utils.py 14.7 KB
Newer Older
C
chengduoZH 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
G
Guo Sheng 已提交
16
import collections
17
import copy
G
Guo Sheng 已提交
18
import six
C
chengduoZH 已提交
19
import numpy as np
20
from ..framework import Variable, in_dygraph_mode
W
wangchaochaohu 已提交
21 22
from ..data_feeder import convert_dtype, check_variable_and_dtype, check_type, check_dtype
from ..layer_helper import LayerHelper
23
from sys import version_info
C
chengduoZH 已提交
24 25


26
def convert_to_list(value, n, name, dtype=int):
C
chengduoZH 已提交
27 28 29
    """
    Converts a single numerical type or iterable of numerical
    types into an numerical type list.
C
chengduoZH 已提交
30 31 32 33 34 35 36

    Arguments:
      value: The value to validate and convert. Could an int, or any iterable
        of ints.
      n: The size of the list to be returned.
      name: The name of the argument being validated, e.g. "stride" or
        "filter_size". This is only used to format error messages.
C
chengduoZH 已提交
37
      dtype: the numerical type of the element of the list to be returned.
C
chengduoZH 已提交
38 39

    Returns:
C
chengduoZH 已提交
40
      A list of n dtypes.
C
chengduoZH 已提交
41 42 43 44 45

    Raises:
      ValueError: If something else than an int/long or iterable thereof was
        passed.
    """
C
chengduoZH 已提交
46
    if isinstance(value, dtype):
C
chengduoZH 已提交
47 48 49 50 51 52 53 54 55 56 57 58 59
        return [value, ] * n
    else:
        try:
            value_list = list(value)
        except TypeError:
            raise ValueError("The " + name +
                             "'s type must be list or tuple. Received: " + str(
                                 value))
        if len(value_list) != n:
            raise ValueError("The " + name + "'s length must be " + str(n) +
                             ". Received: " + str(value))
        for single_value in value_list:
            try:
C
chengduoZH 已提交
60
                dtype(single_value)
C
chengduoZH 已提交
61 62
            except (ValueError, TypeError):
                raise ValueError(
C
chengduoZH 已提交
63
                    "The " + name + "'s type must be a list or tuple of " + str(
C
chengduoZH 已提交
64 65
                        n) + " " + str(dtype) + " . Received: " + str(
                            value) + " "
C
chengduoZH 已提交
66 67 68
                    "including element " + str(single_value) + " of type" + " "
                    + str(type(single_value)))
        return value_list
G
Guo Sheng 已提交
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115


def is_sequence(seq):
    """
    Whether `seq` is an entry or nested structure
    """
    if isinstance(seq, dict):
        return True
    return (isinstance(seq, collections.Sequence) and
            not isinstance(seq, six.string_types))


def _sorted(dict_):
    """
    Returns a sorted list of the dict keys, with error if keys not sortable.
    """
    try:
        return sorted(six.iterkeys(dict_))
    except TypeError:
        raise TypeError("nest only supports dicts with sortable keys.")


def _yield_value(iterable):
    if isinstance(iterable, dict):
        # Iterate through dictionaries in a deterministic order by sorting the
        # keys. Notice this means that we ignore the original order of `OrderedDict`
        # instances. This is intentional, to avoid potential bugs caused by mixing
        # ordered and plain dicts (e.g., flattening a dict but using a
        # corresponding `OrderedDict` to pack it back).
        for key in _sorted(iterable):
            yield iterable[key]
    else:
        for value in iterable:
            yield value


def _yield_flat_nest(nest):
    for n in _yield_value(nest):
        if is_sequence(n):
            for ni in _yield_flat_nest(n):
                yield ni
        else:
            yield n


def flatten(nest):
    """
116 117 118
	:alias_main: paddle.flatten
	:alias: paddle.flatten,paddle.tensor.flatten,paddle.tensor.manipulation.flatten
	:old_api: paddle.fluid.layers.flatten
S
swtkiwi 已提交
119

G
Guo Sheng 已提交
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
    Traverse all entries in the nested structure and put them into an list.
    """
    if is_sequence(nest):
        return list(_yield_flat_nest(nest))
    else:
        return [nest]


def _sequence_like(instance, args):
    """
    Convert the sequence `args` to the same type as `instance`.
    """
    if isinstance(instance, dict):
        # Pack dictionaries in a deterministic order by sorting the keys.
        # Notice this means that we ignore the original order of `OrderedDict`
        # instances. This is intentional, to avoid potential bugs caused by mixing
        # ordered and plain dicts (e.g., flattening a dict but using a
        # corresponding `OrderedDict` to pack it back).
        result = dict(zip(_sorted(instance), args))
        return type(instance)((key, result[key])
                              for key in six.iterkeys(instance))
    elif (isinstance(instance, tuple) and hasattr(instance, "_fields") and
          isinstance(instance._fields, collections.Sequence) and
          all(isinstance(f, six.string_types) for f in instance._fields)):
        # This is a namedtuple
        return type(instance)(*args)
    else:
        # Not a namedtuple
        return type(instance)(args)


def _packed_nest_with_indices(structure, flat, index):
    """
    Helper function for pack_sequence_as.
    """
    packed = []
    for s in _yield_value(structure):
        if is_sequence(s):
            new_index, child = _packed_nest_with_indices(s, flat, index)
            packed.append(_sequence_like(s, child))
            index = new_index
        else:
            packed.append(flat[index])
            index += 1
    return index, packed


def pack_sequence_as(structure, flat_sequence):
    """
    Pack a given flattened sequence into a given structure.
    """
    if not is_sequence(flat_sequence):
        raise TypeError("flat_sequence must be a sequence")
    if not is_sequence(structure):
        if len(flat_sequence) != 1:
            raise ValueError(
                "Structure is a scalar but len(flat_sequence) == %d > 1" %
                len(flat_sequence))
        return flat_sequence[0]
    flat_structure = flatten(structure)
    if len(flat_structure) != len(flat_sequence):
        raise ValueError(
            "Could not pack sequence. Structure had %d elements, but flat_sequence "
            "had %d elements.  Structure: %s, flat_sequence: %s." %
            (len(flat_structure), len(flat_sequence), structure, flat_sequence))
    _, packed = _packed_nest_with_indices(structure, flat_sequence, 0)
    return _sequence_like(structure, packed)


def map_structure(func, *structure):
    """
    Apply `func` to each entry in `structure` and return a new structure.
    """
    flat_structure = [flatten(s) for s in structure]
    entries = zip(*flat_structure)
    return pack_sequence_as(structure[0], [func(*x) for x in entries])


198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
def hold_mutable_vars(structure):
    """
    Returns whether structure holds sequence like `list/dict`.
    """
    for s in structure:
        if is_sequence(s):
            return True
    return False


def copy_mutable_vars(structure):
    """
    Returns vars copied from sequence without mutable property.
    """
    flat_structure = copy.copy(flatten(structure))
    return pack_sequence_as(structure, flat_structure)


G
Guo Sheng 已提交
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
def _recursive_assert_same_structure(nest1, nest2, check_types):
    """
    Helper function for `assert_same_structure`.
    """
    is_sequence_nest1 = is_sequence(nest1)
    if is_sequence_nest1 != is_sequence(nest2):
        raise ValueError(
            "The two structures don't have the same nested structure.\n\n"
            "First structure: %s\n\nSecond structure: %s." % (nest1, nest2))
    if not is_sequence_nest1:
        return  # finished checking
    if check_types:
        type_nest1 = type(nest1)
        type_nest2 = type(nest2)
        if type_nest1 != type_nest2:
            raise TypeError(
                "The two structures don't have the same sequence type. First "
                "structure has type %s, while second structure has type %s." %
                (type_nest1, type_nest2))
        if isinstance(nest1, dict):
            keys1 = set(six.iterkeys(nest1))
            keys2 = set(six.iterkeys(nest2))
            if keys1 != keys2:
                raise ValueError(
                    "The two dictionaries don't have the same set of keys. First "
                    "structure has keys {}, while second structure has keys {}."
                    .format(keys1, keys2))
    nest1_as_sequence = [n for n in _yield_value(nest1)]
    nest2_as_sequence = [n for n in _yield_value(nest2)]
    for n1, n2 in zip(nest1_as_sequence, nest2_as_sequence):
        _recursive_assert_same_structure(n1, n2, check_types)


def assert_same_structure(nest1, nest2, check_types=True):
    """
    Confirm two nested structures with the same structure.
    """
    len_nest1 = len(flatten(nest1)) if is_sequence(nest1) else 1
    len_nest2 = len(flatten(nest2)) if is_sequence(nest2) else 1
    if len_nest1 != len_nest2:
        raise ValueError("The two structures don't have the same number of "
                         "elements.\n\nFirst structure (%i elements): %s\n\n"
                         "Second structure (%i elements): %s" %
                         (len_nest1, nest1, len_nest2, nest2))
    _recursive_assert_same_structure(nest1, nest2, check_types)
261 262 263 264 265 266 267 268 269 270 271 272 273


def _is_symmetric_padding(padding, data_dim):
    """
    Check whether padding is symmetrical.
    """
    assert len(padding) == data_dim * 2 or len(padding) == data_dim
    is_sys = True
    if len(padding) == data_dim * 2:
        for i in range(data_dim):
            if padding[i * 2] != padding[i * 2 + 1]:
                is_sys = False
    return is_sys
L
Leo Chen 已提交
274 275 276 277 278 279 280 281 282 283


def _contain_var(list_or_tuple):
    """
    Check whether list or tuple contains variable.
    """
    for item in list_or_tuple:
        if isinstance(item, Variable):
            return True
    return False
W
wangchaochaohu 已提交
284 285


286
def get_shape_tensor_inputs(inputs, attrs, shape, op_type):
W
wangchaochaohu 已提交
287 288 289 290 291 292 293 294 295 296 297 298
    from .tensor import fill_constant, cast

    def _get_attr_shape(list_shape):
        attr_shape = []
        for idx, dim in enumerate(list_shape):
            if isinstance(dim, Variable):
                attr_shape.append(-1)
            else:
                attr_shape.append(dim)
        return attr_shape

    def _get_shape_tensor(list_shape):
299
        shape_tensor_list = []
W
wangchaochaohu 已提交
300 301 302 303 304 305 306 307 308
        for idx, dim in enumerate(list_shape):
            if isinstance(dim, Variable):
                dim.stop_gradient = True
                check_dtype(
                    dim.dtype, 'shape[' + str(idx) + ']', ['int32', 'int64'],
                    op_type,
                    '(When type of shape in' + op_type + 'is list or tuple.)')
                if convert_dtype(dim.dtype) == 'int64':
                    dim = cast(x=dim, dtype='int32')
309
                shape_tensor_list.append(dim)
W
wangchaochaohu 已提交
310 311
            else:
                temp_out = fill_constant([1], 'int32', dim, force_cpu=True)
312 313
                shape_tensor_list.append(temp_out)
        return shape_tensor_list
W
wangchaochaohu 已提交
314 315 316 317 318 319 320 321 322 323 324 325 326 327 328

    if isinstance(shape, Variable):
        shape.stop_gradient = True
        check_dtype(shape.dtype, 'shape', ['int32', 'int64'], 'fill_constant',
                    '(When type of shape in' + op_type + ' is Variable.)')
        if (convert_dtype(shape.dtype) == 'int64'):
            shape = cast(shape, 'int32')
        inputs["ShapeTensor"] = shape
    elif isinstance(shape, (list, tuple)):
        assert len(shape) > 0, (
            "The size of 'shape' in" + op_type + " can't be zero, "
            "but received %s." % len(shape))
        attrs["shape"] = _get_attr_shape(shape)
        if _contain_var(shape):
            inputs['ShapeTensorList'] = _get_shape_tensor(shape)
329 330
    else:
        raise TypeError("Shape only supports Variable, or list, or tuple.")
331 332 333 334 335 336 337 338 339 340 341 342 343 344


def _convert_to_tensor_list(old_list, dtype="int32"):
    """
    Converts all elements of a list to Variable.
    """
    from .tensor import fill_constant
    new_list_tensor = []
    for ele in old_list:

        if isinstance(ele, Variable):
            ele.stop_gradient = True
            new_list_tensor.append(ele)
        else:
345
            assert isinstance(ele, six.integer_types)
346 347 348
            temp_out = fill_constant([1], dtype, ele, force_cpu=True)
            new_list_tensor.append(temp_out)
    return new_list_tensor
349 350


351
def convert_shape_to_list(shape):
352 353 354 355 356 357 358 359 360 361
    """
    Convert shape(list, tuple, variable) to list in imperative mode
    """
    if isinstance(shape, (list, tuple)):
        shape = list(
            map(lambda x: x.numpy()[0] if isinstance(x, Variable) else x,
                shape))
    else:
        shape = list(shape.numpy().astype(int))
    return shape
362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380


def check_shape(shape):
    """
    Check shape type and shape elements type before passing it to fill_constant
    """
    if isinstance(shape, Variable):
        check_dtype(shape.dtype, 'shape', ['int32', 'int64'], 'fill_constant')
    else:
        for ele in shape:
            if not isinstance(ele, Variable):
                if ele < 0:
                    raise ValueError(
                        "All elements in ``shape`` must be positive when it's a list or tuple"
                    )
                if not isinstance(ele, six.integer_types):
                    raise TypeError(
                        "All elements in ``shape`` must be integers when it's a list or tuple"
                    )
381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431


def try_set_static_shape_tensor(tensor, shape):
    """Try to set static shape of tensor from a shape tensor.
    
    For example,

    import paddle
    paddle.enable_static()
    data = paddle.static.data(name="x", shape=[-1, 2], dtype='float32')
    shape = paddle.shape(data)  # shape should be [-1, 2] instead of [-1, -1]
    x = paddle.uniform(shape) 
    print(x.shape) 
    # (-1, 2)
    
    """
    if not in_dygraph_mode():
        # static mode, and shape is not all inferred (contains -1)
        if -1 in tensor.shape:
            if isinstance(shape, Variable):
                shape = try_get_constant_shape_from_tensor(shape)
                if shape:
                    tensor.desc.set_shape(shape)


def try_get_constant_shape_from_tensor(shape_tensor):
    """Try to get shape from a tensor with constant value.

    For example,
    
    import paddle
    paddle.enable_static()
    data = paddle.static.data(name="x", shape=[-1, 2], dtype='float32')
    shape = paddle.shape(data)  # shape should be [-1, 2] instead of [-1, -1]
    x = paddle.uniform(shape) 
    print(x.shape) 
    # (-1, 2)
    
    """
    if not in_dygraph_mode():
        try:
            if shape_tensor.op is not None:
                generate_op = shape_tensor.op
                if generate_op.type == 'shape':
                    var = shape_tensor.block.vars[generate_op.input_arg_names[
                        0]]
                    return var.shape
        except:
            return None

        return None