metrics.py 27.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import abc
16

17 18 19
import numpy as np

import paddle
20
from paddle import _legacy_C_ops
21

22
from ..fluid.data_feeder import check_variable_and_dtype
23
from ..fluid.framework import _create_tensor
24
from ..fluid.layer_helper import LayerHelper
25
from ..framework import in_dynamic_mode
26

27
__all__ = []
28 29 30 31 32 33


def _is_numpy_(var):
    return isinstance(var, (np.ndarray, np.generic))


34
class Metric(metaclass=abc.ABCMeta):
35
    r"""
36 37
    Base class for metric, encapsulates metric logic and APIs
    Usage:
38 39 40 41 42 43 44

        .. code-block:: text

            m = SomeMetric()
            for prediction, label in ...:
                m.update(prediction, label)
            m.accumulate()
45

46 47 48 49 50 51 52 53
    Advanced usage for :code:`compute`:

    Metric calculation can be accelerated by calculating metric states
    from model outputs and labels by build-in operators not by Python/NumPy
    in :code:`compute`, metric states will be fetched as NumPy array and
    call :code:`update` with states in NumPy format.
    Metric calculated as follows (operations in Model and Metric are
    indicated with curly brackets, while data nodes not):
54 55 56

        .. code-block:: text

57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
                 inputs & labels              || ------------------
                       |                      ||
                    {model}                   ||
                       |                      ||
                outputs & labels              ||
                       |                      ||    tensor data
                {Metric.compute}              ||
                       |                      ||
              metric states(tensor)           ||
                       |                      ||
                {fetch as numpy}              || ------------------
                       |                      ||
              metric states(numpy)            ||    numpy data
                       |                      ||
                {Metric.update}               \/ ------------------
72

73
    Examples:
74

75 76 77 78 79 80 81 82 83 84
        For :code:`Accuracy` metric, which takes :code:`pred` and :code:`label`
        as inputs, we can calculate the correct prediction matrix between
        :code:`pred` and :code:`label` in :code:`compute`.
        For examples, prediction results contains 10 classes, while :code:`pred`
        shape is [N, 10], :code:`label` shape is [N, 1], N is mini-batch size,
        and we only need to calculate accurary of top-1 and top-5, we could
        calculate the correct prediction matrix of the top-5 scores of the
        prediction of each sample like follows, while the correct prediction
        matrix shape is [N, 5].

85 86 87 88 89 90 91 92
          .. code-block:: text

              def compute(pred, label):
                  # sort prediction and slice the top-5 scores
                  pred = paddle.argsort(pred, descending=True)[:, :5]
                  # calculate whether the predictions are correct
                  correct = pred == label
                  return paddle.cast(correct, dtype='float32')
93 94 95 96 97 98

        With the :code:`compute`, we split some calculations to OPs (which
        may run on GPU devices, will be faster), and only fetch 1 tensor with
        shape as [N, 5] instead of 2 tensors with shapes as [N, 10] and [N, 1].
        :code:`update` can be define as follows:

99 100 101 102 103 104 105 106 107 108 109
          .. code-block:: text

              def update(self, correct):
                  accs = []
                  for i, k in enumerate(self.topk):
                      num_corrects = correct[:, :k].sum()
                      num_samples = len(correct)
                      accs.append(float(num_corrects) / num_samples)
                      self.total[i] += num_corrects
                      self.count[i] += num_samples
                  return accs
110 111 112 113 114 115 116 117 118 119
    """

    def __init__(self):
        pass

    @abc.abstractmethod
    def reset(self):
        """
        Reset states and result
        """
120 121
        raise NotImplementedError(
            "function 'reset' not implemented in {}.".format(
122 123 124
                self.__class__.__name__
            )
        )
125 126 127 128 129 130 131 132 133 134 135 136 137

    @abc.abstractmethod
    def update(self, *args):
        """
        Update states for metric

        Inputs of :code:`update` is the outputs of :code:`Metric.compute`,
        if :code:`compute` is not defined, the inputs of :code:`update`
        will be flatten arguments of **output** of mode and **label** from data:
        :code:`update(output1, output2, ..., label1, label2,...)`

        see :code:`Metric.compute`
        """
138 139
        raise NotImplementedError(
            "function 'update' not implemented in {}.".format(
140 141 142
                self.__class__.__name__
            )
        )
143 144 145 146 147 148 149 150

    @abc.abstractmethod
    def accumulate(self):
        """
        Accumulates statistics, computes and returns the metric value
        """
        raise NotImplementedError(
            "function 'accumulate' not implemented in {}.".format(
151 152 153
                self.__class__.__name__
            )
        )
154 155 156 157 158 159

    @abc.abstractmethod
    def name(self):
        """
        Returns metric name
        """
160 161
        raise NotImplementedError(
            "function 'name' not implemented in {}.".format(
162 163 164
                self.__class__.__name__
            )
        )
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192

    def compute(self, *args):
        """
        This API is advanced usage to accelerate metric calculating, calulations
        from outputs of model to the states which should be updated by Metric can
        be defined here, where Paddle OPs is also supported. Outputs of this API
        will be the inputs of "Metric.update".

        If :code:`compute` is defined, it will be called with **outputs**
        of model and **labels** from data as arguments, all outputs and labels
        will be concatenated and flatten and each filed as a separate argument
        as follows:
        :code:`compute(output1, output2, ..., label1, label2,...)`

        If :code:`compute` is not defined, default behaviour is to pass
        input to output, so output format will be:
        :code:`return output1, output2, ..., label1, label2,...`

        see :code:`Metric.update`
        """
        return args


class Accuracy(Metric):
    """
    Encapsulates accuracy metric logic.

    Args:
J
Jiaqi Liu 已提交
193
        topk (list[int]|tuple[int]): Number of top elements to look at
194 195 196 197 198
            for computing accuracy. Default is (1,).
        name (str, optional): String name of the metric instance. Default
            is `acc`.

    Example by standalone:
199

200 201
        .. code-block:: python

202 203
          import numpy as np
          import paddle
204

205 206 207 208 209 210
          x = paddle.to_tensor(np.array([
              [0.1, 0.2, 0.3, 0.4],
              [0.1, 0.4, 0.3, 0.2],
              [0.1, 0.2, 0.4, 0.3],
              [0.1, 0.2, 0.3, 0.4]]))
          y = paddle.to_tensor(np.array([[0], [1], [2], [3]]))
211

212 213 214 215 216
          m = paddle.metric.Accuracy()
          correct = m.compute(x, y)
          m.update(correct)
          res = m.accumulate()
          print(res) # 0.75
217 218 219


    Example with Model API:
220

221 222
        .. code-block:: python

223 224 225 226
          import paddle
          from paddle.static import InputSpec
          import paddle.vision.transforms as T
          from paddle.vision.datasets import MNIST
227

228 229 230 231 232
          input = InputSpec([None, 1, 28, 28], 'float32', 'image')
          label = InputSpec([None, 1], 'int64', 'label')
          transform = T.Compose([T.Transpose(), T.Normalize([127.5], [127.5])])
          train_dataset = MNIST(mode='train', transform=transform)

233
          model = paddle.Model(paddle.vision.models.LeNet(), input, label)
234 235 236 237 238 239 240 241
          optim = paddle.optimizer.Adam(
              learning_rate=0.001, parameters=model.parameters())
          model.prepare(
              optim,
              loss=paddle.nn.CrossEntropyLoss(),
              metrics=paddle.metric.Accuracy())

          model.fit(train_dataset, batch_size=64)
242 243 244

    """

245
    def __init__(self, topk=(1,), name=None, *args, **kwargs):
246
        super().__init__(*args, **kwargs)
247 248 249 250 251 252 253
        self.topk = topk
        self.maxk = max(topk)
        self._init_name(name)
        self.reset()

    def compute(self, pred, label, *args):
        """
254
        Compute the top-k (maximum value in `topk`) indices.
255 256

        Args:
257 258 259 260 261
            pred (Tensor): The predicted value is a Tensor with dtype
                float32 or float64. Shape is [batch_size, d0, ..., dN].
            label (Tensor): The ground truth value is Tensor with dtype
                int64. Shape is [batch_size, d0, ..., 1], or
                [batch_size, d0, ..., num_classes] in one hot representation.
262

263
        Return:
264
            Tensor: Correct mask, a tensor with shape [batch_size, d0, ..., topk].
265
        """
266
        pred = paddle.argsort(pred, descending=True)
267 268 269 270 271 272
        pred = paddle.slice(
            pred, axes=[len(pred.shape) - 1], starts=[0], ends=[self.maxk]
        )
        if (len(label.shape) == 1) or (
            len(label.shape) == 2 and label.shape[-1] == 1
        ):
273
            # In static graph mode, the real label data shape may be different
274 275 276 277 278 279
            # from shape defined by paddle.static.InputSpec in model
            # building, reshape to the right shape.
            label = paddle.reshape(label, (-1, 1))
        elif label.shape[-1] != 1:
            # one-hot label
            label = paddle.argmax(label, axis=-1, keepdim=True)
280 281 282 283 284 285 286 287
        correct = pred == label
        return paddle.cast(correct, dtype='float32')

    def update(self, correct, *args):
        """
        Update the metrics states (correct count and total count), in order to
        calculate cumulative accuracy of all instances. This function also
        returns the accuracy of current step.
288

289
        Args:
290
            correct: Correct mask, a tensor with shape [batch_size, d0, ..., topk].
291 292 293 294

        Return:
            Tensor: the accuracy of current step.
        """
H
hong 已提交
295
        if isinstance(correct, (paddle.Tensor, paddle.fluid.core.eager.Tensor)):
296
            correct = np.array(correct)
297
        num_samples = np.prod(np.array(correct.shape[:-1]))
298 299
        accs = []
        for i, k in enumerate(self.topk):
300
            num_corrects = correct[..., :k].sum()
301 302 303 304 305 306 307 308 309 310
            accs.append(float(num_corrects) / num_samples)
            self.total[i] += num_corrects
            self.count[i] += num_samples
        accs = accs[0] if len(self.topk) == 1 else accs
        return accs

    def reset(self):
        """
        Resets all of the metric state.
        """
311
        self.total = [0.0] * len(self.topk)
312 313 314 315 316 317 318 319
        self.count = [0] * len(self.topk)

    def accumulate(self):
        """
        Computes and returns the accumulated metric.
        """
        res = []
        for t, c in zip(self.total, self.count):
320
            r = float(t) / c if c > 0 else 0.0
321 322 323 324 325 326 327
            res.append(r)
        res = res[0] if len(self.topk) == 1 else res
        return res

    def _init_name(self, name):
        name = name or 'acc'
        if self.maxk != 1:
328
            self._name = [f'{name}_top{k}' for k in self.topk]
329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
        else:
            self._name = [name]

    def name(self):
        """
        Return name of metric instance.
        """
        return self._name


class Precision(Metric):
    """
    Precision (also called positive predictive value) is the fraction of
    relevant instances among the retrieved instances. Refer to
    https://en.wikipedia.org/wiki/Evaluation_of_binary_classifiers

    Noted that this class manages the precision score only for binary
    classification task.

    Args:
        name (str, optional): String name of the metric instance.
            Default is `precision`.

    Example by standalone:
353

354 355
        .. code-block:: python

356 357
          import numpy as np
          import paddle
358

359 360
          x = np.array([0.1, 0.5, 0.6, 0.7])
          y = np.array([0, 1, 1, 1])
361

362 363 364 365
          m = paddle.metric.Precision()
          m.update(x, y)
          res = m.accumulate()
          print(res) # 1.0
366 367 368


    Example with Model API:
369

370 371
        .. code-block:: python

372
          import numpy as np
373

374 375
          import paddle
          import paddle.nn as nn
376

377 378
          class Data(paddle.io.Dataset):
              def __init__(self):
379
                  super().__init__()
380 381 382
                  self.n = 1024
                  self.x = np.random.randn(self.n, 10).astype('float32')
                  self.y = np.random.randint(2, size=(self.n, 1)).astype('float32')
383

384 385
              def __getitem__(self, idx):
                  return self.x[idx], self.y[idx]
386

387 388
              def __len__(self):
                  return self.n
389

390 391 392 393 394 395 396 397 398 399
          model = paddle.Model(nn.Sequential(
              nn.Linear(10, 1),
              nn.Sigmoid()
          ))
          optim = paddle.optimizer.Adam(
              learning_rate=0.001, parameters=model.parameters())
          model.prepare(
              optim,
              loss=nn.BCELoss(),
              metrics=paddle.metric.Precision())
400

401 402
          data = Data()
          model.fit(data, batch_size=16)
403 404 405
    """

    def __init__(self, name='precision', *args, **kwargs):
406
        super().__init__(*args, **kwargs)
407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
        self.tp = 0  # true positive
        self.fp = 0  # false positive
        self._name = name

    def update(self, preds, labels):
        """
        Update the states based on the current mini-batch prediction results.

        Args:
            preds (numpy.ndarray): The prediction result, usually the output
                of two-class sigmoid function. It should be a vector (column
                vector or row vector) with data type: 'float64' or 'float32'.
            labels (numpy.ndarray): The ground truth (labels),
                the shape should keep the same as preds.
                The data type is 'int32' or 'int64'.
        """
H
hong 已提交
423
        if isinstance(preds, (paddle.Tensor, paddle.fluid.core.eager.Tensor)):
424
            preds = np.array(preds)
425 426 427
        elif not _is_numpy_(preds):
            raise ValueError("The 'preds' must be a numpy ndarray or Tensor.")

H
hong 已提交
428
        if isinstance(labels, (paddle.Tensor, paddle.fluid.core.eager.Tensor)):
429
            labels = np.array(labels)
430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
        elif not _is_numpy_(labels):
            raise ValueError("The 'labels' must be a numpy ndarray or Tensor.")

        sample_num = labels.shape[0]
        preds = np.floor(preds + 0.5).astype("int32")

        for i in range(sample_num):
            pred = preds[i]
            label = labels[i]
            if pred == 1:
                if pred == label:
                    self.tp += 1
                else:
                    self.fp += 1

    def reset(self):
        """
        Resets all of the metric state.
        """
        self.tp = 0
        self.fp = 0

    def accumulate(self):
        """
        Calculate the final precision.

        Returns:
            A scaler float: results of the calculated precision.
        """
        ap = self.tp + self.fp
460
        return float(self.tp) / ap if ap != 0 else 0.0
461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485

    def name(self):
        """
        Returns metric name
        """
        return self._name


class Recall(Metric):
    """
    Recall (also known as sensitivity) is the fraction of
    relevant instances that have been retrieved over the
    total amount of relevant instances

    Refer to:
    https://en.wikipedia.org/wiki/Precision_and_recall

    Noted that this class manages the recall score only for
    binary classification task.

    Args:
        name (str, optional): String name of the metric instance.
            Default is `recall`.

    Example by standalone:
486

487 488
        .. code-block:: python

489 490
          import numpy as np
          import paddle
491

492 493
          x = np.array([0.1, 0.5, 0.6, 0.7])
          y = np.array([1, 0, 1, 1])
494

495 496 497 498
          m = paddle.metric.Recall()
          m.update(x, y)
          res = m.accumulate()
          print(res) # 2.0 / 3.0
499 500 501


    Example with Model API:
502

503 504
        .. code-block:: python

505
          import numpy as np
506

507 508
          import paddle
          import paddle.nn as nn
509

510 511
          class Data(paddle.io.Dataset):
              def __init__(self):
512
                  super().__init__()
513 514 515
                  self.n = 1024
                  self.x = np.random.randn(self.n, 10).astype('float32')
                  self.y = np.random.randint(2, size=(self.n, 1)).astype('float32')
516

517 518
              def __getitem__(self, idx):
                  return self.x[idx], self.y[idx]
519

520 521
              def __len__(self):
                  return self.n
522

523 524 525 526 527 528 529 530 531 532
          model = paddle.Model(nn.Sequential(
              nn.Linear(10, 1),
              nn.Sigmoid()
          ))
          optim = paddle.optimizer.Adam(
              learning_rate=0.001, parameters=model.parameters())
          model.prepare(
              optim,
              loss=nn.BCELoss(),
              metrics=[paddle.metric.Precision(), paddle.metric.Recall()])
533

534 535
          data = Data()
          model.fit(data, batch_size=16)
536 537 538
    """

    def __init__(self, name='recall', *args, **kwargs):
539
        super().__init__(*args, **kwargs)
540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555
        self.tp = 0  # true positive
        self.fn = 0  # false negative
        self._name = name

    def update(self, preds, labels):
        """
        Update the states based on the current mini-batch prediction results.

        Args:
            preds(numpy.array): prediction results of current mini-batch,
                the output of two-class sigmoid function.
                Shape: [batch_size, 1]. Dtype: 'float64' or 'float32'.
            labels(numpy.array): ground truth (labels) of current mini-batch,
                the shape should keep the same as preds.
                Shape: [batch_size, 1], Dtype: 'int32' or 'int64'.
        """
H
hong 已提交
556
        if isinstance(preds, (paddle.Tensor, paddle.fluid.core.eager.Tensor)):
557
            preds = np.array(preds)
558 559 560
        elif not _is_numpy_(preds):
            raise ValueError("The 'preds' must be a numpy ndarray or Tensor.")

H
hong 已提交
561
        if isinstance(labels, (paddle.Tensor, paddle.fluid.core.eager.Tensor)):
562
            labels = np.array(labels)
563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
        elif not _is_numpy_(labels):
            raise ValueError("The 'labels' must be a numpy ndarray or Tensor.")

        sample_num = labels.shape[0]
        preds = np.rint(preds).astype("int32")

        for i in range(sample_num):
            pred = preds[i]
            label = labels[i]
            if label == 1:
                if pred == label:
                    self.tp += 1
                else:
                    self.fn += 1

    def accumulate(self):
        """
        Calculate the final recall.

        Returns:
            A scaler float: results of the calculated Recall.
        """
        recall = self.tp + self.fn
586
        return float(self.tp) / recall if recall != 0 else 0.0
587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629

    def reset(self):
        """
        Resets all of the metric state.
        """
        self.tp = 0
        self.fn = 0

    def name(self):
        """
        Returns metric name
        """
        return self._name


class Auc(Metric):
    """
    The auc metric is for binary classification.
    Refer to https://en.wikipedia.org/wiki/Receiver_operating_characteristic#Area_under_the_curve.
    Please notice that the auc metric is implemented with python, which may be a little bit slow.

    The `auc` function creates four local variables, `true_positives`,
    `true_negatives`, `false_positives` and `false_negatives` that are used to
    compute the AUC. To discretize the AUC curve, a linearly spaced set of
    thresholds is used to compute pairs of recall and precision values. The area
    under the ROC-curve is therefore computed using the height of the recall
    values by the false positive rate, while the area under the PR-curve is the
    computed using the height of the precision values by the recall.

    Args:
        curve (str): Specifies the mode of the curve to be computed,
            'ROC' or 'PR' for the Precision-Recall-curve. Default is 'ROC'.
        num_thresholds (int): The number of thresholds to use when
            discretizing the roc curve. Default is 4095.
            'ROC' or 'PR' for the Precision-Recall-curve. Default is 'ROC'.
        name (str, optional): String name of the metric instance. Default
            is `auc`.

    "NOTE: only implement the ROC curve type via Python now."

    Example by standalone:
        .. code-block:: python

630 631
          import numpy as np
          import paddle
632

633
          m = paddle.metric.Auc()
634

635 636 637
          n = 8
          class0_preds = np.random.random(size = (n, 1))
          class1_preds = 1 - class0_preds
638

639 640
          preds = np.concatenate((class0_preds, class1_preds), axis=1)
          labels = np.random.randint(2, size = (n, 1))
641

642 643
          m.update(preds=preds, labels=labels)
          res = m.accumulate()
644 645 646


    Example with Model API:
647

648 649
        .. code-block:: python

650 651 652
          import numpy as np
          import paddle
          import paddle.nn as nn
653

654 655
          class Data(paddle.io.Dataset):
              def __init__(self):
656
                  super().__init__()
657 658 659
                  self.n = 1024
                  self.x = np.random.randn(self.n, 10).astype('float32')
                  self.y = np.random.randint(2, size=(self.n, 1)).astype('int64')
660

661 662
              def __getitem__(self, idx):
                  return self.x[idx], self.y[idx]
663

664 665
              def __len__(self):
                  return self.n
666

667 668 669 670 671
          model = paddle.Model(nn.Sequential(
              nn.Linear(10, 2), nn.Softmax())
          )
          optim = paddle.optimizer.Adam(
              learning_rate=0.001, parameters=model.parameters())
672

673 674
          def loss(x, y):
              return nn.functional.nll_loss(paddle.log(x), y)
675

676 677 678 679 680 681
          model.prepare(
              optim,
              loss=loss,
              metrics=paddle.metric.Auc())
          data = Data()
          model.fit(data, batch_size=16)
682 683
    """

684 685 686
    def __init__(
        self, curve='ROC', num_thresholds=4095, name='auc', *args, **kwargs
    ):
687
        super().__init__(*args, **kwargs)
688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707
        self._curve = curve
        self._num_thresholds = num_thresholds

        _num_pred_buckets = num_thresholds + 1
        self._stat_pos = np.zeros(_num_pred_buckets)
        self._stat_neg = np.zeros(_num_pred_buckets)
        self._name = name

    def update(self, preds, labels):
        """
        Update the auc curve with the given predictions and labels.

        Args:
            preds (numpy.array): An numpy array in the shape of
                (batch_size, 2), preds[i][j] denotes the probability of
                classifying the instance i into the class j.
            labels (numpy.array): an numpy array in the shape of
                (batch_size, 1), labels[i] is either o or 1,
                representing the label of the instance i.
        """
H
hong 已提交
708
        if isinstance(labels, (paddle.Tensor, paddle.fluid.core.eager.Tensor)):
709
            labels = np.array(labels)
710 711 712
        elif not _is_numpy_(labels):
            raise ValueError("The 'labels' must be a numpy ndarray or Tensor.")

H
hong 已提交
713
        if isinstance(preds, (paddle.Tensor, paddle.fluid.core.eager.Tensor)):
714
            preds = np.array(preds)
715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
        elif not _is_numpy_(preds):
            raise ValueError("The 'preds' must be a numpy ndarray or Tensor.")

        for i, lbl in enumerate(labels):
            value = preds[i, 1]
            bin_idx = int(value * self._num_thresholds)
            assert bin_idx <= self._num_thresholds
            if lbl:
                self._stat_pos[bin_idx] += 1.0
            else:
                self._stat_neg[bin_idx] += 1.0

    @staticmethod
    def trapezoid_area(x1, x2, y1, y2):
        return abs(x1 - x2) * (y1 + y2) / 2.0

    def accumulate(self):
        """
        Return the area (a float score) under auc curve

        Return:
            float: the area under auc curve
        """
        tot_pos = 0.0
        tot_neg = 0.0
        auc = 0.0

        idx = self._num_thresholds
        while idx >= 0:
            tot_pos_prev = tot_pos
            tot_neg_prev = tot_neg
            tot_pos += self._stat_pos[idx]
            tot_neg += self._stat_neg[idx]
748 749 750
            auc += self.trapezoid_area(
                tot_neg, tot_neg_prev, tot_pos, tot_pos_prev
            )
751 752
            idx -= 1

753 754 755
        return (
            auc / tot_pos / tot_neg if tot_pos > 0.0 and tot_neg > 0.0 else 0.0
        )
756 757 758 759 760 761 762 763 764 765 766 767 768 769

    def reset(self):
        """
        Reset states and result
        """
        _num_pred_buckets = self._num_thresholds + 1
        self._stat_pos = np.zeros(_num_pred_buckets)
        self._stat_neg = np.zeros(_num_pred_buckets)

    def name(self):
        """
        Returns metric name
        """
        return self._name
S
Steffy-zxf 已提交
770 771 772 773 774


def accuracy(input, label, k=1, correct=None, total=None, name=None):
    """
    accuracy layer.
775 776
    Refer to the https://en.wikipedia.org/wiki/Precision_and_recall

S
Steffy-zxf 已提交
777 778 779
    This function computes the accuracy using the input and label.
    If the correct label occurs in top k predictions, then correct will increment by one.
    Note: the dtype of accuracy is determined by input. the input and label dtype can be different.
780

S
Steffy-zxf 已提交
781 782 783
    Args:
        input(Tensor): The input of accuracy layer, which is the predictions of network. A Tensor with type float32,float64.
            The shape is ``[sample_number, class_dim]`` .
784
        label(Tensor): The label of dataset. Tensor with type int64 or int32. The shape is ``[sample_number, 1]`` .
S
Steffy-zxf 已提交
785 786 787 788 789
        k(int, optional): The top k predictions for each class will be checked. Data type is int64 or int32.
        correct(Tensor, optional): The correct predictions count. A Tensor with type int64 or int32.
        total(Tensor, optional): The total entries count. A tensor with type int64 or int32.
        name(str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`
790

S
Steffy-zxf 已提交
791 792
    Returns:
        Tensor, the correct rate. A Tensor with type float32.
793

S
Steffy-zxf 已提交
794 795
    Examples:
        .. code-block:: python
796

S
Steffy-zxf 已提交
797
            import paddle
798

S
Steffy-zxf 已提交
799 800 801
            predictions = paddle.to_tensor([[0.2, 0.1, 0.4, 0.1, 0.1], [0.2, 0.3, 0.1, 0.15, 0.25]], dtype='float32')
            label = paddle.to_tensor([[2], [0]], dtype="int64")
            result = paddle.metric.accuracy(input=predictions, label=label, k=1)
802
            # 0.5
S
Steffy-zxf 已提交
803
    """
804 805
    if label.dtype == paddle.int32:
        label = paddle.cast(label, paddle.int64)
806
    if in_dynamic_mode():
S
Steffy-zxf 已提交
807
        if correct is None:
808
            correct = _create_tensor(dtype="int32")
S
Steffy-zxf 已提交
809
        if total is None:
810
            total = _create_tensor(dtype="int32")
S
Steffy-zxf 已提交
811

812
        topk_out, topk_indices = paddle.topk(input, k=k)
813 814 815
        _acc, _, _ = _legacy_C_ops.accuracy(
            topk_out, topk_indices, label, correct, total
        )
H
hong 已提交
816

S
Steffy-zxf 已提交
817 818 819
        return _acc

    helper = LayerHelper("accuracy", **locals())
820
    check_variable_and_dtype(
821
        input, 'input', ['float16', 'uint16', 'float32', 'float64'], 'accuracy'
822
    )
823
    topk_out, topk_indices = paddle.topk(input, k=k)
S
Steffy-zxf 已提交
824 825 826 827 828
    acc_out = helper.create_variable_for_type_inference(dtype="float32")
    if correct is None:
        correct = helper.create_variable_for_type_inference(dtype="int32")
    if total is None:
        total = helper.create_variable_for_type_inference(dtype="int32")
829 830 831 832 833 834 835 836 837
    helper.append_op(
        type="accuracy",
        inputs={"Out": [topk_out], "Indices": [topk_indices], "Label": [label]},
        outputs={
            "Accuracy": [acc_out],
            "Correct": [correct],
            "Total": [total],
        },
    )
S
Steffy-zxf 已提交
838
    return acc_out