test_pattern.py 4.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import sys
import unittest
17

18 19 20 21 22 23 24 25 26
import numpy as np

import paddle
import paddle.static as static

sys.path.append("..")
import auto_parallel_gpt_model as modeling
from auto_parallel_gpt_model import (
    GPTForPretraining,
27
    GPTModel,
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
    GPTPretrainingCriterion,
)


def get_gpt_model(
    train_program, start_program, place, batch_size, sequence_len, vocab_size
):
    with static.program_guard(train_program, start_program):
        tokens = paddle.static.data(
            name="tokens", shape=[batch_size, sequence_len], dtype='int64'
        )
        position_ids = paddle.static.data(
            name="position_ids", shape=[batch_size, sequence_len], dtype='int64'
        )
        attention_mask = paddle.static.data(
            name="attention_mask",
            shape=[batch_size, 1, sequence_len, sequence_len],
            dtype='float32',
        )
        labels = paddle.static.data(
            name="labels", shape=[batch_size, sequence_len], dtype='int64'
        )
        loss_mask = paddle.static.data(
            name="loss_mask", shape=[batch_size, sequence_len], dtype='float32'
        )

        gpt = GPTModel(
            vocab_size=1000,
            hidden_size=64,
            num_hidden_layers=2,
            num_attention_heads=8,
            intermediate_size=256,
            hidden_act="gelu",
            hidden_dropout_prob=0.0,
            attention_probs_dropout_prob=0.0,
            max_position_embeddings=1024,
            type_vocab_size=1,
            initializer_range=0.02,
            pad_token_id=0,
            eos_token_id=7,
            bos_token_id=0,
            eol_token_id=3,
        )

        model = GPTForPretraining(
            gpt, vocab_size=1000, hidden_size=64, initializer_range=0.02
        )
        preds = model(tokens, position_ids, attention_mask)
        criterion = GPTPretrainingCriterion()
        loss = criterion(preds, labels, loss_mask)

    def gen_data():
        np.random.seed(2021)
        tokens = []
        position_ids = []
        attention_mask = []
        labels = []
        loss_mask = []
        for _ in range(batch_size):
            tokens.append(np.random.randint(vocab_size, size=sequence_len))
            position_ids.append(np.arange(sequence_len))
            attention_mask.append([np.tril(np.ones(sequence_len))])
            labels.append(np.random.randint(vocab_size, size=sequence_len))
            loss_mask.append(np.ones(sequence_len))

        return tokens, position_ids, attention_mask, labels, loss_mask

    return train_program, start_program, loss, gen_data


98
class TestGroupOperatorsAndPatterns(unittest.TestCase):
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
    def test_gpt(self):
        modeling.init_global()
        train_program = static.Program()
        start_program = static.Program()
        place = paddle.set_device("gpu")
        batch_size = 8
        sequence_len = 512
        vocab_size = 1000
        train_program, start_program, loss, gen_data = get_gpt_model(
            train_program,
            start_program,
            place,
            batch_size,
            sequence_len,
            vocab_size,
        )
        from paddle.distributed.auto_parallel.tuner.rule_based_tuner import (
116
            _PATTERNS,
117
            GraphUtil,
118 119
        )

120
        graph = GraphUtil.convert_to_graph(train_program.global_block())
121 122
        print("graph: ", graph)
        print("qkv: ", _PATTERNS["qkv"].attrs["shard_spec"])
123 124 125 126 127 128 129 130 131 132 133 134 135 136
        print("row_matmul: ", _PATTERNS["row_matmul"].attrs["shard_spec"])
        print("ffn: ", _PATTERNS["ffn"].attrs["shard_spec"])
        print(
            "shared_word_embedding: ",
            _PATTERNS["shared_word_embedding"].attrs["shard_spec"],
        )
        print(
            "position_embedding: ",
            _PATTERNS["position_embedding"].attrs["shard_spec"],
        )
        print(
            "unsqueeze_data: ", _PATTERNS["unsqueeze_data"].attrs["shard_spec"]
        )
        print("reshape_data: ", _PATTERNS["reshape_data"].attrs["shard_spec"])
137 138 139 140


if __name__ == "__main__":
    unittest.main()