Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
03d7f3dd
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
03d7f3dd
编写于
10月 29, 2019
作者:
S
silingtong123
提交者:
liuwei1031
10月 29, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Make shape tensor support int32 (#20757)
* Make shape tensor support int32
上级
95ba4bd2
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
143 addition
and
26 deletion
+143
-26
paddle/fluid/operators/uniform_random_op.cc
paddle/fluid/operators/uniform_random_op.cc
+7
-7
paddle/fluid/operators/uniform_random_op.h
paddle/fluid/operators/uniform_random_op.h
+44
-13
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+9
-4
python/paddle/fluid/tests/unittests/test_uniform_random_op.py
...on/paddle/fluid/tests/unittests/test_uniform_random_op.py
+83
-2
未找到文件。
paddle/fluid/operators/uniform_random_op.cc
浏览文件 @
03d7f3dd
...
...
@@ -172,24 +172,24 @@ class UniformRandomOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void
Make
()
override
{
AddInput
(
"ShapeTensor"
,
"(Tensor<int64_t>, optional). If provided, uniform_ranodom "
"(Tensor<int64_t> or Tensor<int32_t>, optional) . If provided, "
"uniform_random "
"according to "
"this given shape. It means that it has a higher priority than "
"the shape attribute, while the shape attribute still should be "
"set correctly to gurantee shape inference in compile time."
)
.
AsDispensable
();
AddInput
(
"ShapeTensorList"
,
"(vector<Tensor<int64_t>>, optional). If provided, uniform_random "
"use this."
"The shape of the tensor in vector MUST BE [1],"
"it has the highest priority compare with Input(Shape) and "
"attr(shape)."
)
"(vector<Tensor<int64_t>> or vector<Tensor<int32_t>>, optional). "
"If provided, uniform_random use this. The shape of the tensor "
"must be [1], it has the highest priority comparing with "
"Input(ShapeTensor) and attr(shape)."
)
.
AsDuplicable
()
.
AsDispensable
();
AddOutput
(
"Out"
,
"The output tensor of uniform random op"
);
AddComment
(
R"DOC(
This operator initializes a tensor with random values sampled from a
uniform distribution. The random result is in set [min, max
]
.
uniform distribution. The random result is in set [min, max
)
.
)DOC"
);
AddAttr
<
std
::
vector
<
int64_t
>>
(
"shape"
,
"The shape of the output tensor"
)
...
...
paddle/fluid/operators/uniform_random_op.h
浏览文件 @
03d7f3dd
...
...
@@ -24,15 +24,33 @@ using Tensor = framework::Tensor;
inline
std
::
vector
<
int64_t
>
GetNewDataFromShapeTensor
(
const
Tensor
*
new_data_tensor
)
{
auto
*
new_data
=
new_data_tensor
->
data
<
int64_t
>
();
if
(
platform
::
is_gpu_place
(
new_data_tensor
->
place
()))
{
framework
::
Tensor
cpu_starts_tensor
;
TensorCopySync
(
*
new_data_tensor
,
platform
::
CPUPlace
(),
&
cpu_starts_tensor
);
new_data
=
cpu_starts_tensor
.
data
<
int64_t
>
();
if
(
new_data_tensor
->
type
()
==
framework
::
proto
::
VarType
::
INT64
)
{
auto
*
new_data
=
new_data_tensor
->
data
<
int64_t
>
();
if
(
platform
::
is_gpu_place
(
new_data_tensor
->
place
()))
{
framework
::
Tensor
cpu_starts_tensor
;
TensorCopySync
(
*
new_data_tensor
,
platform
::
CPUPlace
(),
&
cpu_starts_tensor
);
new_data
=
cpu_starts_tensor
.
data
<
int64_t
>
();
}
std
::
vector
<
int64_t
>
vec_new_data
(
new_data
,
new_data
+
new_data_tensor
->
numel
());
return
vec_new_data
;
}
else
if
(
new_data_tensor
->
type
()
==
framework
::
proto
::
VarType
::
INT32
)
{
auto
*
new_data
=
new_data_tensor
->
data
<
int32_t
>
();
std
::
vector
<
int64_t
>
vec_new_data
;
if
(
platform
::
is_gpu_place
(
new_data_tensor
->
place
()))
{
framework
::
Tensor
cpu_starts_tensor
;
TensorCopySync
(
*
new_data_tensor
,
platform
::
CPUPlace
(),
&
cpu_starts_tensor
);
new_data
=
cpu_starts_tensor
.
data
<
int32_t
>
();
}
for
(
size_t
i
=
0
;
i
<
new_data_tensor
->
numel
();
++
i
)
{
vec_new_data
.
push_back
(
static_cast
<
int64_t
>
(
*
(
new_data
+
i
)));
}
return
vec_new_data
;
}
else
{
PADDLE_THROW
(
"The dtype of shape tensor must be int32 or int64."
);
}
std
::
vector
<
int64_t
>
vec_new_data
(
new_data
,
new_data
+
new_data_tensor
->
numel
());
return
vec_new_data
;
}
inline
std
::
vector
<
int64_t
>
GetNewDataFromShapeTensorList
(
...
...
@@ -43,12 +61,25 @@ inline std::vector<int64_t> GetNewDataFromShapeTensorList(
auto
tensor
=
list_new_shape_tensor
[
i
];
PADDLE_ENFORCE_EQ
(
tensor
->
dims
(),
framework
::
make_ddim
({
1
}),
"shape of dim tensor should be [1]"
);
if
(
platform
::
is_gpu_place
(
tensor
->
place
()))
{
framework
::
Tensor
temp
;
TensorCopySync
(
*
tensor
,
platform
::
CPUPlace
(),
&
temp
);
vec_new_shape
.
push_back
(
*
temp
.
data
<
int64_t
>
());
if
(
tensor
->
type
()
==
framework
::
proto
::
VarType
::
INT32
)
{
if
(
platform
::
is_gpu_place
(
tensor
->
place
()))
{
framework
::
Tensor
temp
;
TensorCopySync
(
*
tensor
,
platform
::
CPUPlace
(),
&
temp
);
vec_new_shape
.
push_back
(
static_cast
<
int64_t
>
(
*
temp
.
data
<
int32_t
>
()));
}
else
{
vec_new_shape
.
push_back
(
static_cast
<
int64_t
>
(
*
tensor
->
data
<
int32_t
>
()));
}
}
else
if
(
tensor
->
type
()
==
framework
::
proto
::
VarType
::
INT64
)
{
if
(
platform
::
is_gpu_place
(
tensor
->
place
()))
{
framework
::
Tensor
temp
;
TensorCopySync
(
*
tensor
,
platform
::
CPUPlace
(),
&
temp
);
vec_new_shape
.
push_back
(
*
temp
.
data
<
int64_t
>
());
}
else
{
vec_new_shape
.
push_back
(
*
tensor
->
data
<
int64_t
>
());
}
}
else
{
vec_new_shape
.
push_back
(
*
tensor
->
data
<
int64_t
>
()
);
PADDLE_THROW
(
"The dtype of shape tensor must be int32 or int64."
);
}
}
...
...
python/paddle/fluid/layers/nn.py
浏览文件 @
03d7f3dd
...
...
@@ -17623,8 +17623,8 @@ def uniform_random(shape, dtype='float32', min=-1.0, max=1.0, seed=0):
Args:
shape (list|tuple|Variable): The shape of the output Tensor, if the shape is a list or tuple,
its elements can be an integer
or a Tensor with the shape [1], and the type of the Tensor
is
int64.
If the shape is a Variable, it is a 1-D Tensor, and the type of the Tensor
is
int64.
or a Tensor with the shape [1], and the type of the Tensor
must be int32 or
int64.
If the shape is a Variable, it is a 1-D Tensor, and the type of the Tensor
must be int32 or
int64.
dtype(np.dtype|core.VarDesc.VarType|str, optional): The type of the output Tensor. Supported data types: float32, float64.
Default: float32.
min (float, optional): The lower bound on the range of random values to generate, the min is included in the range. Default -1.0.
...
...
@@ -17652,12 +17652,17 @@ def uniform_random(shape, dtype='float32', min=-1.0, max=1.0, seed=0):
# example 2:
# attr shape is a list which contains tensor Variable.
dim_1 = fluid.layers.fill_constant([1],"int64",3)
result_2 = fluid.layers.uniform_random(shape=[dim_1, 5])
dim_2 = fluid.layers.fill_constant([1],"int32",5)
result_2 = fluid.layers.uniform_random(shape=[dim_1, dim_2])
# example 3:
# attr shape is a Variable, the data type must be int64
# attr shape is a Variable, the data type must be int64
or int32.
var_shape = fluid.data(name='var_shape', shape=[2], dtype="int64")
result_3 = fluid.layers.uniform_random(var_shape)
var_shape_int32 = fluid.data(name='var_shape_int32', shape=[2], dtype="int32")
result_4 = fluid.layers.uniform_random(var_shape_int32)
"""
if not (isinstance(shape, (list, tuple, Variable))):
...
...
python/paddle/fluid/tests/unittests/test_uniform_random_op.py
浏览文件 @
03d7f3dd
...
...
@@ -70,6 +70,32 @@ class TestUniformRandomOp_attr_tensorlist(OpTest):
hist
,
prob
,
rtol
=
0
,
atol
=
0.01
),
"hist: "
+
str
(
hist
))
class
TestUniformRandomOp_attr_tensorlist_int32
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"uniform_random"
self
.
new_shape
=
(
1000
,
784
)
shape_tensor
=
[]
for
index
,
ele
in
enumerate
(
self
.
new_shape
):
shape_tensor
.
append
((
"x"
+
str
(
index
),
np
.
ones
(
(
1
)).
astype
(
"int32"
)
*
ele
))
self
.
inputs
=
{
'ShapeTensorList'
:
shape_tensor
}
self
.
init_attrs
()
self
.
outputs
=
{
"Out"
:
np
.
zeros
((
1000
,
784
)).
astype
(
"float32"
)}
def
init_attrs
(
self
):
self
.
attrs
=
{
"min"
:
-
5.0
,
"max"
:
10.0
,
"seed"
:
10
}
self
.
output_hist
=
output_hist
def
test_check_output
(
self
):
self
.
check_output_customized
(
self
.
verify_output
)
def
verify_output
(
self
,
outs
):
hist
,
prob
=
self
.
output_hist
(
np
.
array
(
outs
[
0
]))
self
.
assertTrue
(
np
.
allclose
(
hist
,
prob
,
rtol
=
0
,
atol
=
0.01
),
"hist: "
+
str
(
hist
))
class
TestUniformRandomOp_attr_tensor
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"uniform_random"
...
...
@@ -91,6 +117,27 @@ class TestUniformRandomOp_attr_tensor(OpTest):
hist
,
prob
,
rtol
=
0
,
atol
=
0.01
),
"hist: "
+
str
(
hist
))
class
TestUniformRandomOp_attr_tensor_int32
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"uniform_random"
self
.
inputs
=
{
"ShapeTensor"
:
np
.
array
([
1000
,
784
]).
astype
(
"int32"
)}
self
.
init_attrs
()
self
.
outputs
=
{
"Out"
:
np
.
zeros
((
1000
,
784
)).
astype
(
"float32"
)}
def
init_attrs
(
self
):
self
.
attrs
=
{
"min"
:
-
5.0
,
"max"
:
10.0
,
"seed"
:
10
}
self
.
output_hist
=
output_hist
def
test_check_output
(
self
):
self
.
check_output_customized
(
self
.
verify_output
)
def
verify_output
(
self
,
outs
):
hist
,
prob
=
self
.
output_hist
(
np
.
array
(
outs
[
0
]))
self
.
assertTrue
(
np
.
allclose
(
hist
,
prob
,
rtol
=
0
,
atol
=
0.01
),
"hist: "
+
str
(
hist
))
class
TestUniformRandomOp
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"uniform_random"
...
...
@@ -235,13 +282,47 @@ class TestUniformRandomOp_attr_tensor_API(unittest.TestCase):
dim_tensor
=
fluid
.
layers
.
fill_constant
([
1
],
"int64"
,
3
)
ret
=
fluid
.
layers
.
nn
.
uniform_random
([
1
,
dim_tensor
,
2
])
use_cuda
=
False
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
place
=
fluid
.
CPUPlace
()
if
fluid
.
core
.
is_compiled_with_cuda
():
place
=
fluid
.
CUDAPlace
(
0
)
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
startup_program
)
outs
=
exe
.
run
(
train_program
,
fetch_list
=
[
ret
])
def
test_attr_tensorlist_int32_API
(
self
):
startup_program
=
fluid
.
Program
()
train_program
=
fluid
.
Program
()
with
fluid
.
program_guard
(
train_program
,
startup_program
):
dim_1
=
fluid
.
layers
.
fill_constant
([
1
],
"int64"
,
3
)
dim_2
=
fluid
.
layers
.
fill_constant
([
1
],
"int32"
,
2
)
ret
=
fluid
.
layers
.
nn
.
uniform_random
([
1
,
dim_1
,
dim_2
])
place
=
fluid
.
CPUPlace
()
if
fluid
.
core
.
is_compiled_with_cuda
():
place
=
fluid
.
CUDAPlace
(
0
)
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
startup_program
)
outs
=
exe
.
run
(
train_program
,
fetch_list
=
[
ret
])
def
test_attr_tensor_int32_API
(
self
):
startup_program
=
fluid
.
Program
()
train_program
=
fluid
.
Program
()
with
fluid
.
program_guard
(
train_program
,
startup_program
):
shape
=
fluid
.
data
(
name
=
'shape_tensor'
,
shape
=
[
2
],
dtype
=
"int32"
)
ret
=
fluid
.
layers
.
nn
.
uniform_random
(
shape
)
place
=
fluid
.
CPUPlace
()
if
fluid
.
core
.
is_compiled_with_cuda
():
place
=
fluid
.
CUDAPlace
(
0
)
exe
=
fluid
.
Executor
(
place
)
Shape
=
np
.
array
([
2
,
3
]).
astype
(
'int32'
)
exe
.
run
(
startup_program
)
outs
=
exe
.
run
(
train_program
,
feed
=
{
'shape_tensor'
:
Shape
},
fetch_list
=
[
ret
])
class
TestUniformRandomOp_API_seed
(
unittest
.
TestCase
):
def
test_attr_tensor_API
(
self
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录