elementwise_div_op.cc 6.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
G
gongweibao 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
G
gongweibao 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
G
gongweibao 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
G
gongweibao 已提交
14

W
Wu Yi 已提交
15
#include "paddle/fluid/operators/elementwise/elementwise_div_op.h"
16 17
#include <memory>
#include <string>
W
Wu Yi 已提交
18
#include "paddle/fluid/operators/elementwise/elementwise_op.h"
19 20
#include "paddle/fluid/platform/complex128.h"
#include "paddle/fluid/platform/complex64.h"
21 22 23 24

namespace paddle {
namespace operators {

25 26 27 28 29 30 31 32 33 34 35 36
template <typename T>
struct SameDimsElemwiseDiv<
    platform::CPUDeviceContext, T,
    typename std::enable_if<std::is_floating_point<T>::value>::type> {
  void operator()(const framework::ExecutionContext &ctx,
                  const framework::Tensor *x, const framework::Tensor *y,
                  framework::Tensor *z) {
    auto blas = math::GetBlas<platform::CPUDeviceContext, T>(ctx);
    blas.VDIV(x->numel(), x->data<T>(), y->data<T>(), z->data<T>());
  }
};

37 38
// use default div function for int32/int64 type because of divison zero
// checking.
39 40 41 42 43 44 45
template <typename T>
struct SameDimsElemwiseDiv<
    platform::CPUDeviceContext, T,
    typename std::enable_if<!std::is_floating_point<T>::value>::type> {
  void operator()(const framework::ExecutionContext &ctx,
                  const framework::Tensor *x, const framework::Tensor *y,
                  framework::Tensor *z) {
46
    default_elementwise_div<platform::CPUDeviceContext, T>(ctx, x, y, z);
47 48 49
  }
};

50 51 52 53
class ElementwiseDivOpMaker : public ElementwiseOpMaker {
 protected:
  std::string GetName() const override { return "Div"; }
  std::string GetEquation() const override { return "Out = X / Y"; }
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69

  void AddInputX() override {
    AddInput("X",
             "(Variable), Tensor or LoDTensor of any dimensions. Its dtype "
             "should be int32, int64, float32, float64.");
  }

  void AddInputY() override {
    AddInput("Y",
             "(Variable), Tensor or LoDTensor of any dimensions. Its dtype "
             "should be int32, int64, float32, float64.");
  }

  std::string GetOpFuntionality() const override {
    return "Divide two tensors element-wise";
  }
70 71
};

H
hong 已提交
72 73
template <typename T>
class ElementwiseDivGradOpMaker : public framework::SingleGradOpMaker<T> {
74
 public:
H
hong 已提交
75
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
76 77

 protected:
78
  void Apply(GradOpPtr<T> op) const override {
79
    op->SetType("elementwise_div_grad");
80
    op->SetInput("X", this->Input("X"));
H
hong 已提交
81 82 83 84 85 86
    op->SetInput("Y", this->Input("Y"));
    op->SetInput("Out", this->Output("Out"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetOutput(framework::GradVarName("Y"), this->InputGrad("Y"));
    op->SetAttrMap(this->Attrs());
87 88 89
  }
};

H
hong 已提交
90 91
template <typename T>
class ElementwiseDivDoubleGradMaker : public framework::SingleGradOpMaker<T> {
92
 public:
H
hong 已提交
93
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
94 95

 protected:
96
  void Apply(GradOpPtr<T> op) const override {
97
    op->SetType("elementwise_div_grad_grad");
H
hong 已提交
98 99 100 101 102
    op->SetInput("Y", this->Input("Y"));
    op->SetInput("Out", this->Input("Out"));
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetInput("DDY", this->OutputGrad(framework::GradVarName("Y")));
    op->SetInput("DX", this->Output(framework::GradVarName("X")));
103

H
hong 已提交
104
    op->SetAttrMap(this->Attrs());
105

H
hong 已提交
106 107 108
    op->SetOutput(framework::GradVarName("Y"), this->InputGrad("Y"));
    op->SetOutput("DOut", this->InputGrad("Out"));
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
109 110 111
  }
};

112 113 114
}  // namespace operators
}  // namespace paddle

G
gongweibao 已提交
115
namespace ops = paddle::operators;
116

117 118
REGISTER_OPERATOR(elementwise_div, ops::ElementwiseOp,
                  ops::ElementwiseDivOpMaker, ops::ElementwiseOpInferVarType,
H
hong 已提交
119 120 121 122 123 124 125
                  ops::ElementwiseDivGradOpMaker<paddle::framework::OpDesc>,
                  ops::ElementwiseDivGradOpMaker<paddle::imperative::OpBase>);

REGISTER_OPERATOR(
    elementwise_div_grad, ops::ElementwiseOpGrad,
    ops::ElementwiseDivDoubleGradMaker<paddle::framework::OpDesc>,
    ops::ElementwiseDivDoubleGradMaker<paddle::imperative::OpBase>);
126

127
REGISTER_OPERATOR(elementwise_div_grad_grad, ops::ElementwiseDivOpDoubleGrad,
128
                  ops::ElementwiseDoubleGradOpInplaceInferer);
129

G
gongweibao 已提交
130 131
REGISTER_OP_CPU_KERNEL(
    elementwise_div,
Q
QI JUN 已提交
132 133 134
    ops::ElementwiseDivKernel<paddle::platform::CPUDeviceContext, float>,
    ops::ElementwiseDivKernel<paddle::platform::CPUDeviceContext, double>,
    ops::ElementwiseDivKernel<paddle::platform::CPUDeviceContext, int>,
135 136 137 138 139
    ops::ElementwiseDivKernel<paddle::platform::CPUDeviceContext, int64_t>,
    ops::ElementwiseDivKernel<paddle::platform::CPUDeviceContext,
                              paddle::platform::complex64>,
    ops::ElementwiseDivKernel<paddle::platform::CPUDeviceContext,
                              paddle::platform::complex128>);
G
gongweibao 已提交
140 141
REGISTER_OP_CPU_KERNEL(
    elementwise_div_grad,
Q
QI JUN 已提交
142 143 144
    ops::ElementwiseDivGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::ElementwiseDivGradKernel<paddle::platform::CPUDeviceContext, double>,
    ops::ElementwiseDivGradKernel<paddle::platform::CPUDeviceContext, int>,
145 146 147 148 149
    ops::ElementwiseDivGradKernel<paddle::platform::CPUDeviceContext, int64_t>,
    ops::ElementwiseDivGradKernel<paddle::platform::CPUDeviceContext,
                                  paddle::platform::complex64>,
    ops::ElementwiseDivGradKernel<paddle::platform::CPUDeviceContext,
                                  paddle::platform::complex128>);
150 151 152 153 154 155 156 157 158 159

REGISTER_OP_CPU_KERNEL(
    elementwise_div_grad_grad,
    ops::ElementwiseDivDoubleGradKernel<paddle::platform::CPUDeviceContext,
                                        float>,
    ops::ElementwiseDivDoubleGradKernel<paddle::platform::CPUDeviceContext,
                                        double>,
    ops::ElementwiseDivDoubleGradKernel<paddle::platform::CPUDeviceContext,
                                        int>,
    ops::ElementwiseDivDoubleGradKernel<paddle::platform::CPUDeviceContext,
160 161 162 163 164
                                        int64_t>,
    ops::ElementwiseDivDoubleGradKernel<paddle::platform::CPUDeviceContext,
                                        paddle::platform::complex64>,
    ops::ElementwiseDivDoubleGradKernel<paddle::platform::CPUDeviceContext,
                                        paddle::platform::complex128>);