layer.cc 21.7 KB
Newer Older
J
Jiabin Yang 已提交
1
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/imperative/layer.h"
16

J
Jiabin Yang 已提交
17
#include "paddle/fluid/eager/eager_tensor.h"
18
#include "paddle/fluid/framework/op_registry.h"
19 20
#include "paddle/fluid/imperative/infer_var_type_context.h"
#include "paddle/fluid/imperative/op_base.h"
J
Jiabin Yang 已提交
21
#include "paddle/fluid/imperative/prepared_operator.h"
J
Jiabin Yang 已提交
22
#include "paddle/fluid/imperative/var_helper.h"
J
Jiabin Yang 已提交
23
#include "paddle/fluid/operators/math/math_function.h"
M
minqiyang 已提交
24
#include "paddle/fluid/platform/device_context.h"
J
Jiabin Yang 已提交
25
#include "paddle/fluid/platform/enforce.h"
C
chengduo 已提交
26
#include "paddle/fluid/platform/profiler.h"
27 28 29 30 31
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif

DECLARE_bool(use_mkldnn);
32 33 34
namespace paddle {
namespace imperative {

J
Jiabin Yang 已提交
35
using framework::Variable;
Z
Zeng Jinle 已提交
36 37 38 39 40 41 42 43
void ThreadSafeNameSet::Insert(const std::string& name) {
  std::lock_guard<std::mutex> guard(mtx_);
  set_.insert(name);
}

void ThreadSafeNameSet::Remove(const std::string& name) {
  std::lock_guard<std::mutex> guard(mtx_);
  auto iter = set_.find(name);
44 45 46
  PADDLE_ENFORCE_EQ(
      iter != set_.end(), true,
      platform::errors::NotFound("Variable name %s does not exist", name));
Z
Zeng Jinle 已提交
47 48 49 50 51 52 53 54 55 56 57 58
  set_.erase(iter);
}

std::vector<std::string> ThreadSafeNameSet::Names() const {
  std::lock_guard<std::mutex> guard(mtx_);
  return std::vector<std::string>(set_.begin(), set_.end());
}

ThreadSafeNameSet VarBase::name_set_;

std::vector<std::string> VarBase::AliveVarNames() { return name_set_.Names(); }

J
Jiabin Yang 已提交
59 60 61 62 63 64 65 66 67
static framework::RuntimeContext PrepareRuntimeContext(
    const NameVarBaseMap& ins, const NameVarBaseMap& outs) {
  framework::VariableValueMap inputs, outputs;
  for (auto& in_pair : ins) {
    auto& in_ctx = inputs[in_pair.first];
    in_ctx.reserve(in_pair.second.size());
    for (auto& in_var : in_pair.second) {
      in_ctx.emplace_back(in_var->MutableVar());
    }
M
minqiyang 已提交
68 69
  }

J
Jiabin Yang 已提交
70 71 72 73 74
  for (auto& out_pair : outs) {
    auto& out_ctx = outputs[out_pair.first];
    out_ctx.reserve(out_pair.second.size());
    for (auto& out_var : out_pair.second) {
      out_ctx.emplace_back(out_var->MutableVar());
75
    }
J
Jiabin Yang 已提交
76 77 78 79
  }
  return framework::RuntimeContext(std::move(inputs), std::move(outputs));
}

80
template <typename VarType>
J
Jiabin Yang 已提交
81 82
static std::string DebugString(
    const std::string& name,
83
    const std::vector<std::shared_ptr<VarType>>& vars) {
J
Jiabin Yang 已提交
84 85
  std::stringstream ss;
  ss << name << "{";
M
minqiyang 已提交
86

J
Jiabin Yang 已提交
87 88
  for (size_t i = 0; i < vars.size(); ++i) {
    if (i > 0) ss << ", ";
M
minqiyang 已提交
89

J
Jiabin Yang 已提交
90 91 92 93
    if (vars[i] == nullptr) {
      ss << "NULL";
      continue;
    }
J
Jiabin Yang 已提交
94
    ss << GetNameFromVar(vars[i]) << "[";
95
    const framework::Variable& var = vars[i]->Var();
J
Jiabin Yang 已提交
96 97 98 99 100 101 102 103 104 105 106 107 108
    if (!var.IsInitialized()) {
      ss << "NOT_INITED_VAR";
    } else if (var.IsType<framework::LoDTensor>()) {
      auto& tensor = var.Get<framework::LoDTensor>();
      ss << "LoDTensor<";
      if (tensor.IsInitialized()) {
        ss << framework::DataTypeToString(tensor.type()) << ", ";
        ss << tensor.place() << ", ";
        ss << "(" << tensor.dims() << ")";
      } else {
        ss << "NOT_INITED";
      }
      ss << ">";
109
    } else if (var.IsType<pten::SelectedRows>()) {
110
      ss << "SelectedRows<";
111
      auto& selected_rows = var.Get<pten::SelectedRows>();
112 113 114 115 116 117 118 119 120 121 122 123 124
      auto& tensor = selected_rows.value();
      auto& rows = selected_rows.rows();
      if (tensor.IsInitialized()) {
        ss << framework::DataTypeToString(tensor.type()) << ", ";
        ss << tensor.place() << ", ";
        ss << "height(" << selected_rows.height() << "), rows(";
        std::for_each(rows.cbegin(), rows.cend(),
                      [&ss](const int64_t r) { ss << r << " "; });
        ss << "), dims(" << tensor.dims() << ")";
      } else {
        ss << "NOT_INITED";
      }
      ss << ">";
J
Jiabin Yang 已提交
125 126 127 128
    } else {
      ss << "UNRESOLVED_TYPE";
    }
    ss << "]";
129
  }
130

J
Jiabin Yang 已提交
131 132
  ss << "}";
  return ss.str();
133 134
}

135 136 137 138
template <typename VarType>
static std::string LayerDebugStringImpl(const std::string& op_type,
                                        const NameVarMap<VarType>& ins,
                                        const NameVarMap<VarType>& outs) {
J
Jiabin Yang 已提交
139 140 141 142 143 144 145 146
  std::stringstream ss;
  ss << "Op(" << op_type << "): ";

  ss << "Inputs: ";

  size_t i = 0;
  for (auto& pair : ins) {
    if (i > 0) ss << ", ";
147
    ss << DebugString<VarType>(pair.first, pair.second);
J
Jiabin Yang 已提交
148
    ++i;
149 150
  }

J
Jiabin Yang 已提交
151 152 153 154
  ss << ",   Outputs: ";
  i = 0;
  for (auto& pair : outs) {
    if (i > 0) ss << ", ";
155
    ss << DebugString<VarType>(pair.first, pair.second);
J
Jiabin Yang 已提交
156 157 158 159
    ++i;
  }
  return ss.str();
}
160

161 162 163 164 165 166 167 168 169 170
std::string LayerDebugString(const std::string& op_type,
                             const NameVarMap<VarBase>& ins,
                             const NameVarMap<VarBase>& outs) {
  return LayerDebugStringImpl<VarBase>(op_type, ins, outs);
}

std::string LayerDebugString(const std::string& op_type,
                             const NameVarMap<VariableWrapper>& ins,
                             const NameVarMap<VariableWrapper>& outs) {
  return LayerDebugStringImpl<VariableWrapper>(op_type, ins, outs);
J
Jiabin Yang 已提交
171
}
172

J
Jiabin Yang 已提交
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
std::string LayerDebugString(const std::string& op_type,
                             const NameVarMap<egr::EagerTensor>& ins,
                             const NameVarMap<egr::EagerTensor>& outs) {
  return LayerDebugStringImpl<egr::EagerTensor>(op_type, ins, outs);
}

template <typename VarType>
static void SetForwardDataTypeOfGradVars(const NameVarMap<VarType>& outs) {
  for (auto& var_pair : outs) {
    for (auto& var : var_pair.second) {
      // NOTE(zhiqu): The ouput may be NULL because of pruning.
      if (var) {
        SetForwardDataTypeOfGradVar(var);
      }
    }
  }
}
template <>
void SetForwardDataTypeOfGradVars<egr::EagerTensor>(
    const NameVarMap<egr::EagerTensor>& outs) {
  // In eager mode we don't need this.
}

196
VarBase::VarBase(const std::shared_ptr<VariableWrapper>& var)
197
    : var_(var), grad_node_(var->GetGradNode()) {
198 199
  if (auto grad_var = var_->GetGradVar()) {
    grad_var_ = std::make_shared<VarBase>(grad_var);
200 201 202 203 204 205 206 207 208 209 210 211
  }

  if (IsDebugEnabled()) {
    VLOG(10) << "Construct VarBase: " << Name();
    name_set_.Insert(Name());
  }
}

size_t VarBase::GradOpNum() const {
  return grad_node_ ? grad_node_->size() : 0;
}

212
void VarBase::ClearGradient(bool set_to_zero) {
213
  VLOG(4) << "ClearGradient " << Name();
J
Jiabin Yang 已提交
214
  if (grad_var_) {
215 216
    if (grad_var_->Var().IsType<pten::SelectedRows>()) {
      auto* grad_t = grad_var_->MutableVar()->GetMutable<pten::SelectedRows>();
217
      if (grad_t->mutable_value()->IsInitialized()) {
218
#ifdef PADDLE_WITH_MKLDNN
219
        if (FLAGS_use_mkldnn) platform::ClearMKLDNNCache(grad_t->place());
220
#endif
221 222 223 224
        grad_t->mutable_rows()->clear();
        grad_t->mutable_value()->clear();
      }
    } else {
225
      platform::RecordEvent record_event("ClearGradient");
226 227
      auto* grad_t =
          grad_var_->MutableVar()->GetMutable<framework::LoDTensor>();
228
      if (grad_t->IsInitialized()) {
229 230 231 232 233 234 235
        if (set_to_zero) {
          auto* dev_ctx =
              platform::DeviceContextPool::Instance().Get(grad_t->place());
          operators::math::set_constant(*dev_ctx, grad_t, 0.0);
        } else {
          grad_t->clear();
        }
236
#ifdef PADDLE_WITH_MKLDNN
237
        if (FLAGS_use_mkldnn) platform::ClearMKLDNNCache(grad_t->place());
238
#endif
239
      }
240
    }
241 242 243 244
    // TODO(zhouwei): It's better to free memory of grad by grad_t->claer.
    // But will have some bug on mac CPU of yolov3 model, why?
    // After fix this bug, function SetIsEmpty() isn't need
    grad_var_->SharedVar()->SetIsEmpty(true);
245
  }
J
Jiabin Yang 已提交
246
}
247

248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
void VarBase::_GradientSetEmpty(bool is_empty) {
  VLOG(4) << "Set gradient " << Name() << " is_empty:" << is_empty;
  if (grad_var_) {
    auto share_var = grad_var_->SharedVar();
    if (share_var) {
      share_var->SetIsEmpty(is_empty);
    }
  }
}

bool VarBase::_IsGradientSetEmpty() {
  bool res = true;
  if (grad_var_) {
    auto share_var = grad_var_->SharedVar();
    if (share_var) {
      res = share_var->is_empty_;
      VLOG(4) << "Check gradient " << Name() << " is empty:" << res;
    }
  }
  return res;
}

J
Jiabin Yang 已提交
270
std::shared_ptr<VarBase> VarBase::NewVarBase(const platform::Place& dst_place,
M
minqiyang 已提交
271
                                             const bool blocking) const {
272
  PADDLE_ENFORCE_EQ(
273
      Var().IsInitialized() && (Var().IsType<framework::LoDTensor>() ||
274
                                Var().IsType<pten::SelectedRows>()),
275 276 277
      true, platform::errors::InvalidArgument(
                "Variable is not initialized or Variable's type is not "
                "LoDTensor or SelectedRows when getting numpy tensor"));
278

279 280
  if (Var().IsType<framework::LoDTensor>()) {
    auto& src_tensor = Var().Get<framework::LoDTensor>();
281 282
    // TODO(Jiabin): change this after move unique_name generator to CXX
    auto new_var = std::make_shared<VarBase>(
283
        true, Name() + std::to_string(copied_counter_++));
284

285 286
    auto* dst_tensor =
        new_var->MutableVar()->GetMutable<framework::LoDTensor>();
287
    dst_tensor->set_lod(src_tensor.lod());
288 289 290
    new_var->SetPersistable(Persistable());
    new_var->SetDataType(DataType());
    new_var->SetType(Type());
291 292 293 294 295 296 297
    framework::TensorCopy(src_tensor, dst_place, dst_tensor);
    if (blocking) {
      platform::DeviceContextPool::Instance().Get(dst_place)->Wait();
      auto src_place = src_tensor.place();
      if (!(src_place == dst_place)) {
        platform::DeviceContextPool::Instance().Get(src_place)->Wait();
      }
298
    }
299 300
    VLOG(4) << "copy tensor " << Name() << " from " << Place() << " to "
            << dst_place;
301 302
    return new_var;
  } else {
303
    auto& src_selected_rows = Var().Get<pten::SelectedRows>();
304 305 306 307
    auto new_var = std::make_shared<VarBase>(
        false, "Itmp" + std::to_string(copied_counter_++));
    new_var->SetType(framework::proto::VarType::SELECTED_ROWS);
    auto* dst_selected_rows =
308
        new_var->MutableVar()->GetMutable<pten::SelectedRows>();
309 310 311 312 313 314 315 316 317 318 319 320

    framework::TensorCopy(src_selected_rows.value(), dst_place,
                          dst_selected_rows->mutable_value());
    if (blocking) {
      platform::DeviceContextPool::Instance().Get(dst_place)->Wait();
      auto src_place = src_selected_rows.place();
      if (!(src_place == dst_place)) {
        platform::DeviceContextPool::Instance().Get(src_place)->Wait();
      }
    }
    dst_selected_rows->set_height(src_selected_rows.height());
    dst_selected_rows->set_rows(src_selected_rows.rows());
321 322
    VLOG(4) << "copy tensor " << Name() << " from " << Place() << " to "
            << dst_place;
323 324
    return new_var;
  }
M
minqiyang 已提交
325 326
}

327
void VarBase::CopyFrom(const VarBase& src, const bool blocking) {
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
  if (src.SharedVar()->IsEmpty()) {
    return;
  }

  VLOG(3) << "Deep copy Tensor from " << src.Name() << " to " << Name();
  if (Var().IsInitialized()) {
    PADDLE_ENFORCE_EQ(DataType(), src.DataType(),
                      platform::errors::PreconditionNotMet(
                          "Tensor %s has different data type with Tensor %s, "
                          "Tensor Copy cannot be performed!",
                          Name(), src.Name()));
    PADDLE_ENFORCE_EQ(Type(), src.Type(),
                      platform::errors::PreconditionNotMet(
                          "Tensor %s has different type with Tensor %s, Tensor "
                          "Copy cannot be performed!",
                          Name(), src.Name()));
  } else {
345 346
    SetDataType(src.DataType());
    SetType(src.Type());
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
    SetPersistable(src.Persistable());
    InnerSetOverridedStopGradient(src.OverridedStopGradient());
  }

  platform::Place place = src.Place();
  if (src.Var().IsType<framework::LoDTensor>()) {
    auto& src_tensor = src.Var().Get<framework::LoDTensor>();
    auto* dst_tensor = MutableVar()->GetMutable<framework::LoDTensor>();
    if (dst_tensor && dst_tensor->IsInitialized()) {
      PADDLE_ENFORCE_EQ(dst_tensor->dims(), src_tensor.dims(),
                        platform::errors::PreconditionNotMet(
                            "Tensor %s has different dims with Tensor %s, "
                            "Tensor Copy cannot be performed!",
                            Name(), src.Name()));
      PADDLE_ENFORCE_EQ(dst_tensor->lod(), src_tensor.lod(),
                        platform::errors::PreconditionNotMet(
                            "Tensor %s has different dims with Tensor %s, "
                            "Tensor Copy cannot be performed!",
                            Name(), src.Name()));
      place = Place();
    } else {
      dst_tensor->set_lod(src_tensor.lod());
      dst_tensor->Resize(src_tensor.dims());
    }
    framework::TensorCopy(src_tensor, place, dst_tensor);
372 373 374
  } else if (src.Var().IsType<pten::SelectedRows>()) {
    auto& src_selected_rows = src.Var().Get<pten::SelectedRows>();
    auto* dst_selected_rows = MutableVar()->GetMutable<pten::SelectedRows>();
375 376 377 378 379 380 381 382 383 384 385 386 387 388
    dst_selected_rows->set_height(src_selected_rows.height());
    dst_selected_rows->set_rows(src_selected_rows.rows());

    auto& src_tensor = src_selected_rows.value();
    auto* dst_tensor = dst_selected_rows->mutable_value();
    if (dst_tensor && dst_tensor->IsInitialized()) {
      PADDLE_ENFORCE_EQ(dst_tensor->dims(), src_tensor.dims(),
                        platform::errors::PreconditionNotMet(
                            "Tensor %s has different dims with Tensor %s, "
                            "Tensor Copy cannot be performed!",
                            Name(), src.Name()));
      place = Place();
    } else {
      dst_tensor->Resize(src_tensor.dims());
389
    }
390 391 392 393
    framework::TensorCopy(src_tensor, place, dst_tensor);
  }
  if (blocking) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
394 395 396
  }
}

397 398 399 400 401 402 403 404 405
void VarBase::BumpInplaceVersion() {
  PADDLE_ENFORCE_EQ(
      Var().IsInitialized(), true,
      platform::errors::InvalidArgument(
          "Tensor %s has not been initialized, please check if it has no data.",
          Name()));
  MutableVar()->BumpInplaceVersion();
}

406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
// NOTE(weilong wu):
// This function try to copy the data from target varbase,
// and fill into the grad_var_ of the current varbase.
void VarBase::_CopyGradientFrom(const VarBase& src) {
  if (Var().IsInitialized()) {
    PADDLE_ENFORCE_EQ(DataType(), src.DataType(),
                      platform::errors::PreconditionNotMet(
                          "Tensor %s has different data type with Tensor %s",
                          Name(), src.Name()));
    PADDLE_ENFORCE_EQ(Type(), src.Type(),
                      platform::errors::PreconditionNotMet(
                          "Tensor %s has different type with Tensor %s, Tensor "
                          "ShareGradientDataWith cannot be performed!",
                          Name(), src.Name()));
  }
  VLOG(4) << " VarBase copy gradient with " << src.Name();
  if (grad_var_) {
    auto& src_tensor = src.Var().Get<framework::LoDTensor>();
    PADDLE_ENFORCE_EQ(src_tensor.IsInitialized(), true,
                      platform::errors::InvalidArgument(
426
                          "Tensor %s has not been initialized", src.Name()));
427 428 429 430 431 432 433
    auto* grad_t = grad_var_->MutableVar()->GetMutable<framework::LoDTensor>();
    auto* var_ = MutableVar()->GetMutable<framework::LoDTensor>();
    grad_t->ShareDataWith(src_tensor);
    grad_t->Resize(var_->dims());
  }
}

434
void OpBase::SetType(const std::string& type) {
H
hong 已提交
435
  op_ = framework::OpRegistry::CreateOp(type, {}, {}, {}, false);
J
Jiabin Yang 已提交
436
}
437

438 439 440
void OpBase::ClearBackwardTrace() {
  ins_.clear();
  outs_.clear();
H
hong 已提交
441 442
}

443 444 445 446 447
template <typename VarType>
static void OpBaseRunImpl(const framework::OperatorBase& op,
                          const NameVarMap<VarType>& ins,
                          const NameVarMap<VarType>& outs,
                          const framework::AttributeMap& attrs,
448
                          const framework::AttributeMap& default_attrs,
449
                          const platform::Place& place) {
450
  auto* op_kernel = dynamic_cast<const framework::OperatorWithKernel*>(&op);
451 452 453
  PADDLE_ENFORCE_NOT_NULL(
      op_kernel, platform::errors::PermissionDenied(
                     "Only support operator with kernel in Dygraph mode."));
454
  auto& info = op.Info();
J
Jiabin Yang 已提交
455
  if (info.infer_var_type_) {
456 457
    RuntimeInferVarTypeContext<VarType> infer_var_type_ctx(ins, outs, attrs,
                                                           default_attrs);
J
Jiabin Yang 已提交
458
    info.infer_var_type_(&infer_var_type_ctx);
X
Xin Pan 已提交
459
  }
460

J
Jiabin Yang 已提交
461 462 463
  // Initialize output var type
  for (auto& var_pair : outs) {
    for (auto& var : var_pair.second) {
464
      if (var) {
J
Jiabin Yang 已提交
465
        InitializeVariable(var->MutableVar(), GetType(var));
466
      }
467 468
    }
  }
X
Xin Pan 已提交
469

470
  VLOG(5) << LayerDebugString(op.Type(), ins, outs);
471

472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
  /**
   * [ Why need temporary inputs here? ]
   *
   * PrepareData should not change original input tensor inplace.
   * Suppose the user defines a tensor(int), enters an op to execute,
   * and then this op rewrites GetExpectedKernelForVar, and converts
   * this tensor to float type during execution. After the dynamic
   * graph is executed, the user-defined variable will be lost, and
   * the user cannot get the originally defined int tensor, because
   * it has been converted to float, this should be regarded as a bug
   * in certain usage scenarios
   *
   * In static graph mode, when op is executed, a temporary scope
   * `transfer_scope` is created before PrepareData, the data after
   * transform is stored in the temporary scope, and then discarded
   * after the execution of op, but the original input is directly
   * overwritten in the previous dynamic graph implemention.
   */
490 491
  auto prepared_op =
      PreparedOp::Prepare(ins, outs, *op_kernel, place, attrs, default_attrs);
492 493 494
  auto tmp_ins_ptr =
      PrepareData<VarType>(*op_kernel, ins, prepared_op.kernel_type());
  if (tmp_ins_ptr == nullptr) {
495
    prepared_op.Run(ins, outs, attrs, default_attrs);
496
  } else {
497
    prepared_op.Run(*tmp_ins_ptr, outs, attrs, default_attrs);
498
  }
499

500
  VLOG(4) << LayerDebugString(op.Type(), ins, outs);
501 502

  // set the output var
J
Jiabin Yang 已提交
503
  SetForwardDataTypeOfGradVars<VarType>(outs);
504 505
}

506 507 508 509
void OpBase::Run(const framework::OperatorBase& op,
                 const NameVarMap<VarBase>& ins,
                 const NameVarMap<VarBase>& outs,
                 const framework::AttributeMap& attrs,
510
                 const framework::AttributeMap& default_attrs,
511
                 const platform::Place& place) {
512
  OpBaseRunImpl<VarBase>(op, ins, outs, attrs, default_attrs, place);
513 514 515 516 517 518
}

void OpBase::Run(const framework::OperatorBase& op,
                 const NameVarMap<VariableWrapper>& ins,
                 const NameVarMap<VariableWrapper>& outs,
                 const framework::AttributeMap& attrs,
519
                 const framework::AttributeMap& default_attrs,
520
                 const platform::Place& place) {
521
  OpBaseRunImpl<VariableWrapper>(op, ins, outs, attrs, default_attrs, place);
522 523
}

J
Jiabin Yang 已提交
524 525 526 527 528 529 530 531 532
void OpBase::Run(const framework::OperatorBase& op,
                 const NameVarMap<egr::EagerTensor>& ins,
                 const NameVarMap<egr::EagerTensor>& outs,
                 const framework::AttributeMap& attrs,
                 const framework::AttributeMap& default_attrs,
                 const platform::Place& place) {
  OpBaseRunImpl<egr::EagerTensor>(op, ins, outs, attrs, default_attrs, place);
}

533
void ClearNoNeedBufferInputs(OpBase* op) {
534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571
  auto& inferer = op->Info().NoNeedBufferVarsInferer();
  if (!inferer) return;
  auto* ins = op->GetMutableInsMap();
  const auto& no_need_buffer_slots =
      inferer(*ins, op->GetOutsMap(), op->Attrs());
  if (no_need_buffer_slots.empty()) return;

  for (auto& slot : no_need_buffer_slots) {
    auto iter = ins->find(slot);
    if (iter == ins->end()) continue;
    VLOG(2) << "Clear data buffer of " << slot << " in " << op->Type();

    PADDLE_ENFORCE_EQ(
        iter->second.IsGrad(), false,
        platform::errors::InvalidArgument(
            "Only forward variable buffers can be clear, this may be a bug"));

    for (auto& each_var : *(iter->second.MutableVarList())) {
      if (!each_var) continue;

      auto& var = each_var->Var();
      PADDLE_ENFORCE_EQ(var.IsType<framework::LoDTensor>(), true,
                        platform::errors::PermissionDenied(
                            "NoNeedBufferVars only support LoDTensor"));
      auto new_var = new VariableWrapper(each_var->Name());
      auto* new_tensor =
          new_var->MutableVar()->GetMutable<framework::LoDTensor>();
      auto& old_tensor = var.Get<framework::LoDTensor>();
      new_tensor->Resize(old_tensor.dims());
      new_tensor->set_lod(old_tensor.lod());
      each_var.reset(new_var);
    }
  }
}

std::shared_ptr<GradOpNode> CreateGradOpNode(
    const framework::OperatorBase& op, const NameVarBaseMap& ins,
    const NameVarBaseMap& outs, const framework::AttributeMap& attrs,
572
    const framework::AttributeMap& default_attrs, const platform::Place& place,
573
    const std::map<std::string, std::string>& inplace_map) {
574 575 576 577 578
  const auto& info = op.Info();
  if (!info.dygraph_grad_op_maker_) {
    return nullptr;
  }

579 580
  auto grad_node = info.dygraph_grad_op_maker_(op.Type(), ins, outs, attrs,
                                               default_attrs, inplace_map);
581
  if (grad_node && !grad_node->empty()) {
582 583 584 585
    for (auto& grad_op : *grad_node) {
      grad_op.SetId(OpBase::GenerateUniqueId());
      grad_op.SetPlace(place);
      ClearNoNeedBufferInputs(&grad_op);
586 587 588 589 590 591 592
    }
    return grad_node;
  } else {
    return nullptr;
  }
}

J
Jiabin Yang 已提交
593 594 595 596 597 598 599 600 601
std::shared_ptr<GradOpNode> CreateGradOpNode(
    const framework::OperatorBase& op, const NameTensorMap& ins,
    const NameTensorMap& outs, const framework::AttributeMap& attrs,
    const framework::AttributeMap& default_attrs, const platform::Place& place,
    const std::map<std::string, std::string>& inplace_map) {
  // Do Nothing in Eager Mode.
  return nullptr;
}

602 603
}  // namespace imperative
}  // namespace paddle