) \
REGISTER_OPERATOR(op_type, ::paddle::operators::ElementwiseOp, \
::paddle::operators::Elementwise##op_name##OpMaker, \
::paddle::operators::ElementwiseOpInferVarType, \
op_type##GradMaker, \
::paddle::operators::ElementwiseOpInplace);
paddle/fluid/operators/elementwise/elementwise_sub_op.cc
浏览文件 @
5cef7a2f
...
...
@@ -20,6 +20,28 @@ limitations under the License. */
namespace
paddle
{
namespace
operators
{
class
ElementwiseSubOpMaker
:
public
ElementwiseOpMaker
{
protected:
std
::
string
GetName
()
const
override
{
return
"Sub"
;
}
std
::
string
GetEquation
()
const
override
{
return
"Out = X - Y"
;
}
void
AddInputX
()
override
{
AddInput
(
"X"
,
"(Variable), Tensor or LoDTensor of any dimensions. Its dtype "
"should be int32, int64, float32, float64."
);
}
void
AddInputY
()
override
{
AddInput
(
"Y"
,
"(Variable), Tensor or LoDTensor of any dimensions. Its dtype "
"should be int32, int64, float32, float64."
);
}
std
::
string
GetOpFuntionality
()
const
override
{
return
"Substract two tensors element-wise"
;
}
};
class
ElementwiseSubDoubleGradDescMaker
:
public
framework
::
SingleGradOpDescMaker
{
public:
...
...
@@ -46,8 +68,7 @@ class ElementwiseSubDoubleGradDescMaker
namespace
ops
=
paddle
::
operators
;
REGISTER_ELEMWISE_GRAD_MAKER
(
elementwise_sub
,
Sub
);
REGISTER_ELEMWISE_EXPLICIT_OP_WITHOUT_GRAD
(
elementwise_sub
,
"Sub"
,
"Out = X - Y"
);
REGISTER_ELEMWISE_EXPLICIT_OP_WITHOUT_GRAD
(
elementwise_sub
,
Sub
);
REGISTER_OPERATOR
(
elementwise_sub_grad
,
ops
::
ElementwiseOpExplicitGrad
,
ops
::
ElementwiseGradOpInplace
,
...
...
python/paddle/fluid/layers/nn.py
浏览文件 @
5cef7a2f
...
...
@@ -11702,18 +11702,310 @@ def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
def elementwise_add(x, y, axis=-1, act=None, name=None):
"""
Examples:
.. code-block:: python
import paddle.fluid as fluid
import numpy as np
def gen_data():
return {
"x": np.array([2, 3, 4]),
"y": np.array([1, 5, 2])
}
x = fluid.layers.data(name="x", shape=[3], dtype='float32')
y = fluid.layers.data(name="y", shape=[3], dtype='float32')
z = fluid.layers.elementwise_add(x, y)
place = fluid.CPUPlace()
exe = fluid.Executor(place)
z_value = exe.run(feed=gen_data(),
fetch_list=[z.name])
print(z_value) #[3., 8., 6.]
.. code-block:: python
import paddle.fluid as fluid
import numpy as np
def gen_data():
return {
"x": np.ones((2, 3, 4, 5)).astype('float32'),
"y": np.zeros((3, 4)).astype('float32')
}
x = fluid.layers.data(name="x", shape=[2,3,4,5], dtype='float32')
y = fluid.layers.data(name="y", shape=[3,4], dtype='float32')
z = fluid.layers.elementwise_add(x, y, axis=1)
place = fluid.CPUPlace()
exe = fluid.Executor(place)
z_value = exe.run(feed=gen_data(),
fetch_list=[z.name])
print(z_value) # z.shape=[2,3,4,5]
.. code-block:: python
import paddle.fluid as fluid
import numpy as np
def gen_data():
return {
"x": np.random.randint(1, 5, size=[2, 3, 4, 5]).astype('float32'),
"y": np.random.randint(1, 5, size=[5]).astype('float32')
}
x = fluid.layers.data(name="x", shape=[2,3,4,5], dtype='float32')
y = fluid.layers.data(name="y", shape=[3,4], dtype='float32')
z = fluid.layers.elementwise_add(x, y, axis=3)
place = fluid.CPUPlace()
exe = fluid.Executor(place)
z_value = exe.run(feed=gen_data(),
fetch_list=[z.name])
print(z_value) # z.shape=[2,3,4,5]
"""
return _elementwise_op(LayerHelper('elementwise_add', **locals()))
def elementwise_div(x, y, axis=-1, act=None, name=None):
"""
Examples:
.. code-block:: python
import paddle.fluid as fluid
import numpy as np
def gen_data():
return {
"x": np.array([2, 3, 4]),
"y": np.array([1, 5, 2])
}
x = fluid.layers.data(name="x", shape=[3], dtype='float32')
y = fluid.layers.data(name="y", shape=[3], dtype='float32')
z = fluid.layers.elementwise_div(x, y)
place = fluid.CPUPlace()
exe = fluid.Executor(place)
z_value = exe.run(feed=gen_data(),
fetch_list=[z.name])
print(z_value) #[2., 0.6, 2.]
.. code-block:: python
import paddle.fluid as fluid
import numpy as np
def gen_data():
return {
"x": np.ones((2, 3, 4, 5)).astype('float32'),
"y": np.zeros((3, 4)).astype('float32')
}
x = fluid.layers.data(name="x", shape=[2,3,4,5], dtype='float32')
y = fluid.layers.data(name="y", shape=[3,4], dtype='float32')
z = fluid.layers.elementwise_div(x, y, axis=1)
place = fluid.CPUPlace()
exe = fluid.Executor(place)
z_value = exe.run(feed=gen_data(),
fetch_list=[z.name])
print(z_value) # z.shape=[2,3,4,5]
.. code-block:: python
import paddle.fluid as fluid
import numpy as np
def gen_data():
return {
"x": np.random.randint(1, 5, size=[2, 3, 4, 5]).astype('float32'),
"y": np.random.randint(1, 5, size=[5]).astype('float32')
}
x = fluid.layers.data(name="x", shape=[2,3,4,5], dtype='float32')
y = fluid.layers.data(name="y", shape=[3,4], dtype='float32')
z = fluid.layers.elementwise_div(x, y, axis=3)
place = fluid.CPUPlace()
exe = fluid.Executor(place)
z_value = exe.run(feed=gen_data(),
fetch_list=[z.name])
print(z_value) # z.shape=[2,3,4,5]
"""
return _elementwise_op(LayerHelper('elementwise_div', **locals()))
def elementwise_sub(x, y, axis=-1, act=None, name=None):
"""
Examples:
.. code-block:: python
import paddle.fluid as fluid
import numpy as np
def gen_data():
return {
"x": np.array([2, 3, 4]),
"y": np.array([1, 5, 2])
}
x = fluid.layers.data(name="x", shape=[3], dtype='float32')
y = fluid.layers.data(name="y", shape=[3], dtype='float32')
z = fluid.layers.elementwise_sub(x, y)
place = fluid.CPUPlace()
exe = fluid.Executor(place)
z_value = exe.run(feed=gen_data(),
fetch_list=[z.name])
print(z_value) #[1., -2., 2.]
.. code-block:: python
import paddle.fluid as fluid
import numpy as np
def gen_data():
return {
"x": np.ones((2, 3, 4, 5)).astype('float32'),
"y": np.zeros((3, 4)).astype('float32')
}
x = fluid.layers.data(name="x", shape=[2,3,4,5], dtype='float32')
y = fluid.layers.data(name="y", shape=[3,4], dtype='float32')
z = fluid.layers.elementwise_sub(x, y, axis=1)
place = fluid.CPUPlace()
exe = fluid.Executor(place)
z_value = exe.run(feed=gen_data(),
fetch_list=[z.name])
print(z_value) # z.shape=[2,3,4,5]
.. code-block:: python
import paddle.fluid as fluid
import numpy as np
def gen_data():
return {
"x": np.random.randint(1, 5, size=[2, 3, 4, 5]).astype('float32'),
"y": np.random.randint(1, 5, size=[5]).astype('float32')
}
x = fluid.layers.data(name="x", shape=[2,3,4,5], dtype='float32')
y = fluid.layers.data(name="y", shape=[3,4], dtype='float32')
z = fluid.layers.elementwise_sub(x, y, axis=3)
place = fluid.CPUPlace()
exe = fluid.Executor(place)
z_value = exe.run(feed=gen_data(),
fetch_list=[z.name])
print(z_value) # z.shape=[2,3,4,5]
"""
return _elementwise_op(LayerHelper('elementwise_sub', **locals()))
def elementwise_mul(x, y, axis=-1, act=None, name=None):
"""
Examples:
.. code-block:: python
import paddle.fluid as fluid
import numpy as np
def gen_data():
return {
"x": np.array([2, 3, 4]),
"y": np.array([1, 5, 2])
}
x = fluid.layers.data(name="x", shape=[3], dtype='float32')
y = fluid.layers.data(name="y", shape=[3], dtype='float32')
z = fluid.layers.elementwise_mul(x, y)
place = fluid.CPUPlace()
exe = fluid.Executor(place)
z_value = exe.run(feed=gen_data(),
fetch_list=[z.name])
print(z_value) #[2., 15., 8.]
.. code-block:: python
import paddle.fluid as fluid
import numpy as np
def gen_data():
return {
"x": np.ones((2, 3, 4, 5)).astype('float32'),
"y": np.zeros((3, 4)).astype('float32')
}
x = fluid.layers.data(name="x", shape=[2,3,4,5], dtype='float32')
y = fluid.layers.data(name="y", shape=[3,4], dtype='float32')
z = fluid.layers.elementwise_mul(x, y, axis=1)
place = fluid.CPUPlace()
exe = fluid.Executor(place)
z_value = exe.run(feed=gen_data(),
fetch_list=[z.name])
print(z_value) # z.shape=[2,3,4,5]
.. code-block:: python
import paddle.fluid as fluid
import numpy as np
def gen_data():
return {
"x": np.random.randint(1, 5, size=[2, 3, 4, 5]).astype('float32'),
"y": np.random.randint(1, 5, size=[5]).astype('float32')
}
x = fluid.layers.data(name="x", shape=[2,3,4,5], dtype='float32')
y = fluid.layers.data(name="y", shape=[3,4], dtype='float32')
z = fluid.layers.elementwise_mul(x, y, axis=3)
place = fluid.CPUPlace()
exe = fluid.Executor(place)
z_value = exe.run(feed=gen_data(),
fetch_list=[z.name])
print(z_value) # z.shape=[2,3,4,5]
"""
return _elementwise_op(LayerHelper('elementwise_mul', **locals()))
...
...
@@ -11863,6 +12155,10 @@ def elementwise_floordiv(x, y, axis=-1, act=None, name=None):
for func in [
elementwise_add,
elementwise_div,
elementwise_sub,
elementwise_mul,
elementwise_max,
elementwise_pow,
elementwise_min,
...
...
@@ -11886,10 +12182,6 @@ for func in [
for func in [
elementwise_mod,
elementwise_floordiv,
elementwise_add,
elementwise_div,
elementwise_sub,
elementwise_mul,
]:
op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
func.__doc__ = _generate_doc_string_(
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录