提交 7132bbe6 编写于 作者: Y Yancey1989

update by comment

上级 1aada352
......@@ -24,7 +24,17 @@ template <typename T>
class CPUUniformRandomKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* tensor = ctx.Output<framework::Tensor>("Out");
framework::Tensor* tensor(nullptr);
auto out_var = ctx.OutputVar("Out");
if (out_var->IsType<framework::LoDTensor>()) {
tensor = out_var->GetMutable<framework::LoDTensor>();
} else if (out_var->IsType<framework::SelectedRows>()) {
auto shape = ctx.Attr<std::vector<int>>("shape");
tensor = out_var->GetMutable<framework::SelectedRows>()->mutable_value();
tensor->Resize(framework::make_ddim(shape));
} else {
PADDLE_THROW("Only support SelectedRows and Tensor");
}
T* data = tensor->mutable_data<T>(ctx.GetPlace());
unsigned int seed = static_cast<unsigned int>(ctx.Attr<int>("seed"));
std::minstd_rand engine;
......
......@@ -43,7 +43,17 @@ template <typename T>
class GPUUniformRandomKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
auto* tensor = context.Output<framework::Tensor>("Out");
framework::Tensor* tensor(nullptr);
auto out_var = ctx.OutputVar("Out");
if (out_var->IsType<framework::LoDTensor>()) {
tensor = out_var->GetMutable<framework::LoDTensor>();
} else if (out_var->IsType<framework::SelectedRows>()) {
auto shape = ctx.Attr<std::vector<int>>("shape");
tensor = out_var->GetMutable<framework::SelectedRows>()->mutable_value();
tensor->Resize(framework::make_ddim(shape));
} else {
PADDLE_THROW("Only support SelectedRows and Tensor");
}
T* data = tensor->mutable_data<T>(context.GetPlace());
unsigned int seed = static_cast<unsigned int>(context.Attr<int>("seed"));
if (seed == 0) {
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/platform/device_context.h"
namespace paddle {
namespace operators {
class UniformRandomTableInferShape : public framework::InferShapeBase {
public:
void operator()(framework::InferShapeContext *ctx) const override {
VLOG(3) << "Infershape...";
PADDLE_ENFORCE(ctx->HasOutput("Out"),
"Output(Out) of UniformRandomTableOp should not be null.");
PADDLE_ENFORCE(
ctx->Attrs().Get<float>("min") < ctx->Attrs().Get<float>("max"),
"uniform_random's min must less then max");
auto &shape = ctx->Attrs().Get<std::vector<int>>("shape");
std::vector<int64_t> temp;
temp.reserve(shape.size());
for (auto dim : shape) {
temp.push_back(static_cast<int64_t>(dim));
}
ctx->SetOutputDim("Out", framework::make_ddim(temp));
}
};
class UniformRandomTableOp : public framework::OperatorBase {
public:
using framework::OperatorBase::OperatorBase;
private:
void RunImpl(const framework::Scope &scope,
const platform::Place &dev_place) const override {
VLOG(3) << "RunImpl...";
auto out =
scope.FindVar(Output("Out"))->GetMutable<framework::SelectedRows>();
auto shard_cnt = Attr<int>("shard_cnt");
auto shard_id = Attr<int>("shard_id");
auto max_id = Attr<int>("max_id");
auto shape = Attr<std::vector<int>>("shape");
auto tensor = out->mutable_value();
tensor->Resize(framework::make_ddim(shape));
// Only allocate the memory of large table on CPU
auto cpu = platform::CPUPlace();
float *data = tensor->mutable_data<float>(cpu);
VLOG(3) << "generate seed";
unsigned int seed = static_cast<unsigned int>(Attr<int>("seed"));
std::minstd_rand engine;
if (seed == 0) {
seed = std::random_device()();
}
engine.seed(seed);
std::uniform_real_distribution<float> dist(Attr<float>("min"),
Attr<float>("max"));
int64_t size = tensor->numel();
for (int64_t i = 0; i < size; ++i) {
data[i] = dist(engine);
}
// initialize rows by round-robin
// TODO(Yancey1989): need to support other way to distribute Ids
VLOG(3) << "calculate rows_size...";
int64_t rows_size = 0;
if (max_id % shard_cnt == 0) {
rows_size = max_id / shard_cnt;
} else {
rows_size = max_id / shard_cnt + 1;
}
auto *rows = out->mutable_rows();
rows->resize(rows_size);
(*rows)[0] = shard_id;
for (int64_t idx = 1; idx < rows_size; ++idx) {
(*rows)[idx] = (*rows)[idx - 1] + shard_cnt;
}
out->set_height(max_id);
}
};
class UniformRandomTableOpMaker : public framework::OpProtoAndCheckerMaker {
public:
UniformRandomTableOpMaker(OpProto *proto, OpAttrChecker *op_checker)
: framework::OpProtoAndCheckerMaker(proto, op_checker) {
AddOutput("Out",
"(SelectedRows)"
"The output table of uniform random table op.");
AddComment(R"DOC(
Uniform random operator for initializing a table.
This operator initializes a SelectedRows with random values sampled from a
uniform distribution.
)DOC");
AddAttr<int>("max_id",
"(int, required)"
"The maximal Id for the table.");
AddAttr<int>("shard_cnt",
"(int, required)"
"The count of shards for distributing the table.");
AddAttr<int>("shard_id", "(int, required) The current shard ID.");
AddAttr<std::vector<int>>("shape",
"(vector<int>) The shape of the output tensor");
AddAttr<float>("min",
"(float, default -1.0) "
"Minimum value of uniform random")
.SetDefault(-1.0f);
AddAttr<float>("max",
"(float, default 1.0) "
"Maximun value of uniform random")
.SetDefault(1.0f);
AddAttr<int>("seed",
"(int, default 0) "
"Random seed used for generating samples. "
"0 means use a seed generated by the system."
"Note that if seed is not 0, this operator will always "
"generate the same random numbers every time.")
.SetDefault(0);
AddAttr<int>("dtype", "(int, default 5(FP32)) Output tensor data type")
.SetDefault(framework::proto::VarType::FP32);
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OPERATOR(uniform_random_table, ops::UniformRandomTableOp,
ops::UniformRandomTableInferShape,
ops::UniformRandomTableOpMaker,
paddle::framework::EmptyGradOpMaker);
......@@ -15,6 +15,16 @@
import unittest
import numpy as np
from op_test import OpTest
import paddle.fluid.core as core
from paddle.fluid.op import Operator
def output_hist(out):
hist, _ = np.histogram(out, range=(-5, 10))
hist = hist.astype("float32")
hist /= float(out.size)
prob = 0.1 * np.ones((10))
return hist, prob
class TestUniformRandomOp(OpTest):
......@@ -33,11 +43,37 @@ class TestUniformRandomOp(OpTest):
self.check_output_customized(self.verify_output)
def verify_output(self, outs):
tensor = outs[0]
hist, _ = np.histogram(outs[0], range=(-5, 10))
hist = hist.astype("float32")
hist /= float(outs[0].size)
prob = 0.1 * np.ones((10))
hist, prob = output_hist(np.array(outs[0]))
self.assertTrue(
np.allclose(
hist, prob, rtol=0, atol=0.01), "hist: " + str(hist))
class TestUniformRandomOpSelectedRows(unittest.TestCase):
def get_places(self):
places = [core.CPUPlace()]
if core.is_compiled_with_cuda():
places.append(core.CUDAPlace(0))
return places
def test_check_output(self):
for place in self.get_places():
self.check_with_place(place)
def check_with_place(self, place):
scope = core.Scope()
out = scope.var("X").get_selected_rows()
op = Operator(
"uniform_random",
Out="X",
shape=[4, 784],
min=-5.0,
max=10.0,
seed=10)
op.run(scope, place)
self.assertEqual(out.get_tensor().shape(), [4, 784])
hist, prob = output_hist(np.array(out.get_tensor()))
self.assertTrue(
np.allclose(
hist, prob, rtol=0, atol=0.01), "hist: " + str(hist))
......
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
from op_test import OpTest
import paddle.fluid.core as core
from paddle.fluid.op import Operator
def output_hist(out):
hist, _ = np.histogram(out, range=(-5, 10))
hist = hist.astype("float32")
hist /= float(out.size)
prob = 0.1 * np.ones((10))
return hist, prob
class TestUniformRandomTableOp(unittest.TestCase):
def get_places(self):
places = [core.CPUPlace()]
if core.is_compiled_with_cuda():
places.append(core.CUDAPlace(0))
return places
def test_check_output(self):
for place in self.get_places():
self.check_with_place(place)
def check_with_place(self, place):
scope = core.Scope()
out = scope.var("X").get_selected_rows()
op = Operator(
"uniform_random_table",
Out="X",
shape=[4, 784],
min=-5.0,
max=10.0,
seed=10,
shard_cnt=3,
shard_id=1,
max_id=10)
op.run(scope, place)
self.assertEqual(out.rows(), [1, 4, 7, 10])
self.assertEqual(out.height(), 10)
self.assertEqual(out.get_tensor().shape(), [4, 784])
hist, prob = output_hist(np.array(out.get_tensor()))
self.assertTrue(
np.allclose(
hist, prob, rtol=0, atol=0.01), "hist: " + str(hist))
if __name__ == "__main__":
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册