utils.py 17.2 KB
Newer Older
C
chengduoZH 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

G
Guo Sheng 已提交
15
import collections
16
import copy
C
chengduoZH 已提交
17
import numpy as np
J
Jiabin Yang 已提交
18
from ..framework import Block, Variable, _non_static_mode
19 20 21 22 23 24
from ..data_feeder import (
    convert_dtype,
    check_variable_and_dtype,
    check_type,
    check_dtype,
)
W
wangchaochaohu 已提交
25
from ..layer_helper import LayerHelper
26
from sys import version_info
27

28 29 30 31
try:
    from collections.abc import Sequence
except:
    from collections import Sequence
C
chengduoZH 已提交
32 33


34
def convert_to_list(value, n, name, dtype=int):
C
chengduoZH 已提交
35 36 37
    """
    Converts a single numerical type or iterable of numerical
    types into an numerical type list.
C
chengduoZH 已提交
38 39 40 41 42 43 44

    Arguments:
      value: The value to validate and convert. Could an int, or any iterable
        of ints.
      n: The size of the list to be returned.
      name: The name of the argument being validated, e.g. "stride" or
        "filter_size". This is only used to format error messages.
C
chengduoZH 已提交
45
      dtype: the numerical type of the element of the list to be returned.
C
chengduoZH 已提交
46 47

    Returns:
C
chengduoZH 已提交
48
      A list of n dtypes.
C
chengduoZH 已提交
49 50 51 52 53

    Raises:
      ValueError: If something else than an int/long or iterable thereof was
        passed.
    """
C
chengduoZH 已提交
54
    if isinstance(value, dtype):
55 56 57
        return [
            value,
        ] * n
C
chengduoZH 已提交
58 59 60 61
    else:
        try:
            value_list = list(value)
        except TypeError:
62 63 64 65 66 67
            raise ValueError(
                "The "
                + name
                + "'s type must be list or tuple. Received: "
                + str(value)
            )
C
chengduoZH 已提交
68
        if len(value_list) != n:
69 70 71 72 73 74 75 76
            raise ValueError(
                "The "
                + name
                + "'s length must be "
                + str(n)
                + ". Received: "
                + str(value)
            )
C
chengduoZH 已提交
77
        for single_value in value_list:
78 79 80 81
            assert not isinstance(single_value, Variable), (
                "Required numerical type with '%s', but received Tensor."
                % dtype
            )
C
chengduoZH 已提交
82
            try:
C
chengduoZH 已提交
83
                dtype(single_value)
C
chengduoZH 已提交
84
            except (ValueError, TypeError):
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
                raise ValueError(
                    "The "
                    + name
                    + "'s type must be a list or tuple of "
                    + str(n)
                    + " "
                    + str(dtype)
                    + " . Received: "
                    + str(value)
                    + " "
                    "including element "
                    + str(single_value)
                    + " of type"
                    + " "
                    + str(type(single_value))
                )
C
chengduoZH 已提交
101
        return value_list
G
Guo Sheng 已提交
102 103 104 105 106 107 108 109


def is_sequence(seq):
    """
    Whether `seq` is an entry or nested structure
    """
    if isinstance(seq, dict):
        return True
110
    return isinstance(seq, Sequence) and not isinstance(seq, str)
G
Guo Sheng 已提交
111 112


113 114 115 116 117 118
def _hash_with_id(*args):
    """
    Return int hash value calculated by id(arg) or tuple(id1,id2, ...).
    """
    assert len(args) > 0
    info = tuple([id(v) for v in args])
119
    return hash(info) & 0xFFFFFFF
120 121


G
Guo Sheng 已提交
122 123 124 125 126
def _sorted(dict_):
    """
    Returns a sorted list of the dict keys, with error if keys not sortable.
    """
    try:
127
        return sorted(dict_.keys())
G
Guo Sheng 已提交
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
    except TypeError:
        raise TypeError("nest only supports dicts with sortable keys.")


def _yield_value(iterable):
    if isinstance(iterable, dict):
        # Iterate through dictionaries in a deterministic order by sorting the
        # keys. Notice this means that we ignore the original order of `OrderedDict`
        # instances. This is intentional, to avoid potential bugs caused by mixing
        # ordered and plain dicts (e.g., flattening a dict but using a
        # corresponding `OrderedDict` to pack it back).
        for key in _sorted(iterable):
            yield iterable[key]
    else:
        for value in iterable:
            yield value


def _yield_flat_nest(nest):
    for n in _yield_value(nest):
        if is_sequence(n):
            for ni in _yield_flat_nest(n):
                yield ni
        else:
            yield n


155 156 157 158 159 160 161
def to_sequence(nest):
    if is_sequence(nest):
        return nest
    else:
        return [nest]


G
Guo Sheng 已提交
162 163
def flatten(nest):
    """
164 165 166
        :alias_main: paddle.flatten
        :alias: paddle.flatten,paddle.tensor.flatten,paddle.tensor.manipulation.flatten
        :old_api: paddle.fluid.layers.flatten
S
swtkiwi 已提交
167

G
Guo Sheng 已提交
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
    Traverse all entries in the nested structure and put them into an list.
    """
    if is_sequence(nest):
        return list(_yield_flat_nest(nest))
    else:
        return [nest]


def _sequence_like(instance, args):
    """
    Convert the sequence `args` to the same type as `instance`.
    """
    if isinstance(instance, dict):
        # Pack dictionaries in a deterministic order by sorting the keys.
        # Notice this means that we ignore the original order of `OrderedDict`
        # instances. This is intentional, to avoid potential bugs caused by mixing
        # ordered and plain dicts (e.g., flattening a dict but using a
        # corresponding `OrderedDict` to pack it back).
        result = dict(zip(_sorted(instance), args))
187
        return type(instance)((key, result[key]) for key in instance.keys())
188 189 190 191 192 193
    elif (
        isinstance(instance, tuple)
        and hasattr(instance, "_fields")
        and isinstance(instance._fields, Sequence)
        and all(isinstance(f, str) for f in instance._fields)
    ):
G
Guo Sheng 已提交
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
        # This is a namedtuple
        return type(instance)(*args)
    else:
        # Not a namedtuple
        return type(instance)(args)


def _packed_nest_with_indices(structure, flat, index):
    """
    Helper function for pack_sequence_as.
    """
    packed = []
    for s in _yield_value(structure):
        if is_sequence(s):
            new_index, child = _packed_nest_with_indices(s, flat, index)
            packed.append(_sequence_like(s, child))
            index = new_index
        else:
            packed.append(flat[index])
            index += 1
    return index, packed


def pack_sequence_as(structure, flat_sequence):
    """
    Pack a given flattened sequence into a given structure.
    """
    if not is_sequence(flat_sequence):
        raise TypeError("flat_sequence must be a sequence")
    if not is_sequence(structure):
        if len(flat_sequence) != 1:
            raise ValueError(
226 227 228
                "Structure is a scalar but len(flat_sequence) == %d > 1"
                % len(flat_sequence)
            )
G
Guo Sheng 已提交
229 230 231 232 233
        return flat_sequence[0]
    flat_structure = flatten(structure)
    if len(flat_structure) != len(flat_sequence):
        raise ValueError(
            "Could not pack sequence. Structure had %d elements, but flat_sequence "
234 235 236 237 238 239 240 241
            "had %d elements.  Structure: %s, flat_sequence: %s."
            % (
                len(flat_structure),
                len(flat_sequence),
                structure,
                flat_sequence,
            )
        )
G
Guo Sheng 已提交
242 243 244 245 246 247 248 249 250 251 252 253 254
    _, packed = _packed_nest_with_indices(structure, flat_sequence, 0)
    return _sequence_like(structure, packed)


def map_structure(func, *structure):
    """
    Apply `func` to each entry in `structure` and return a new structure.
    """
    flat_structure = [flatten(s) for s in structure]
    entries = zip(*flat_structure)
    return pack_sequence_as(structure[0], [func(*x) for x in entries])


255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
def hold_mutable_vars(structure):
    """
    Returns whether structure holds sequence like `list/dict`.
    """
    for s in structure:
        if is_sequence(s):
            return True
    return False


def copy_mutable_vars(structure):
    """
    Returns vars copied from sequence without mutable property.
    """
    flat_structure = copy.copy(flatten(structure))
    return pack_sequence_as(structure, flat_structure)


G
Guo Sheng 已提交
273 274 275 276 277 278 279 280
def _recursive_assert_same_structure(nest1, nest2, check_types):
    """
    Helper function for `assert_same_structure`.
    """
    is_sequence_nest1 = is_sequence(nest1)
    if is_sequence_nest1 != is_sequence(nest2):
        raise ValueError(
            "The two structures don't have the same nested structure.\n\n"
281 282
            "First structure: %s\n\nSecond structure: %s." % (nest1, nest2)
        )
G
Guo Sheng 已提交
283 284 285 286 287 288 289 290
    if not is_sequence_nest1:
        return  # finished checking
    if check_types:
        type_nest1 = type(nest1)
        type_nest2 = type(nest2)
        if type_nest1 != type_nest2:
            raise TypeError(
                "The two structures don't have the same sequence type. First "
291 292 293
                "structure has type %s, while second structure has type %s."
                % (type_nest1, type_nest2)
            )
G
Guo Sheng 已提交
294
        if isinstance(nest1, dict):
295 296
            keys1 = set(nest1.keys())
            keys2 = set(nest2.keys())
G
Guo Sheng 已提交
297 298 299
            if keys1 != keys2:
                raise ValueError(
                    "The two dictionaries don't have the same set of keys. First "
300 301 302 303
                    "structure has keys {}, while second structure has keys {}.".format(
                        keys1, keys2
                    )
                )
G
Guo Sheng 已提交
304 305 306 307 308 309
    nest1_as_sequence = [n for n in _yield_value(nest1)]
    nest2_as_sequence = [n for n in _yield_value(nest2)]
    for n1, n2 in zip(nest1_as_sequence, nest2_as_sequence):
        _recursive_assert_same_structure(n1, n2, check_types)


310 311 312
def padding_to_same_structure(nest1, nest2, obj=None):
    def _padding_to_same_structure_single(value, obj):
        def change_none_to_obj(x):
313 314
            if x is None:
                return obj
315 316 317 318
            return x

        if is_sequence(value):
            value = pack_sequence_as(
319 320
                value, [change_none_to_obj(item) for item in flatten(value)]
            )
321 322 323 324 325 326 327 328 329
        else:
            value = change_none_to_obj(value)
        return value

    nest1 = _padding_to_same_structure_single(nest1, obj)
    nest2 = _padding_to_same_structure_single(nest2, obj)
    return nest1, nest2


G
Guo Sheng 已提交
330 331 332 333 334 335 336
def assert_same_structure(nest1, nest2, check_types=True):
    """
    Confirm two nested structures with the same structure.
    """
    len_nest1 = len(flatten(nest1)) if is_sequence(nest1) else 1
    len_nest2 = len(flatten(nest2)) if is_sequence(nest2) else 1
    if len_nest1 != len_nest2:
337 338 339 340 341 342
        raise ValueError(
            "The two structures don't have the same number of "
            "elements.\n\nFirst structure (%i elements): %s\n\n"
            "Second structure (%i elements): %s"
            % (len_nest1, nest1, len_nest2, nest2)
        )
G
Guo Sheng 已提交
343
    _recursive_assert_same_structure(nest1, nest2, check_types)
344 345 346 347 348 349 350 351 352 353 354 355 356


def _is_symmetric_padding(padding, data_dim):
    """
    Check whether padding is symmetrical.
    """
    assert len(padding) == data_dim * 2 or len(padding) == data_dim
    is_sys = True
    if len(padding) == data_dim * 2:
        for i in range(data_dim):
            if padding[i * 2] != padding[i * 2 + 1]:
                is_sys = False
    return is_sys
L
Leo Chen 已提交
357 358 359 360 361 362 363 364 365 366


def _contain_var(list_or_tuple):
    """
    Check whether list or tuple contains variable.
    """
    for item in list_or_tuple:
        if isinstance(item, Variable):
            return True
    return False
W
wangchaochaohu 已提交
367 368


369
def get_shape_tensor_inputs(inputs, attrs, shape, op_type):
W
wangchaochaohu 已提交
370 371 372 373 374 375 376 377 378 379 380 381
    from .tensor import fill_constant, cast

    def _get_attr_shape(list_shape):
        attr_shape = []
        for idx, dim in enumerate(list_shape):
            if isinstance(dim, Variable):
                attr_shape.append(-1)
            else:
                attr_shape.append(dim)
        return attr_shape

    def _get_shape_tensor(list_shape):
382
        shape_tensor_list = []
W
wangchaochaohu 已提交
383 384 385 386
        for idx, dim in enumerate(list_shape):
            if isinstance(dim, Variable):
                dim.stop_gradient = True
                check_dtype(
387 388 389
                    dim.dtype,
                    'shape[' + str(idx) + ']',
                    ['int32', 'int64'],
W
wangchaochaohu 已提交
390
                    op_type,
391 392
                    '(When type of shape in' + op_type + 'is list or tuple.)',
                )
W
wangchaochaohu 已提交
393 394
                if convert_dtype(dim.dtype) == 'int64':
                    dim = cast(x=dim, dtype='int32')
395
                shape_tensor_list.append(dim)
W
wangchaochaohu 已提交
396 397
            else:
                temp_out = fill_constant([1], 'int32', dim, force_cpu=True)
398 399
                shape_tensor_list.append(temp_out)
        return shape_tensor_list
W
wangchaochaohu 已提交
400 401 402

    if isinstance(shape, Variable):
        shape.stop_gradient = True
403 404 405 406 407 408 409 410
        check_dtype(
            shape.dtype,
            'shape',
            ['int32', 'int64'],
            'fill_constant',
            '(When type of shape in' + op_type + ' is Variable.)',
        )
        if convert_dtype(shape.dtype) == 'int64':
W
wangchaochaohu 已提交
411 412 413 414 415 416
            shape = cast(shape, 'int32')
        inputs["ShapeTensor"] = shape
    elif isinstance(shape, (list, tuple)):
        attrs["shape"] = _get_attr_shape(shape)
        if _contain_var(shape):
            inputs['ShapeTensorList'] = _get_shape_tensor(shape)
417 418
    else:
        raise TypeError("Shape only supports Variable, or list, or tuple.")
419 420 421 422 423 424 425


def _convert_to_tensor_list(old_list, dtype="int32"):
    """
    Converts all elements of a list to Variable.
    """
    from .tensor import fill_constant
426

427 428 429 430 431 432 433
    new_list_tensor = []
    for ele in old_list:

        if isinstance(ele, Variable):
            ele.stop_gradient = True
            new_list_tensor.append(ele)
        else:
434
            assert isinstance(ele, int)
435 436 437
            temp_out = fill_constant([1], dtype, ele, force_cpu=True)
            new_list_tensor.append(temp_out)
    return new_list_tensor
438 439


440
def convert_shape_to_list(shape):
441 442 443 444 445
    """
    Convert shape(list, tuple, variable) to list in imperative mode
    """
    if isinstance(shape, (list, tuple)):
        shape = list(
446 447 448 449 450
            map(
                lambda x: x.numpy().flat[0] if isinstance(x, Variable) else x,
                shape,
            )
        )
451
    else:
452
        shape = shape.numpy().astype(int).tolist()
453
    return shape
454 455 456 457 458 459 460 461 462 463 464 465 466 467 468


def check_shape(shape):
    """
    Check shape type and shape elements type before passing it to fill_constant
    """
    if isinstance(shape, Variable):
        check_dtype(shape.dtype, 'shape', ['int32', 'int64'], 'fill_constant')
    else:
        for ele in shape:
            if not isinstance(ele, Variable):
                if ele < 0:
                    raise ValueError(
                        "All elements in ``shape`` must be positive when it's a list or tuple"
                    )
469
                if not isinstance(ele, int):
470 471 472
                    raise TypeError(
                        "All elements in ``shape`` must be integers when it's a list or tuple"
                    )
473 474 475 476


def try_set_static_shape_tensor(tensor, shape):
    """Try to set static shape of tensor from a shape tensor.
477

478 479 480 481 482 483
    For example,

    import paddle
    paddle.enable_static()
    data = paddle.static.data(name="x", shape=[-1, 2], dtype='float32')
    shape = paddle.shape(data)  # shape should be [-1, 2] instead of [-1, -1]
484 485
    x = paddle.uniform(shape)
    print(x.shape)
486
    # (-1, 2)
487

488
    """
J
Jiabin Yang 已提交
489
    if not _non_static_mode():
490 491 492 493 494 495 496 497 498 499 500 501
        # static mode, and shape is not all inferred (contains -1)
        if -1 in tensor.shape:
            if isinstance(shape, Variable):
                shape = try_get_constant_shape_from_tensor(shape)
                if shape:
                    tensor.desc.set_shape(shape)


def try_get_constant_shape_from_tensor(shape_tensor):
    """Try to get shape from a tensor with constant value.

    For example,
502

503 504 505 506
    import paddle
    paddle.enable_static()
    data = paddle.static.data(name="x", shape=[-1, 2], dtype='float32')
    shape = paddle.shape(data)  # shape should be [-1, 2] instead of [-1, -1]
507 508
    x = paddle.uniform(shape)
    print(x.shape)
509
    # (-1, 2)
510

511
    """
J
Jiabin Yang 已提交
512
    if not _non_static_mode():
513 514 515 516
        try:
            if shape_tensor.op is not None:
                generate_op = shape_tensor.op
                if generate_op.type == 'shape':
517
                    var = shape_tensor.block.vars[
518 519
                        generate_op.input_arg_names[0]
                    ]
520 521 522 523 524
                    return var.shape
        except:
            return None

        return None
525 526 527 528 529 530 531 532


def get_inputs_outputs_in_block(block):
    """
    Returns the inputs and outputs variable used in this block but not
    created in this block.
    """
    assert isinstance(
533 534 535 536 537
        block, Block
    ), "input non-Block argument for get_inputs_outputs_in_block."
    assert (
        block.parent_idx != -1
    ), "input block should be a sub-block, not main block."
538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554

    # Find input/output var names of all ops in block
    inner_inputs = set()
    inner_outputs = set()
    for op in block.ops:
        for iname in op.input_names:
            for in_var_name in op.input(iname):
                if not block.has_var(in_var_name):
                    # variable not created in this block
                    inner_inputs.add(in_var_name)
        for oname in op.output_names:
            for out_var_name in op.output(oname):
                if not block.has_var(out_var_name):
                    # variable not created in this block
                    inner_outputs.add(out_var_name)

    return inner_inputs, inner_outputs