engine.h 7.9 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <NvInfer.h>
#include <memory>
19
#include <string>
Y
Yan Chunwei 已提交
20
#include <unordered_map>
21
#include <vector>
N
nhzlx 已提交
22
#include "paddle/fluid/framework/tensor.h"
Y
Yan Chunwei 已提交
23 24
#include "paddle/fluid/inference/engine.h"
#include "paddle/fluid/inference/tensorrt/helper.h"
25
#include "paddle/fluid/inference/utils/singleton.h"
Y
Yan Chunwei 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

namespace paddle {
namespace inference {
namespace tensorrt {

/*
 * TensorRT Engine.
 *
 * There are two alternative ways to use it, one is  to build from a paddle
 * protobuf model, another way is to manully construct the network.
 */
class TensorRTEngine : public EngineBase {
 public:
  // Weight is model parameter.
  class Weight {
   public:
42
    Weight(nvinfer1::DataType dtype, void* value, size_t num_elem) {
Y
Yan Chunwei 已提交
43 44 45 46 47 48
      w_.type = dtype;
      w_.values = value;
      w_.count = num_elem;
    }
    const nvinfer1::Weights& get() { return w_; }

49 50
    std::vector<int64_t> dims;

Y
Yan Chunwei 已提交
51 52 53 54
   private:
    nvinfer1::Weights w_;
  };

Y
Yan Chunwei 已提交
55
  TensorRTEngine(int max_batch, int max_workspace,
N
nhzlx 已提交
56
                 cudaStream_t* stream = nullptr, int device = 0,
Y
Yan Chunwei 已提交
57 58 59
                 nvinfer1::ILogger& logger = NaiveLogger::Global())
      : max_batch_(max_batch),
        max_workspace_(max_workspace),
Y
Yan Chunwei 已提交
60
        stream_(stream ? stream : &default_stream_),
N
nhzlx 已提交
61 62 63 64
        logger_(logger),
        device_(device) {
    freshDeviceId();
    cudaStreamCreate(stream_);
65
  }
Y
Yan Chunwei 已提交
66 67 68 69

  virtual ~TensorRTEngine();

  // TODO(Superjomn) implement it later when graph segmentation is supported.
70
  void Build(const DescType& paddle_model) override;
Y
Yan Chunwei 已提交
71

72
  void Execute(int batch_size) override;
Y
Yan Chunwei 已提交
73 74 75 76

  // Initialize the inference network, so that TensorRT layers can add to this
  // network.
  void InitNetwork() {
77
    infer_builder_.reset(createInferBuilder(&logger_));
Y
Yan Chunwei 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90 91
    infer_network_.reset(infer_builder_->createNetwork());
  }
  // After finishing adding ops, freeze this network and creates the executation
  // environment.
  void FreezeNetwork();

  // Add an input and set its name, data type and dimention.
  nvinfer1::ITensor* DeclareInput(const std::string& name,
                                  nvinfer1::DataType dtype,
                                  const nvinfer1::Dims& dim);
  // Set the offset-th output from a layer as the network's output, and set its
  // name.
  void DeclareOutput(const nvinfer1::ILayer* layer, int offset,
                     const std::string& name);
L
Luo Tao 已提交
92 93
  // Set the itensor_map_[name] as the network's output, and set its name.
  void DeclareOutput(const std::string& name);
Y
Yan Chunwei 已提交
94 95 96 97 98

  // GPU memory address for an ITensor with specific name. One can operate on
  // these memory directly for acceleration, for example, output the converted
  // data directly to the buffer to save data copy overhead.
  // NOTE this should be used after calling `FreezeNetwork`.
Y
Yan Chunwei 已提交
99 100 101
  Buffer& buffer(const std::string& name) override;

  cudaStream_t* stream() { return stream_; }
Y
Yan Chunwei 已提交
102 103

  // Fill an input from CPU memory with name and size.
104
  void SetInputFromCPU(const std::string& name, const void* data, size_t size);
Y
Yan Chunwei 已提交
105 106
  // TODO(Superjomn) is this method necessary given that buffer(xxx) can be
  // accessed directly. Fill an input from GPU memory with name and size.
107
  void SetInputFromGPU(const std::string& name, const void* data, size_t size);
Y
Yan Chunwei 已提交
108
  // Get an output called name, the output of tensorrt is in GPU, so this method
109
  // Return the output's GPU memory address without copy.
Y
Yan Chunwei 已提交
110
  void* GetOutputInGPU(const std::string& name);
111
  // Copy data into dst inside the GPU device.
N
nhzlx 已提交
112
  void GetOutputInGPU(const std::string& name, void* dst, size_t max_size);
Y
Yan Chunwei 已提交
113 114
  // LOW EFFICENCY! Get output to CPU, this will trigger a memory copy from GPU
  // to CPU.
N
nhzlx 已提交
115
  void GetOutputInCPU(const std::string& name, void* dst, size_t max_size);
L
Luo Tao 已提交
116 117 118 119
  // Fill an ITensor into map itensor_map_.
  void SetITensor(const std::string& name, nvinfer1::ITensor* tensor);
  // Get an ITensor called name.
  nvinfer1::ITensor* GetITensor(const std::string& name);
Y
Yan Chunwei 已提交
120 121 122

  nvinfer1::ICudaEngine* engine() { return infer_engine_.get(); }
  nvinfer1::INetworkDefinition* network() { return infer_network_.get(); }
123 124
  void SetRuntimeBatch(size_t batch_size);
  int GetRuntimeBatch();
N
nhzlx 已提交
125 126 127 128 129 130 131 132 133
  int GetDevice() { return device_; }

  // A pointer to CPU memory is needed of the TRT weight.
  // Before TRT runs, fluid loads weight into GPU storage.
  // so we need to copy the weights from GPU to CPU in our op converter.
  // We use a map to store these weights for the weight memory is not released
  // in advance, which affecting the construction of TRT Op.
  std::unordered_map<std::string /*name*/, std::unique_ptr<framework::Tensor>>
      weight_map;
Y
Yan Chunwei 已提交
134 135 136 137

 private:
  // the max batch size
  int max_batch_;
138 139
  // the runtime batch size
  static int runtime_batch_;
Y
Yan Chunwei 已提交
140 141
  // the max memory size the engine uses
  int max_workspace_;
142 143 144

  // batch size of the current data, will be updated each Executation.
  int batch_size_{-1};
Y
Yan Chunwei 已提交
145
  cudaStream_t* stream_;
Y
Yan Chunwei 已提交
146 147
  // If stream_ is not set from outside, hold its own stream.
  cudaStream_t default_stream_;
Y
Yan Chunwei 已提交
148 149
  nvinfer1::ILogger& logger_;

Y
Yan Chunwei 已提交
150
  std::vector<Buffer> buffers_;
Y
Yan Chunwei 已提交
151 152
  // max data size for the buffers.
  std::unordered_map<std::string /*name*/, size_t /*max size*/> buffer_sizes_;
L
Luo Tao 已提交
153 154
  std::unordered_map<std::string /*name*/, nvinfer1::ITensor* /*ITensor*/>
      itensor_map_;
N
nhzlx 已提交
155 156
  // The specific GPU id that the TensorRTEngine bounded to.
  int device_;
Y
Yan Chunwei 已提交
157 158 159 160

  // TensorRT related internal members
  template <typename T>
  struct Destroyer {
161 162 163 164 165
    void operator()(T* x) {
      if (x) {
        x->destroy();
      }
    }
Y
Yan Chunwei 已提交
166 167 168 169 170 171 172
  };
  template <typename T>
  using infer_ptr = std::unique_ptr<T, Destroyer<T>>;
  infer_ptr<nvinfer1::IBuilder> infer_builder_;
  infer_ptr<nvinfer1::INetworkDefinition> infer_network_;
  infer_ptr<nvinfer1::ICudaEngine> infer_engine_;
  infer_ptr<nvinfer1::IExecutionContext> infer_context_;
N
nhzlx 已提交
173 174 175 176
  // Each ICudaEngine object is bound to a specific GPU when it is instantiated,
  // ensure that the thread is associated with the correct device by calling
  // freshDeviceId().
  void freshDeviceId();
Y
Yan Chunwei 已提交
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
};  // class TensorRTEngine

// Add an layer__ into engine__ with args ARGS.
// For example:
//   TRT_ENGINE_ADD_LAYER(xxx, FullyConnected, input, dim, weights, bias)
//
// Reference
// https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#charRNN_define_network
//
// will add a fully connected layer into the engine.
// TensorRT has too many layers, so that is not wise to add member functions for
// them, and an macro like this is more extensible when underlying TensorRT
// library add new layer supports.
#define TRT_ENGINE_ADD_LAYER(engine__, layer__, ARGS...) \
  engine__->network()->add##layer__(ARGS);

193 194 195 196 197
/*
 * Helper to control the TensorRT engine's creation and deletion.
 */
class TRT_EngineManager {
 public:
Y
Yan Chunwei 已提交
198 199 200 201 202 203 204 205 206 207 208
  bool HasEngine(const std::string& name) const {
    return engines_.count(name) != 0;
  }

  // Get an engine called `name`.
  TensorRTEngine* Get(const std::string& name) const {
    return engines_.at(name).get();
  }

  // Create or get an engine called `name`
  TensorRTEngine* Create(int max_batch, int max_workspace, cudaStream_t* stream,
N
nhzlx 已提交
209 210
                         const std::string& name, int gpu_device = 0) {
    auto* p = new TensorRTEngine(max_batch, max_workspace, stream, gpu_device);
Y
Yan Chunwei 已提交
211 212
    engines_[name].reset(p);
    return p;
213 214 215
  }

  void DeleteALl() {
Y
Yan Chunwei 已提交
216 217
    for (auto& item : engines_) {
      item.second.reset(nullptr);
218 219 220 221
    }
  }

 private:
Y
Yan Chunwei 已提交
222
  std::unordered_map<std::string, std::unique_ptr<TensorRTEngine>> engines_;
223 224
};

Y
Yan Chunwei 已提交
225 226 227
}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle