uniform_random_op.cc 11.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Y
Yu Yang 已提交
2

L
Luo Tao 已提交
3 4 5 6 7 8 9 10 11 12 13
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14 15
#include "paddle/fluid/operators/uniform_random_op.h"
#include <string>
Y
Yi Wang 已提交
16 17
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
Y
Yu Yang 已提交
18 19
namespace paddle {
namespace operators {
Y
Yu Yang 已提交
20

Q
qijun 已提交
21 22 23 24
// It seems that Eigen::Tensor::random in GPU will SEGFAULT.
// Use std::random and thrust::random(thrust is a std library in CUDA) to
// implement uniform random.
template <typename T>
Y
Yu Yang 已提交
25
class CPUUniformRandomKernel : public framework::OpKernel<T> {
Q
qijun 已提交
26
 public:
C
chengduo 已提交
27 28
  void Compute(const framework::ExecutionContext &ctx) const override {
    framework::Tensor *tensor = nullptr;
Y
Yancey1989 已提交
29
    auto out_var = ctx.OutputVar("Out");
30 31 32 33 34 35
    std::vector<int64_t> new_shape;
    auto list_new_shape_tensor =
        ctx.MultiInput<framework::Tensor>("ShapeTensorList");
    if (list_new_shape_tensor.size() > 0 || ctx.HasInput("ShapeTensor")) {
      if (ctx.HasInput("ShapeTensor")) {
        auto *shape_tensor = ctx.Input<framework::Tensor>("ShapeTensor");
36
        new_shape = GetNewDataFromShapeTensor(shape_tensor);
37
      } else if (list_new_shape_tensor.size() > 0) {
38
        new_shape = GetNewDataFromShapeTensorList(list_new_shape_tensor);
39 40 41 42
      }
    }

    if (out_var->IsType<framework::SelectedRows>()) {
C
chengduo 已提交
43
      auto *selected_rows = out_var->GetMutable<framework::SelectedRows>();
44
      tensor = selected_rows->mutable_value();
45 46
      auto shape = ctx.Attr<std::vector<int64_t>>("shape");
      if (!new_shape.empty()) shape = new_shape;
Y
Yancey1989 已提交
47
      tensor->Resize(framework::make_ddim(shape));
48
      selected_rows->mutable_rows()->reserve(shape[0]);
49 50 51
    } else if (out_var->IsType<framework::LoDTensor>()) {
      tensor = out_var->GetMutable<framework::LoDTensor>();
      if (!new_shape.empty()) tensor->Resize(framework::make_ddim(new_shape));
Y
Yancey1989 已提交
52
    } else {
Y
Yancey1989 已提交
53 54
      PADDLE_THROW(
          "uniform_random_op's output only"
T
tangwei12 已提交
55
          "supports SelectedRows and LoDTensor");
Y
Yancey1989 已提交
56
    }
C
chengduo 已提交
57
    T *data = tensor->mutable_data<T>(ctx.GetPlace());
Q
Qiao Longfei 已提交
58
    unsigned int seed = static_cast<unsigned int>(ctx.Attr<int>("seed"));
Q
qijun 已提交
59 60 61 62 63 64
    std::minstd_rand engine;
    if (seed == 0) {
      seed = std::random_device()();
    }
    engine.seed(seed);
    std::uniform_real_distribution<T> dist(
Q
Qiao Longfei 已提交
65 66
        static_cast<T>(ctx.Attr<float>("min")),
        static_cast<T>(ctx.Attr<float>("max")));
67
    int64_t size = tensor->numel();
Q
qijun 已提交
68
    for (int64_t i = 0; i < size; ++i) {
Q
qijun 已提交
69 70
      data[i] = dist(engine);
    }
71 72 73 74 75 76
    unsigned int diag_num =
        static_cast<unsigned int>(ctx.Attr<int>("diag_num"));
    unsigned int diag_step =
        static_cast<unsigned int>(ctx.Attr<int>("diag_step"));
    auto diag_val = static_cast<T>(ctx.Attr<float>("diag_val"));
    if (diag_num > 0) {
77 78 79 80 81 82 83
      PADDLE_ENFORCE_GT(
          size, (diag_num - 1) * (diag_step + 1),
          platform::errors::InvalidArgument(
              "ShapeInvalid: the diagonal's elements is equal (num-1) "
              "* (step-1) with num %d, step %d,"
              "It should be smaller than %d, but received %d",
              diag_num, diag_step, (diag_num - 1) * (diag_step + 1), size));
84 85 86 87 88
      for (int64_t i = 0; i < diag_num; ++i) {
        int64_t pos = i * diag_step + i;
        data[pos] = diag_val;
      }
    }
Q
qijun 已提交
89 90 91
  }
};

Y
Yu Yang 已提交
92
class UniformRandomOp : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
93 94 95
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

C
chengduo 已提交
96
  void InferShape(framework::InferShapeContext *ctx) const override {
97 98 99 100 101 102 103 104
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "UniformRandomOp");

    PADDLE_ENFORCE_LT(
        ctx->Attrs().Get<float>("min"), ctx->Attrs().Get<float>("max"),
        platform::errors::InvalidArgument(
            "The uniform_random's min must less then max. But received min = "
            "%f great than or equal max = %f.",
            ctx->Attrs().Get<float>("min"), ctx->Attrs().Get<float>("max")));
105
    PADDLE_ENFORCE_GE(ctx->Attrs().Get<int>("diag_num"), 0,
106
                      platform::errors::InvalidArgument(
107 108 109
                          "The uniform_random's diag_num must greater than or "
                          "equal 0. But recevied diag_num (%d) < 0.",
                          ctx->Attrs().Get<int>("diag_num")));
110
    PADDLE_ENFORCE_GE(ctx->Attrs().Get<int>("diag_step"), 0,
111
                      platform::errors::InvalidArgument(
112 113 114
                          "The uniform_random's diag_step must greater than or "
                          "equal 0. But recevied diag_step (%d) < 0.",
                          ctx->Attrs().Get<int>("diag_step")));
115 116 117 118 119 120

    if (ctx->HasInputs("ShapeTensorList")) {
      // top prority shape
      auto inputs_name = ctx->Inputs("ShapeTensorList");
      PADDLE_ENFORCE_GT(
          inputs_name.size(), 0,
121 122 123 124
          platform::errors::InvalidArgument(
              "Input(ShapeTensorList)'size of Op(uniform_random) can't be zero."
              "Please check the Attr(shape)'s size of"
              "Op(fluid.layers.uniform_random).)"));
125 126 127 128 129 130 131 132 133 134
      auto out_dims = std::vector<int>(inputs_name.size(), -1);
      ctx->SetOutputDim("Out", framework::make_ddim(out_dims));

      return;
    }
    auto &shape = ctx->Attrs().Get<std::vector<int64_t>>("shape");
    if (ctx->HasInput("ShapeTensor") && shape.empty()) {
      auto shape_dims = ctx->GetInputDim("ShapeTensor");
      PADDLE_ENFORCE_EQ(
          shape_dims.size(), 1,
135 136 137 138 139
          platform::errors::InvalidArgument(
              "ShapeError: Input(ShapeTensor)' dimension size of "
              "Op(uniform_random) must be 1."
              "But received ShapeTensor's dimensions = %d, shape = [%s]",
              shape_dims.size(), shape_dims));
140 141 142 143 144 145 146 147 148 149
      int num_ele = 1;
      for (int i = 0; i < shape_dims.size(); ++i) {
        num_ele *= shape_dims[i];
      }
      auto vec_dims = std::vector<int64_t>(num_ele, -1);
      auto out_dims = framework::make_ddim(vec_dims);
      ctx->SetOutputDim("Out", out_dims);
      return;
    }

150 151 152 153 154 155
    PADDLE_ENFORCE_EQ(shape.empty(), false,
                      platform::errors::InvalidArgument(
                          "if there is no Input(ShapeTensorList) and no "
                          "Input(ShapeTensor),the "
                          "attr(shape) information must "
                          "be set by Attr(shape)."));
156 157
    std::vector<int64_t> tensor_shape;
    tensor_shape.reserve(shape.size());
Q
QI JUN 已提交
158
    for (auto dim : shape) {
159
      tensor_shape.push_back(static_cast<int64_t>(dim));
Q
qijun 已提交
160
    }
161
    ctx->SetOutputDim("Out", framework::make_ddim(tensor_shape));
Y
Yu Yang 已提交
162
  }
Y
Yu Yang 已提交
163

164
 protected:
165
  framework::OpKernelType GetExpectedKernelType(
C
chengduo 已提交
166
      const framework::ExecutionContext &ctx) const override {
Y
Yu Yang 已提交
167
    return framework::OpKernelType(
168
        static_cast<framework::proto::VarType::Type>(ctx.Attr<int>("dtype")),
Q
QI JUN 已提交
169
        ctx.GetPlace());
Y
Yu Yang 已提交
170
  }
171 172 173 174 175 176 177 178 179 180

  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const override {
    if (var_name == "ShapeTensorList" || var_name == "ShapeTensor") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
  }
Y
Yu Yang 已提交
181 182
};

Y
Yu Yang 已提交
183
class UniformRandomOpMaker : public framework::OpProtoAndCheckerMaker {
Y
Yu Yang 已提交
184
 public:
Y
Yu Yang 已提交
185
  void Make() override {
186
    AddInput("ShapeTensor",
187 188
             "(Tensor<int64_t> or Tensor<int32_t>, optional) . If provided, "
             "uniform_random "
189
             "according to "
190
             "this given shape. It means that it has a higher priority than "
191
             "the shape attribute, while the shape attribute still should be "
T
tianshuo78520a 已提交
192
             "set correctly to guarantee shape inference in compile time.")
193 194
        .AsDispensable();
    AddInput("ShapeTensorList",
195 196 197 198
             "(vector<Tensor<int64_t>> or vector<Tensor<int32_t>>, optional). "
             "If provided, uniform_random use this. The shape of the tensor "
             "must be [1], it has the highest priority comparing with "
             "Input(ShapeTensor) and attr(shape).")
199 200
        .AsDuplicable()
        .AsDispensable();
Y
yuyang18 已提交
201
    AddOutput("Out", "The output tensor of uniform random op");
202
    AddComment(R"DOC(
203
This operator initializes a tensor with random values sampled from a
204
uniform distribution. The random result is in set [min, max).
205

Y
Yu Yang 已提交
206
)DOC");
207 208
    AddAttr<std::vector<int64_t>>("shape", "The shape of the output tensor")
        .SetDefault({});
Y
yuyang18 已提交
209
    AddAttr<float>("min", "Minimum value of uniform random. [default -1.0].")
210
        .SetDefault(-1.0f);
Y
yuyang18 已提交
211
    AddAttr<float>("max", "Maximun value of uniform random. [default 1.0].")
212
        .SetDefault(1.0f);
Q
qijun 已提交
213
    AddAttr<int>("seed",
214
                 "Random seed used for generating samples. "
215 216
                 "0 means use a seed generated by the system."
                 "Note that if seed is not 0, this operator will always "
Y
yuyang18 已提交
217
                 "generate the same random numbers every time. [default 0].")
Q
qijun 已提交
218
        .SetDefault(0);
219 220 221 222 223 224 225 226
    AddAttr<int>("diag_num",
                 "The number of diag elements. Note that if "
                 "diag_num is 0, it means without diag init.[default 0].")
        .SetDefault(0);
    AddAttr<int>("diag_step", "The step between two diag element.[default 0].")
        .SetDefault(0);
    AddAttr<float>("diag_val", "The value of diag element. [default 1.0].")
        .SetDefault(1.0f);
Y
yuyang18 已提交
227
    AddAttr<int>("dtype", "Output tensor data type. [default 5(FP32)].")
228
        .SetDefault(framework::proto::VarType::FP32);
Y
Yu Yang 已提交
229 230
  }
};
Y
Yancey1989 已提交
231 232 233

class UniformRandomOpVarTypeInference : public framework::VarTypeInference {
 public:
M
minqiyang 已提交
234 235
  void operator()(framework::InferVarTypeContext *ctx) const override {
    auto out_var_name = ctx->Output("Out").front();
C
chengduo 已提交
236
    auto var_data_type = static_cast<framework::proto::VarType::Type>(
M
minqiyang 已提交
237
        boost::get<int>(ctx->GetAttr("dtype")));
C
chengduo 已提交
238

M
minqiyang 已提交
239 240 241
    if (ctx->GetType(out_var_name) !=
        framework::proto::VarType::SELECTED_ROWS) {
      ctx->SetType(out_var_name, framework::proto::VarType::LOD_TENSOR);
Y
Yancey1989 已提交
242
    }
M
minqiyang 已提交
243
    ctx->SetDataType(out_var_name, var_data_type);
Y
Yancey1989 已提交
244 245 246
  }
};

Y
Yu Yang 已提交
247 248 249
}  // namespace operators
}  // namespace paddle

H
hong 已提交
250 251 252 253 254 255
REGISTER_OPERATOR(
    uniform_random, paddle::operators::UniformRandomOp,
    paddle::operators::UniformRandomOpMaker,
    paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
    paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>,
    paddle::operators::UniformRandomOpVarTypeInference);
Y
Yancey1989 已提交
256

Q
qijun 已提交
257
REGISTER_OP_CPU_KERNEL(uniform_random,
258 259
                       paddle::operators::CPUUniformRandomKernel<float>,
                       paddle::operators::CPUUniformRandomKernel<double>);
260 261 262
REGISTER_OP_CPU_KERNEL(uniform_random_batch_size_like,
                       paddle::operators::CPUUniformRandomKernel<float>,
                       paddle::operators::CPUUniformRandomKernel<double>);