Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
30315ac9
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
30315ac9
编写于
11月 29, 2022
作者:
C
caozhou
提交者:
GitHub
11月 29, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[Auto Parallel] Add pattern match (#48464)
* add pattern match * add unittest
上级
41946522
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
407 addition
and
63 deletion
+407
-63
python/paddle/distributed/auto_parallel/graph.py
python/paddle/distributed/auto_parallel/graph.py
+14
-2
python/paddle/distributed/auto_parallel/tuner/rule_based_tuner.py
...addle/distributed/auto_parallel/tuner/rule_based_tuner.py
+240
-52
python/paddle/fluid/tests/unittests/auto_parallel/CMakeLists.txt
...paddle/fluid/tests/unittests/auto_parallel/CMakeLists.txt
+1
-0
python/paddle/fluid/tests/unittests/auto_parallel/test_group_operators.py
...uid/tests/unittests/auto_parallel/test_group_operators.py
+1
-1
python/paddle/fluid/tests/unittests/auto_parallel/test_pattern.py
...addle/fluid/tests/unittests/auto_parallel/test_pattern.py
+9
-8
python/paddle/fluid/tests/unittests/auto_parallel/test_pattern_match.py
...fluid/tests/unittests/auto_parallel/test_pattern_match.py
+142
-0
未找到文件。
python/paddle/distributed/auto_parallel/graph.py
浏览文件 @
30315ac9
...
...
@@ -12,6 +12,8 @@
# See the License for the specific language governing permissions and
# limitations under the License
from
collections
import
OrderedDict
class
Node
:
def
__init__
(
self
,
id
,
**
attrs
):
...
...
@@ -100,6 +102,8 @@ class Graph:
# Attributes for Graph
self
.
_attrs
=
{}
self
.
_attrs
.
update
(
attrs
)
self
.
_reverse_adjs
=
{}
self
.
_attr_to_nodes
=
{}
@
property
def
nodes
(
self
):
...
...
@@ -120,6 +124,7 @@ class Graph:
node
=
Node
(
node_id
,
**
attrs
)
self
.
_nodes
[
node_id
]
=
node
self
.
_adjs
[
node_id
]
=
{}
self
.
_reverse_adjs
[
node_id
]
=
[]
else
:
self
.
_nodes
[
node_id
].
attrs
.
update
(
attrs
)
...
...
@@ -134,14 +139,21 @@ class Graph:
if
src_id
not
in
self
.
_nodes
:
src_node
=
Node
(
src_id
)
self
.
_nodes
[
src_id
]
=
src_node
self
.
_adjs
[
src_id
]
=
{}
# for one tensor to multiple ops
self
.
_adjs
[
src_id
]
=
OrderedDict
()
self
.
_reverse_adjs
[
src_id
]
=
[]
if
tgt_id
not
in
self
.
_nodes
:
tgt_node
=
Node
(
tgt_id
)
self
.
_nodes
[
tgt_id
]
=
tgt_node
self
.
_adjs
[
tgt_id
]
=
{}
# for one tensor to multiple ops
self
.
_adjs
[
tgt_id
]
=
OrderedDict
()
self
.
_reverse_adjs
[
tgt_id
]
=
[]
# add the edge
edge
=
Edge
(
src_id
,
tgt_id
,
**
attrs
)
self
.
_adjs
[
src_id
][
tgt_id
]
=
edge
# add the reverse adj
self
.
_reverse_adjs
[
tgt_id
].
append
(
self
.
nodes
[
src_id
])
return
edge
def
__len__
(
self
):
...
...
python/paddle/distributed/auto_parallel/tuner/rule_based_tuner.py
浏览文件 @
30315ac9
...
...
@@ -12,7 +12,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from
abc
import
ABC
,
abstractmethod
from
abc
import
abstractmethod
from
..graph
import
Graph
...
...
@@ -32,6 +32,57 @@ def register_pattern(cls):
return
cls
class
BasePattern
(
Graph
):
name
=
"base"
def
__init__
(
self
):
super
().
__init__
()
self
.
build
()
@
abstractmethod
def
build
(
self
):
pass
@
register_pattern
class
QKVPattern
(
BasePattern
):
name
=
"qkv"
def
__init__
(
self
):
super
().
__init__
()
def
build
(
self
):
query
=
self
.
add_node
(
0
,
**
{
"type"
:
"var"
})
q_weight
=
self
.
add_node
(
1
,
**
{
"dim"
:
2
,
"type"
:
"param"
})
k_weight
=
self
.
add_node
(
2
,
**
{
"dim"
:
2
,
"type"
:
"param"
})
v_weight
=
self
.
add_node
(
3
,
**
{
"dim"
:
2
,
"type"
:
"param"
})
q_matmul
=
self
.
add_node
(
4
,
**
{
"type"
:
"matmul_v2"
})
k_matmul
=
self
.
add_node
(
5
,
**
{
"type"
:
"matmul_v2"
})
v_matmul
=
self
.
add_node
(
6
,
**
{
"type"
:
"matmul_v2"
})
q_x
=
self
.
add_edge
(
0
,
4
,
**
{
"input_name"
:
"X"
})
k_x
=
self
.
add_edge
(
0
,
5
,
**
{
"input_name"
:
"X"
})
v_x
=
self
.
add_edge
(
0
,
6
,
**
{
"input_name"
:
"X"
})
q_y
=
self
.
add_edge
(
1
,
4
,
**
{
"input_name"
:
"Y"
})
k_y
=
self
.
add_edge
(
2
,
5
,
**
{
"input_name"
:
"Y"
})
v_y
=
self
.
add_edge
(
3
,
6
,
**
{
"input_name"
:
"Y"
})
q
=
self
.
add_node
(
7
,
**
{
"type"
:
"var"
})
k
=
self
.
add_node
(
8
,
**
{
"type"
:
"var"
})
v
=
self
.
add_node
(
9
,
**
{
"type"
:
"var"
})
q_out
=
self
.
add_edge
(
4
,
7
,
**
{
"output_name"
:
"Out"
})
k_out
=
self
.
add_edge
(
5
,
8
,
**
{
"output_name"
:
"Out"
})
v_out
=
self
.
add_edge
(
6
,
9
,
**
{
"output_name"
:
"Out"
})
# Pattern
self
.
attrs
[
"shard_spec"
]
=
[
[(
1
,
2
,
3
),
[[
-
1
,
0
],
[
-
1
,
1
]]],
]
# 2-tuple list such as [(tensor_id, shard_sepc)]
def
convert_to_graph
(
ops
,
block
):
"""Convert ops to graph."""
graph
=
Graph
()
...
...
@@ -50,7 +101,9 @@ def convert_to_graph(ops, block):
op_node
=
graph
.
add_node
(
node_id
,
**
attrs
)
graph
.
attrs
[
"op_to_id"
][
op
.
desc
.
id
()]
=
op_node
.
id
graph
.
attrs
[
"id_to_op"
][
op_node
.
id
]
=
op
.
desc
.
id
()
graph
.
_attr_to_nodes
[
op_node
.
id
]
=
{}
for
input_name
in
op
.
input_names
:
graph
.
_attr_to_nodes
[
op_node
.
id
][
input_name
]
=
[]
for
var_name
in
op
.
input
(
input_name
):
if
var_name
not
in
graph
.
attrs
[
"var_to_id"
]:
# create var node
...
...
@@ -59,6 +112,7 @@ def convert_to_graph(ops, block):
var
=
block
.
_var_recursive
(
var_name
)
if
var
.
is_parameter
:
var_node
.
attrs
[
"type"
]
=
"param"
var_node
.
attrs
[
"dim"
]
=
len
(
var
.
shape
)
else
:
var_node
.
attrs
[
"type"
]
=
"var"
graph
.
attrs
[
"var_to_id"
][
var_name
]
=
var_node
.
id
...
...
@@ -70,8 +124,10 @@ def convert_to_graph(ops, block):
# create edge that input -> op
input_edge
=
graph
.
add_edge
(
var_node
.
id
,
op_node
.
id
)
input_edge
.
attrs
[
"input_name"
]
=
input_name
graph
.
_attr_to_nodes
[
op_node
.
id
][
input_name
].
append
(
var_node
)
for
output_name
in
op
.
output_names
:
graph
.
_attr_to_nodes
[
op_node
.
id
][
output_name
]
=
[]
for
var_name
in
op
.
output
(
output_name
):
if
var_name
not
in
graph
.
attrs
[
"var_to_id"
]:
# create var node
...
...
@@ -92,64 +148,189 @@ def convert_to_graph(ops, block):
output_edge
=
graph
.
add_edge
(
op_node
.
id
,
var_node
.
id
)
output_edge
.
attrs
[
"output_name"
]
=
output_name
graph
.
_attr_to_nodes
[
op_node
.
id
][
output_name
].
append
(
var_node
)
return
graph
class
BasePattern
(
ABC
):
name
=
"base"
def
match
(
pattern
,
graph
):
def
_is_op_node
(
node
):
"""Judge whether node is op node"""
if
node
.
attrs
[
"type"
]
not
in
[
"var"
,
"param"
,
"data"
]:
return
True
def
__init__
(
self
):
self
.
graph
=
None
self
.
build
()
return
False
@
abstractmethod
def
build
(
self
):
pass
def
_compare_op_node
(
src
,
tgt
):
"""Compare whether two op nodes are equal"""
if
src
.
attrs
[
"type"
]
!=
tgt
.
attrs
[
"type"
]:
return
False
return
True
@
register_pattern
class
QKVPattern
(
BasePattern
):
name
=
"qkv"
def
_compare_var_node
(
src
,
tgt
):
"""Compare whether two var nodes are equal"""
for
key
in
src
.
attrs
:
if
key
not
in
tgt
.
attrs
:
return
False
if
src
.
attrs
[
key
]
!=
tgt
.
attrs
[
key
]:
return
False
def
__init__
(
self
):
super
().
__init__
()
return
True
def
build
(
self
):
self
.
graph
=
Graph
()
def
_match_core
(
src_node
,
tgt_node
):
nonlocal
not_matched
# do not support one input name or output name corresponding to multiple vars
if
not_matched
:
return
query
=
self
.
graph
.
add_node
(
0
,
**
{
"type"
:
"var"
})
if
_is_op_node
(
src_node
):
# compare op node whether equal
if
not
_compare_op_node
(
src_node
,
tgt_node
):
return
q_weight
=
self
.
graph
.
add_node
(
1
,
**
{
"dim"
:
2
,
"type"
:
"param"
})
k_weight
=
self
.
graph
.
add_node
(
2
,
**
{
"dim"
:
2
,
"type"
:
"param"
})
v_weight
=
self
.
graph
.
add_node
(
3
,
**
{
"dim"
:
2
,
"type"
:
"param"
})
result
[
src_node
.
id
]
=
tgt_node
.
id
q_matmul
=
self
.
graph
.
add_node
(
4
,
**
{
"type"
:
"matmul_v2"
})
k_matmul
=
self
.
graph
.
add_node
(
5
,
**
{
"type"
:
"matmul_v2"
})
v_matmul
=
self
.
graph
.
add_node
(
6
,
**
{
"type"
:
"matmul_v2"
})
# input var nodes
src_input_nodes
=
src_reverse_adjs
[
src_node
.
id
]
for
node
in
src_input_nodes
:
# has visited
if
node
.
id
in
result
:
continue
edge
=
src_edges
[
node
.
id
][
src_node
.
id
]
input_name
=
edge
.
attrs
[
"input_name"
]
# NOTE: do not support one input name or output name corresponding to multiple vars
compare_nodes
=
tgt_attr_to_nodes
[
tgt_node
.
id
].
get
(
input_name
,
None
)
if
not
compare_nodes
:
not_matched
=
True
return
_match_core
(
node
,
compare_nodes
[
0
])
# output var nodes
src_output_node_ids
=
src_edges
[
src_node
.
id
].
keys
()
for
node_id
in
src_output_node_ids
:
# has visited
if
node_id
in
result
:
continue
node
=
src_nodes
[
node_id
]
edge
=
src_edges
[
src_node
.
id
][
node_id
]
output_name
=
edge
.
attrs
[
"output_name"
]
# NOTE: do not support one input name or output name corresponding to multiple vars
compare_nodes
=
tgt_attr_to_nodes
[
tgt_node
.
id
].
get
(
output_name
,
None
)
if
not
compare_nodes
:
not_matched
=
True
return
_match_core
(
node
,
compare_nodes
[
0
])
q_x
=
self
.
graph
.
add_edge
(
0
,
4
,
**
{
"input_name"
:
"X"
})
k_x
=
self
.
graph
.
add_edge
(
0
,
5
,
**
{
"input_name"
:
"X"
})
v_x
=
self
.
graph
.
add_edge
(
0
,
6
,
**
{
"input_name"
:
"X"
})
q_y
=
self
.
graph
.
add_edge
(
1
,
4
,
**
{
"input_name"
:
"Y"
})
k_y
=
self
.
graph
.
add_edge
(
2
,
5
,
**
{
"input_name"
:
"Y"
})
v_y
=
self
.
graph
.
add_edge
(
3
,
6
,
**
{
"input_name"
:
"Y"
})
else
:
# compare var node whether equal
if
not
_compare_var_node
(
src_node
,
tgt_node
):
not_matched
=
True
return
q
=
self
.
graph
.
add_node
(
7
,
**
{
"type"
:
"var"
})
k
=
self
.
graph
.
add_node
(
8
,
**
{
"type"
:
"var"
})
v
=
self
.
graph
.
add_node
(
9
,
**
{
"type"
:
"var"
})
result
[
src_node
.
id
]
=
tgt_node
.
id
q_out
=
self
.
graph
.
add_edge
(
7
,
4
,
**
{
"output_name"
:
"Out"
})
k_out
=
self
.
graph
.
add_edge
(
8
,
5
,
**
{
"output_name"
:
"Out"
})
v_out
=
self
.
graph
.
add_edge
(
9
,
6
,
**
{
"output_name"
:
"Out"
})
# as input for op nodes
src_as_input_node_ids
=
src_edges
[
src_node
.
id
].
keys
()
for
node_id
in
src_as_input_node_ids
:
if
node_id
in
result
:
continue
# Pattern
self
.
graph
.
attrs
[
"shard_tensor"
]
=
[
(
1
,
2
,
3
),
[[
-
1
,
0
],
[
-
1
,
1
]],
]
# 2-tuple such as (tensor_id, patterns)
src_edge
=
src_edges
[
src_node
.
id
][
node_id
]
input_name
=
src_edge
.
attrs
[
"input_name"
]
compare_node_ids
=
tgt_edges
[
tgt_node
.
id
].
keys
()
compare_node
=
None
for
compare_node_id
in
compare_node_ids
:
edge
=
tgt_edges
[
tgt_node
.
id
][
compare_node_id
]
if
(
edge
.
attrs
[
"input_name"
]
==
input_name
and
compare_node_id
not
in
result
.
values
()
):
compare_node
=
tgt_nodes
[
compare_node_id
]
break
if
not
compare_node
:
not_matched
=
True
return
_match_core
(
src_nodes
[
node_id
],
compare_node
)
# as output for nodes
src_as_output_nodes
=
src_reverse_adjs
[
src_node
.
id
]
for
node
in
src_as_output_nodes
:
if
node
.
id
in
result
:
continue
src_edge
=
src_edges
[
node
.
id
][
src_node
.
id
]
output_name
=
src_edge
.
attrs
[
"output_name"
]
compare_node_ids
=
tgt_reverse_adjs
[
tgt_node
.
id
]
class
OperatorGroupUtil
:
compare_node
=
None
for
node_id
in
compare_node_ids
:
edge
=
tgt_edges
[
node_id
][
tgt_node
.
id
]
if
edge
.
attrs
[
"output_name"
]
==
output_name
:
compare_node
=
tgt_nodes
[
node_id
]
break
if
not
compare_node
:
not_matched
=
True
return
_match_core
(
src_nodes
[
node_id
],
compare_node
)
results
=
[]
result
=
{}
has_matched
=
set
()
src_nodes
=
pattern
.
nodes
src_edges
=
pattern
.
_adjs
src_reverse_adjs
=
pattern
.
_reverse_adjs
tgt_nodes
=
graph
.
nodes
tgt_edges
=
graph
.
_adjs
tgt_reverse_adjs
=
graph
.
_reverse_adjs
tgt_attr_to_nodes
=
graph
.
_attr_to_nodes
not_matched
=
False
# starts with a op node
src_start_node
=
None
for
node_id
in
src_nodes
:
node
=
src_nodes
[
node_id
]
if
node
.
attrs
[
"type"
]
not
in
[
"var"
,
"param"
,
"data"
]:
src_start_node
=
node
break
assert
src_start_node
is
not
None
for
node_id
in
tgt_nodes
:
node
=
tgt_nodes
[
node_id
]
if
node
.
attrs
[
"type"
]
==
src_start_node
.
attrs
[
"type"
]:
_match_core
(
src_start_node
,
node
)
if
not
not_matched
:
need_to_append
=
True
for
value
in
result
.
values
():
if
value
in
has_matched
:
result
=
{}
need_to_append
=
False
break
if
need_to_append
:
results
.
append
(
result
)
for
value
in
result
.
values
():
has_matched
.
add
(
value
)
result
=
{}
else
:
not_matched
=
False
result
=
{}
return
results
class
OperatorClusteringUtil
:
common_starts
=
[
"layer_norm"
,
"matmul_v2"
,
"matmul"
]
@
staticmethod
...
...
@@ -257,7 +438,10 @@ class OperatorGroupUtil:
min_index
=
min
(
index_group
)
if
max_index
-
min_index
>=
k
:
longest_sub_seq
=
seq
[
min_index
:
min_index
+
k
]
if
longest_sub_seq
[
0
]
in
OperatorGroupUtil
.
common_starts
:
if
(
longest_sub_seq
[
0
]
in
OperatorClusteringUtil
.
common_starts
):
return
longest_sub_seq
if
longest_sub_seq
is
not
None
:
return
longest_sub_seq
...
...
@@ -325,9 +509,9 @@ class RuleBasedTuner:
self
.
_dist_context
=
dist_context
self
.
_mode
=
mode
def
group
_operators
(
self
,
ops
):
def
cluster
_operators
(
self
,
ops
):
"""
Group
operators to layers.
Cluster
operators to layers.
Args:
ops (list): A operator list.
...
...
@@ -337,7 +521,7 @@ class RuleBasedTuner:
"""
seq
=
[
op
.
type
for
op
in
ops
]
while
not
Operator
Group
Util
.
stop_replace
(
seq
):
while
not
Operator
Clustering
Util
.
stop_replace
(
seq
):
to_replace_seq
=
[]
to_replace_idxes
=
[]
has_append
=
False
...
...
@@ -351,11 +535,15 @@ class RuleBasedTuner:
elif
isinstance
(
seq
,
list
)
and
has_append
:
break
ranks
=
OperatorGroupUtil
.
get_ranks
(
to_replace_seq
)
suffixes
=
OperatorGroupUtil
.
get_suffixes
(
ranks
)
heights
=
OperatorGroupUtil
.
get_heights
(
suffixes
,
to_replace_seq
)
longest_sub_seq
=
OperatorGroupUtil
.
get_longest_repeated_sub_seq
(
suffixes
,
heights
,
to_replace_seq
ranks
=
OperatorClusteringUtil
.
get_ranks
(
to_replace_seq
)
suffixes
=
OperatorClusteringUtil
.
get_suffixes
(
ranks
)
heights
=
OperatorClusteringUtil
.
get_heights
(
suffixes
,
to_replace_seq
)
longest_sub_seq
=
(
OperatorClusteringUtil
.
get_longest_repeated_sub_seq
(
suffixes
,
heights
,
to_replace_seq
)
)
has_merged
=
False
if
longest_sub_seq
is
None
:
...
...
@@ -374,10 +562,10 @@ class RuleBasedTuner:
seq
=
[
to_replace_seq
]
break
decomposed_sub_seq
=
Operator
Group
Util
.
get_decomposed_sub_seq
(
decomposed_sub_seq
=
Operator
Clustering
Util
.
get_decomposed_sub_seq
(
longest_sub_seq
)
to_replace_seq
=
Operator
Group
Util
.
replace_by_decomposed_seq
(
to_replace_seq
=
Operator
Clustering
Util
.
replace_by_decomposed_seq
(
decomposed_sub_seq
,
to_replace_seq
)
result
=
seq
[:
to_replace_idxes
[
0
]]
...
...
python/paddle/fluid/tests/unittests/auto_parallel/CMakeLists.txt
浏览文件 @
30315ac9
...
...
@@ -120,4 +120,5 @@ if(WITH_DISTRIBUTE AND WITH_GPU)
py_test_modules
(
test_fp16_assign MODULES test_fp16_assign
)
py_test_modules
(
test_group_operators MODULES test_group_operators
)
py_test_modules
(
test_pattern MODULES test_pattern
)
py_test_modules
(
test_pattern_match MODULES test_pattern_match
)
endif
()
python/paddle/fluid/tests/unittests/auto_parallel/test_group_operators.py
浏览文件 @
30315ac9
...
...
@@ -121,7 +121,7 @@ class TestGroupOperators(unittest.TestCase):
dist_context
=
DistributedContext
()
tuner
=
RuleBasedTuner
(
dist_context
)
layers
=
tuner
.
group
_operators
(
train_program
.
global_block
().
ops
)
layers
=
tuner
.
cluster
_operators
(
train_program
.
global_block
().
ops
)
op_types
=
[]
for
layer
in
layers
:
tmp
=
[]
...
...
python/paddle/fluid/tests/unittests/auto_parallel/test_pattern.py
浏览文件 @
30315ac9
...
...
@@ -14,6 +14,7 @@
import
sys
import
unittest
import
numpy
as
np
import
paddle
...
...
@@ -22,8 +23,8 @@ import paddle.static as static
sys
.
path
.
append
(
".."
)
import
auto_parallel_gpt_model
as
modeling
from
auto_parallel_gpt_model
import
(
GPTModel
,
GPTForPretraining
,
GPTModel
,
GPTPretrainingCriterion
,
)
...
...
@@ -111,22 +112,22 @@ class TestGroupOperators(unittest.TestCase):
sequence_len
,
vocab_size
,
)
from
paddle.distributed.auto_parallel.dist_context
import
(
DistributedContext
,
)
from
paddle.distributed.auto_parallel.tuner.rule_based_tuner
import
(
_PATTERNS
,
RuleBasedTuner
,
convert_to_graph
,
_PATTERNS
,
)
from
paddle.distributed.auto_parallel.dist_context
import
(
DistributedContext
,
)
dist_context
=
DistributedContext
()
tuner
=
RuleBasedTuner
(
dist_context
)
layers
=
tuner
.
group
_operators
(
train_program
.
global_block
().
ops
)
layers
=
tuner
.
cluster
_operators
(
train_program
.
global_block
().
ops
)
layer
=
layers
[
0
]
graph
=
convert_to_graph
(
layer
,
train_program
.
global_block
())
print
(
graph
)
print
(
"qkv: "
,
_PATTERNS
[
"qkv"
].
graph
)
print
(
"graph: "
,
graph
)
print
(
"qkv: "
,
_PATTERNS
[
"qkv"
].
attrs
[
"shard_spec"
]
)
if
__name__
==
"__main__"
:
...
...
python/paddle/fluid/tests/unittests/auto_parallel/test_pattern_match.py
0 → 100644
浏览文件 @
30315ac9
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
sys
import
unittest
import
numpy
as
np
import
paddle
import
paddle.static
as
static
sys
.
path
.
append
(
".."
)
import
auto_parallel_gpt_model
as
modeling
from
auto_parallel_gpt_model
import
(
GPTForPretraining
,
GPTModel
,
GPTPretrainingCriterion
,
)
def
get_gpt_model
(
train_program
,
start_program
,
place
,
batch_size
,
sequence_len
,
vocab_size
):
with
static
.
program_guard
(
train_program
,
start_program
):
tokens
=
paddle
.
static
.
data
(
name
=
"tokens"
,
shape
=
[
batch_size
,
sequence_len
],
dtype
=
'int64'
)
position_ids
=
paddle
.
static
.
data
(
name
=
"position_ids"
,
shape
=
[
batch_size
,
sequence_len
],
dtype
=
'int64'
)
attention_mask
=
paddle
.
static
.
data
(
name
=
"attention_mask"
,
shape
=
[
batch_size
,
1
,
sequence_len
,
sequence_len
],
dtype
=
'float32'
,
)
labels
=
paddle
.
static
.
data
(
name
=
"labels"
,
shape
=
[
batch_size
,
sequence_len
],
dtype
=
'int64'
)
loss_mask
=
paddle
.
static
.
data
(
name
=
"loss_mask"
,
shape
=
[
batch_size
,
sequence_len
],
dtype
=
'float32'
)
gpt
=
GPTModel
(
vocab_size
=
1000
,
hidden_size
=
64
,
num_hidden_layers
=
2
,
num_attention_heads
=
8
,
intermediate_size
=
256
,
hidden_act
=
"gelu"
,
hidden_dropout_prob
=
0.0
,
attention_probs_dropout_prob
=
0.0
,
max_position_embeddings
=
1024
,
type_vocab_size
=
1
,
initializer_range
=
0.02
,
pad_token_id
=
0
,
eos_token_id
=
7
,
bos_token_id
=
0
,
eol_token_id
=
3
,
)
model
=
GPTForPretraining
(
gpt
,
vocab_size
=
1000
,
hidden_size
=
64
,
initializer_range
=
0.02
)
preds
=
model
(
tokens
,
position_ids
,
attention_mask
)
criterion
=
GPTPretrainingCriterion
()
loss
=
criterion
(
preds
,
labels
,
loss_mask
)
def
gen_data
():
np
.
random
.
seed
(
2021
)
tokens
=
[]
position_ids
=
[]
attention_mask
=
[]
labels
=
[]
loss_mask
=
[]
for
_
in
range
(
batch_size
):
tokens
.
append
(
np
.
random
.
randint
(
vocab_size
,
size
=
sequence_len
))
position_ids
.
append
(
np
.
arange
(
sequence_len
))
attention_mask
.
append
([
np
.
tril
(
np
.
ones
(
sequence_len
))])
labels
.
append
(
np
.
random
.
randint
(
vocab_size
,
size
=
sequence_len
))
loss_mask
.
append
(
np
.
ones
(
sequence_len
))
return
tokens
,
position_ids
,
attention_mask
,
labels
,
loss_mask
return
train_program
,
start_program
,
loss
,
gen_data
class
TestGroupOperators
(
unittest
.
TestCase
):
def
test_gpt
(
self
):
modeling
.
init_global
()
train_program
=
static
.
Program
()
start_program
=
static
.
Program
()
place
=
paddle
.
set_device
(
"gpu"
)
batch_size
=
8
sequence_len
=
512
vocab_size
=
1000
train_program
,
start_program
,
loss
,
gen_data
=
get_gpt_model
(
train_program
,
start_program
,
place
,
batch_size
,
sequence_len
,
vocab_size
,
)
from
paddle.distributed.auto_parallel.dist_context
import
(
DistributedContext
,
)
from
paddle.distributed.auto_parallel.tuner.rule_based_tuner
import
(
_PATTERNS
,
RuleBasedTuner
,
convert_to_graph
,
match
,
)
dist_context
=
DistributedContext
()
tuner
=
RuleBasedTuner
(
dist_context
)
layers
=
tuner
.
cluster_operators
(
train_program
.
global_block
().
ops
)
layer
=
layers
[
0
]
graph
=
convert_to_graph
(
layer
,
train_program
.
global_block
())
results
=
match
(
_PATTERNS
[
"qkv"
],
graph
)
shard_tensor_infos
=
_PATTERNS
[
"qkv"
].
attrs
[
"shard_spec"
]
tensor_ids
=
shard_tensor_infos
[
0
][
0
]
if
results
:
for
result
in
results
:
for
node_id
in
result
:
if
node_id
in
tensor_ids
:
print
(
graph
.
attrs
[
"id_to_var"
][
result
[
node_id
]])
print
(
"shard_spec: "
,
shard_tensor_infos
[
0
][
1
])
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录